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Overview
• Windows

• Location and scale

• Laplacian of Gaussian filter
• Orientation
• SIFT descriptors
• Learning to find interest points and their descriptions



What we want
We want to find patches that are “worth representing”

• to match from image to image
• to represent textures
• to represent objects

And describe them in a distinctive way

What we have
• Corner detection

• A corner can be localized 
• It is covariant to translation, rotation

• Tolerable behavior under scale  (this can be fixed, but we won’t)



What we need
Build a window around the corner

• Covariant to translation, rotation, scale
– i.e. if the image is translated, rotated, scaled, so are the neighborhoods
– important to ensure that the representation of the patch is stable

• Localizable in translation, rotation, scale
– we can estimate the position, orientation and size of the patch
– and get the answer about right

Describe that window

 (methods exist for richer sets of requirements, but…)



Corresponding 
neighborhoods are
scaled and rotated 
appropriately.
Arrows identify 
matches; look
for others on your own.



Scale of a window 
• At each corner, find the characteristic scale.

• Do so using method that is equivariant (or covariant) w.r.t. to scaling of the image

• Approach: for	corner	at	(𝑥, 𝑦) search a range of scales (𝜎) so 
that a scale-covariant function reaches a local maximum in 
scale

“scale space”
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Scale of a window
• At each corner, find the characteristic scale.

• Do so using method that is equivariant (or covariant) w.r.t. to scaling of the image

• Approach: for	corner	at	(𝑥, 𝑦) search a range of scales (𝜎) so 
that a scale-covariant function reaches a local maximum in 
scale

• A particularly convenient response function is given by the 
scale-normalized Laplacian of Gaussian (LoG) filter:
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Laplacian of Gaussian
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Source: J. Johnson and D. Fouhey
Is this filter separable?

https://web.eecs.umich.edu/~justincj/slides/eecs442/WI2021/442_WI2021_detectors.pptx


Scale-normalized Laplacian
• You need to multiply the LoG by 𝜎! to make responses 

comparable across scales 

∇!"#$% = 𝜎%
𝜕%

𝜕𝑥%
𝑔 +

𝜕%

𝜕%𝑦
𝑔



Edge detection with LoG

Edge

Edge = local maximum of derivative Edge = zero-crossing of Laplacian
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D. Marr and E. Hildreth, Theory of Edge Detection, Proc. of the Royal Society of London. Series B, Biological Sciences, 
207 (1167): 187–217, 1980

Derivative of Gaussian Laplacian of Gaussian

http://www.hms.harvard.edu/bss/neuro/bornlab/qmbc/beta/day4/marr-hildreth-edge-prsl1980.pdf
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Blob detection with LoG
• Let’s convolve a 1D “blob” with the Laplacian:

Source: J. Johnson and D. Fouhey

https://web.eecs.umich.edu/~justincj/slides/eecs442/WI2021/442_WI2021_detectors.pptx
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Blob detection with LoG
• Let’s convolve a 1D “blob” with the Laplacian:

Source: J. Johnson and D. Fouhey

https://web.eecs.umich.edu/~justincj/slides/eecs442/WI2021/442_WI2021_detectors.pptx


Spatial selection
• The magnitude of the Laplacian response will achieve a 

maximum at the center of the blob, provided the scale of the 
Laplacian is “matched” to the scale of the blob

maximum



Scale selection
• We want to find the characteristic scale of the blob by 

convolving it with Laplacians at several scales and looking for 
the maximum response

• However, Laplacian response decays as scale increases:

increasing σoriginal signal
(radius=8)



Scale normalization
• The response of a derivative of Gaussian filter to a perfect step edge 

decreases as σ increases:

• To keep response the same (scale-invariant), must multiply Gaussian 
derivative by σ

• Laplacian is the second Gaussian derivative, so it must be multiplied by σ2

ps 2
1



Scale selection
• We can find the characteristic scale of the blob by convolving 

it with scale-normalized Laplacians at several scales (𝜎) and 
looking for the maximum response

maximum



Extremal scale
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Orientation
• We have

• Location, scale of window

• Very effective hack for finding a reference orientation:
• Create histogram of local gradient directions in the patch
• Assign reference orientation at peak of smoothed histogram

0 2 p

Two peaks? Choose biggest
Same size?  Choose randomly



At this point we have
Our windows – how do 
we describe the 
contents?



Overview
• Windows

• Location and scale

• Laplacian of Gaussian filter
• Orientation
• SIFT descriptors
• Learning to find interest points and their descriptions



SIFT features
SIFT features

• SIFT=Scale Invariant Feature Transform
• Very strong record of effectiveness in matching applications
• SIFT features behave very well using nearest neighbors matching

– i.e. the nearest neighbor to a query patch is usually a matching patch



Describing a window’s contents
We want description to be:

• Invariant to changes in image brightness:   - use orientations
• Robust to noise:  - ignore orientations with small magnitude
• Distinctive:  - use lots of local orientations
• Invariant to small errors in location:  

•  “bucket” the orientations in image
• Use a histogram for each bucket





SIFT for matching
• The main goal of SIFT is to enable image matching in the 

presence of significant transformations
• To recognize the same keypoint in multiple images, we need to match 

appearance descriptors or “signatures” in their neighborhoods
• Descriptors that are locally invariant w.r.t. scale and rotation can 

handle a wide range of global transformations



SIFT: Scale-invariant feature transform

D. Lowe. Distinctive image features from scale-invariant keypoints. IJCV 60 (2), pp. 91-110, 2004 
D. Lowe. Object recognition from local scale-invariant features. ICCV 1999

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www-staff.informatik.uni-frankfurt.de/asa/seminare/Literatur/L99-Lowe_SIFT_1999.pdf


SIFT for matching
• Extraordinarily robust detection and description technique

• Can handle changes in viewpoint
– Up to about 60 degree out-of-plane rotation

• Can handle significant changes in illumination
– Sometimes even day vs. night

• Fast and efficient—can run in real time
• Lots of code available

Source: N. Snavely



A hard matching problem

NASA Mars Rover images



NASA Mars Rover images
with SIFT feature matches
Figure by Noah Snavely

Answer below (look for tiny colored squares…)



Neighborhoods and SIFT - Key Points

• Algorithms to find neighborhoods 
• Represented by location, scale and orientation
• Neighborhood is covariant
• If image is translated, scaled, rotated
• Neighborhood is translated, scaled, rotated
• Important property for matching
• Affine covariant constructions are available

• Once found, describe with SIFT features
• A representation of local orientation histograms, comparable to HOG
• Normalized differently



Learning to detect and describe keypoints

• You should be able to learn all this
• keypoints are stable under rotation, translation, scale (homographies)
• descriptions are stable under rotation, translation, scale (homographies)

DeTone et al, 18



SuperPoint

DeTone et al, 18
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DeTone et al, 18
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