SIFT keypoint detection

D. Lowe, Distinctive image features from scale-invariant keypoints,
IJCV 60 (2), pp. 91-110, 2004



http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

Overview

 Windows
Location and scale

« Laplacian of Gaussian filter

* Orientation

« SIFT descriptors

« Learning to find interest points and their descriptions



What we want

We want to find patches that are “worth representing”

» to match from image to image
» to represent textures
« to represent objects

And describe them in a distinctive way

What we have

« Corner detection

A corner can be localized

It is covariant to translation, rotation
Tolerable behavior under scale (this can be fixed, but we won’t)



What we need

Build a window around the corner

« Covariant to translation, rotation, scale
— i.e. if the image is translated, rotated, scaled, so are the neighborhoods
— important to ensure that the representation of the patch is stable
* Localizable in translation, rotation, scale
— we can estimate the position, orientation and size of the patch
— and get the answer about right

Describe that window

(methods exist for richer sets of requirements, but...)



Corresponding
neighborhoods are
scaled and rotated
appropriately.

Arrows identify
matches; look

for others on your own.

~ A 3
‘?\‘-‘!’ 2 ’\.’;@-.-!?._E:‘ _'t



Scale of a window

» At each corner, find the characteristic scale.
. Do so using method that is equivariant (or covariant) w.r.t. to scaling of the image

« Approach: for corner at (x, y) search a range of scales (o) so
that a scale-covariant function reaches a local maximum in
scale
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Scale of a window

At each corner, find the characteristic scale.
Do so using method that is equivariant (or covariant) w.r.t. to scaling of the image

Approach: for corner at (x, y) search a range of scales (o) so
that a scale-covariant function reaches a local maximum in
scale

A particularly convenient response function is given by the
scale-normalized Laplacian of Gaussian (LoG) filter:
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Is this filter separable?

Source: J. Johnson and D. Fouhey



https://web.eecs.umich.edu/~justincj/slides/eecs442/WI2021/442_WI2021_detectors.pptx

Scale-normalized Laplacian

* You need to multiply the LoG by ¢ to make responses
comparable across scales




Kernel

Convolution

Edge detection with LoG
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D. Marr and E. Hildreth, Theory of Edge Detection, Proc. of the Royal Society of London. Series B, Biological Sciences,
207 (1167): 187-217, 1980



http://www.hms.harvard.edu/bss/neuro/bornlab/qmbc/beta/day4/marr-hildreth-edge-prsl1980.pdf

Blob detection with LoG

« Let's convolve a 1D “blob” with the Laplacian:
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Source: J. Johnson and D. Fouhey



https://web.eecs.umich.edu/~justincj/slides/eecs442/WI2021/442_WI2021_detectors.pptx

Blob detection with LoG

« Let's convolve a 1D “blob” with the Laplacian:
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Source: J. Johnson and D. Fouhey



https://web.eecs.umich.edu/~justincj/slides/eecs442/WI2021/442_WI2021_detectors.pptx

Blob detection with LoG

« Let's convolve a 1D “blob” with the Laplacian:

14 —
f
0_
02 0.0
f*53-9
0°%x —0.1;

Source: J. Johnson and D. Fouhey



https://web.eecs.umich.edu/~justincj/slides/eecs442/WI2021/442_WI2021_detectors.pptx

Spatial selection

* The magnitude of the Laplacian response will achieve a
maximum at the center of the blob, provided the scale of the
Laplacian is “matched” to the scale of the blob
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Scale selection

« We want to find the characteristic scale of the blob by

convolving it with Laplacians at several scales and looking for
the maximum response

 However, Laplacian response decays as scale increases:
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Scale normalization

» The response of a derivative of Gaussian filter to a perfect step edge
decreases as ¢ increases:
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* To keep response the same (scale-invariant), must multiply Gaussian
derivative by o
« Laplacian is the second Gaussian derivative, so it must be multiplied by ¢



Scale selection

* We can find the characteristic scale of the blob by convolving
it with scale-normalized Laplacians at several scales (o) and
looking for the maximum response
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Extremal scale

/

FIGURE 5.12: The scale of a neighborhood around a corner can be estimated by finding a
local extremum, in scale of the response at that point to a smoothed Laplacian of Gaussian
kernel. On the left, a detail of a piece of fencing. In the center, a corner identified by
an arrow (which points to the corner, given by a white spot surrounded by a black ring).
Overlaid on this image 1s a Laplacian of Gaussian kernel, in the top right corner; dark
values are negative, mid gray is zero, and light values are positive. Notice that, using the
reasoning of Section 4.5, this filter will give a strong positive response for a dark blob on a
light background, and a strong negative response for a light blob on a dark background, so
by searching for the strongest response at this point as a function of scale, we are looking
for the size of the best-fitting blob. On the right, the response of a Laplacian of Gaussian
at the location of the corner, as a function of the smoothing parameter (which is plotted
in pixels). There is one extremal scale, at approximately 2 pixels. This means that there
is one scale at which the image neighborhood looks most like a blob (some corners have
more than one scale). (© Dorling Kindersley, used with permission.



Overview

 Windows
Location and scale

« Laplacian of Gaussian filter

* Orientation

« SIFT descriptors

« Learning to find interest points and their descriptions



Orientation

« We have
. Location, scale of window

* Very effective hack for finding a reference orientation:
« Create histogram of local gradient directions in the patch
» Assign reference orientation at peak of smoothed histogram

Two peaks? Choose biggest
Same size? Choose randomly




At this point we have
Our windows — how do
we describe the
contents?
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SIFT features

SIFT features

« SIFT=Scale Invariant Feature Transform
» Very strong record of effectiveness in matching applications

« SIFT features behave very well using nearest neighbors matching
— i.e. the nearest neighbor to a query patch is usually a matching patch



Describing a window’s contents

We want description to be:
« Invariant to changes in image brightness: - use orientations
* Robust to noise: - ignore orientations with small magnitude
« Distinctive: - use lots of local orientations

* Invariant to small errors in location:
“bucket” the orientations in image
*  Use a histogram for each bucket
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Image gradients Keypoint descriptor
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FIGURE 5.14: To construct a SIFT descriptor for a neighborhood, we place a grid over
the rectified neighborhood. Each grid is divided into a subgrid, and a gradient estimate
1s computed at the center of each subgrid element. This gradient estimate is a weighted
average of nearby gradients, with weights chosen so that gradients outside the subgrid
cell contribute. The gradient estimates in each subgrid element are accumulated into
an orientation histogram. Each gradient votes for its orientation, with a vote weighted
by its magnitude and by its distance to the center of the neighborhood. The resulting
orientation histograms are stacked to give a single feature vector. This is normalized to
have unit norm; then terms in the normalized feature vector are thresholded, and the
vector 1s normalized again.



SIFT for matching

 The main goal of SIFT is to enable image matching in the
presence of significant transformations

« Torecognize the same keypoint in multiple images, we need to match
appearance descriptors or “signatures” in their neighborhoods

 Descriptors that are locally invariant w.r.t. scale and rotation can
handle a wide range of global transformations

4 )




SIFT: Scale-invariant feature transform

D. Lowe. Object recognition from local scale-invariant features. ICCV 1999

D. Lowe. Distinctive image features from scale-invariant keypoints. /IJCV 60 (2), pp. 91-110, 2004



http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www-staff.informatik.uni-frankfurt.de/asa/seminare/Literatur/L99-Lowe_SIFT_1999.pdf

SIFT for matching

« Extraordinarily robust detection and description technique
« Can handle changes in viewpoint
— Up to about 60 degree out-of-plane rotation
« Can handle significant changes in illumination
— Sometimes even day vs. night
« Fast and efficient—can run in real time
» Lots of code available

o O

Source: N. Snavely




A hard matching problem

NASA Mars Rover images



Answer below (look for tiny colored squares...)

NASA Mars Rover images
with SIFT feature matches
Figure by Noah Snavely



Neighborhoods and SIFT - Key Points

® Algorithms to find neighborhoods

® Represented by location, scale and orientation
® Neighborhood is covariant

® If image is translated, scaled, rotated

® Neighborhood is translated, scaled, rotated

® Important property for matching
® Affine covariant constructions are available

® Once found, describe with SIFT features

® A representation of local orientation histograms, comparable to HOG
® Normalized differently



Learning to detect and describe keypoints

® You should be able to learn all this

® keypoints are stable under rotation, translation, scale (homographies)
® descriptions are stable under rotation, translation, scale (homographies)
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Figure 1. SuperPoint for Geometric Correspondences. We
present a fully-convolutional neural network that computes SIFT-

like 2D interest point locations and descriptors in a single forward D T t | 1 8
pass and runs at 70 FPS on 480 x 640 images with a Titan X GPU. elone €t al,
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Figure 2. Self-Supervised Training Overview. In our self-supervised approach, we (a) pre-train an initial interest point detector on
synthetic data and (b) apply a novel Homographic Adaptation procedure to automatically label images from a target, unlabeled domain.
The generated labels are used to (c) train a fully-convolutional network that jointly extracts interest points and descriptors from an image.

DeTone et al, 18
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Figure 3. SuperPoint Decoders. Both decoders operate on a
shared and spatially reduced representation of the input. To keep
the model fast and easy to train, both decoders use non-learned
upsampling to bring the representation back to R¥*"

DeTone et al, 18



SuperPoint
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Figure 2. Self-Supervigd Training Overview. In our self-supervised approach, we (a) pre-train an initial interest point detector on
synthetic data and (b) ajjply a novel F hic Adaptati to ically label images from a target, unlabeled domain.
The generated labels

used to (c) train a fully-convolutional network that jointly extracts interest points and descriptors from an image.
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Figure 4. Synthetic Pre-Training. We use our Synthetic Shapes dataset consisting of rendered triangles, quadrilaterals, lines, cubes,

checkerboards, and stars each with ground truth corner locations. The dataset is used to train the MagicPoint convolutional neural network,
which is more robust to noise when compared to classical detectors.

DeTone et al, 18



SuperPoint
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Figure 5. Homographic Adaptation. Homographic Adaptation is a form of self-supervision for boosting the geometric consistency of an
interest point detector trained with convolutional neural networks. The entire procedure is mathematically defined in Equation 10.

DeTone et al, 18
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Figure 2. Self-Supervised Training Overview. In our self-supervised approach, a) pre-train an initial interest point detector on
synthetic data and (b) apply a novel F hic Adaptati dure to ically ] images from a target, unlabeled domain.
The generated labels are used to (c) train a fully-convolutional network that jointly extracts intel oints and descriptors from an image.

Homographic
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Figure 7. Iterative Homographic Adaptation. Top row: ini-
tial base detector (MagicPoint) struggles to find repeatable de-
tections. Middle and bottom rows: further training with Homo-
graphic Adaption improves detector performance.

DeTone et al, 18
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Figure 2. Self-Supervised Training Overview. In our self-supervised approach, we (a) pre-train an initial interest point detector on
synthetic data and (b) apply a novel Homographic Adaptation procedure to automatically label images from a target, unlabeled domain.
The generated labels are used to (c) train a fully-convolutional network that jointly extracts interest points and descriptors from an image.
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SuperPoint [ LIFT (| SIFT [| ORB

Figure 8. Qualitative Results on HPatches. The green lines show correct correspondences. SuperPoint tends to produce more dense and
correct matches compared to LIFT, SIFT and ORB. While ORB has the highest average repeatability, the detections cluster together and
generally do not result in more matches or more accurate homography estimates (see 4). Row 4: Failure case of SuperPoint and LIFT due
to extreme in-plane rotation not seen in the training examples. See Appendix D for additional homography estimation example pairs.

DeTone et al, 18
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