SIFT keypoint detection

D. Lowe, <u>Distinctive image features from scale-invariant keypoints</u>, *IJCV* 60 (2), pp. 91-110, 2004

Overview

- Multiscale blob detection: Key idea
- Laplacian of Gaussian filter
- Multiscale blob detection algorithm
- SIFT detector
- SIFT descriptors

Keypoint detection with scale selection

 We want to extract keypoints with characteristic scales that are equivariant (or covariant) w.r.t. to scaling of the image

K. Mikolajczyk and C. Schmid. <u>Indexing based on scale invariant interest points</u>. ICCV 2001 T. Lindeberg, <u>Feature detection with automatic scale selection</u>, *IJCV* 30(2), pp. 77-116, 1998

Keypoint detection with scale selection

- We want to extract keypoints with characteristic scales that are equivariant (or covariant) w.r.t. to scaling of the image
- Approach: compute a *scale-invariant* response function over neighborhoods centered at each location (x, y) and a range of scales (σ) , find *scale-space locations* (x, y, σ) where this function reaches a local maximum

Keypoint detection with scale selection

- We want to extract keypoints with characteristic scales that are equivariant (or covariant) w.r.t. to scaling of the image
- Approach: compute a *scale-invariant* response function over neighborhoods centered at each location (x, y) and a range of scales (σ) , find *scale-space locations* (x, y, σ) where this function reaches a local maximum
- A particularly convenient response function is given by the scale-normalized Laplacian of Gaussian (LoG) filter:

$$\nabla_{\text{norm}}^2 = \sigma^2 \left(\frac{\partial^2}{\partial x^2} g + \frac{\partial^2}{\partial y^2} g \right)$$

Laplacian of Gaussian

Is this filter separable?

Scale-normalized Laplacian

• You need to multiply the LoG by σ^2 to make responses comparable across scales

Edge detection with LoG

Derivative of Gaussian

Laplacian of Gaussian

Edge = *zero-crossing* of Laplacian

D. Marr and E. Hildreth, <u>Theory of Edge Detection</u>, Proc. of the Royal Society of London. Series B, Biological Sciences, 207 (1167): 187–217, 1980

Blob detection with LoG

• Let's convolve a 1D "blob" with the Laplacian:

Blob detection with LoG

• Let's convolve a 1D "blob" with the Laplacian:

Blob detection with LoG

• Let's convolve a 1D "blob" with the Laplacian:

Spatial selection

 The magnitude of the Laplacian response will achieve a maximum at the center of the blob, provided the scale of the Laplacian is "matched" to the scale of the blob

Scale selection

• We can find the *characteristic scale* of the blob by convolving it with *scale-normalized* Laplacians at several scales (σ) and looking for the maximum response

Overview

- Multiscale blob detection: Key idea
- Laplacian of Gaussian filter
- Multiscale blob detection algorithm

2D multiscale blob detection

- 1. Convolve image with *scale-normalized* Laplacian at several scales (values of σ)
- 2. Find maxima of squared Laplacian response in space and across scales

2D multiscale blob detection: Example

2D multiscale blob detection: Example

sigma = 11.9912

2D multiscale blob detection: Example

After scale-space NMS

Technical detail 1: Drawing circles

 At what scale does the Laplacian achieve a maximum response to a binary circle of radius r?

Technical detail 1: Drawing circles

- At what scale does the Laplacian achieve a maximum response to a binary circle of radius r?
 - To get maximum response, the zeros of the Laplacian have to be aligned with the circle
 - Up to scale, the Laplacian is given by $(x^2 + y^2 2\sigma^2)e^{-(x^2+y^2)/2\sigma^2}$, so the maximum response occurs at $\sigma = r/\sqrt{2}$
- Therefore, for display purposes, you should multiply the characteristic scales of detected keypoints by $\sqrt{2}$

Technical detail 2: Eliminating edge responses

Laplacian has strong response along edges

Technical detail 2: Eliminating edge responses

Laplacian has strong response along edges

 Solution: filter based on Harris response function over neighborhoods containing the "blobs"

Overview

- Multiscale blob detection: Key idea
- Laplacian of Gaussian filter
- Multiscale blob detection algorithm
- SIFT detector
- SIFT descriptors

SIFT: Scale-invariant feature transform

D. Lowe. <u>Object recognition from local scale-invariant features</u>. ICCV 1999

D. Lowe. <u>Distinctive image features from scale-invariant keypoints</u>. *IJCV* 60 (2), pp. 91-110, 2004

SIFT detector: Efficient implementation

Approximate LoG with a difference of Gaussians (DoG)

• Laplacian:
$$\sigma^2(G_{xx}(x,y,\sigma) + G_{yy}(x,y,\sigma))$$

• DoG: $G(x, y, k\sigma) - G(x, y, \sigma)$

SIFT detector: Efficient implementation

Approximate LoG with a difference of Gaussians (DoG)

• Laplacian:
$$\sigma^2(G_{xx}(x,y,\sigma) + G_{yy}(x,y,\sigma))$$

- DoG: $G(x, y, k\sigma) G(x, y, \sigma)$
- Compute DoG via an image pyramid:

- The main goal of SIFT is to enable image matching in the presence of significant transformations
 - To recognize the same keypoint in multiple images, we need to match appearance descriptors or "signatures" in their neighborhoods
 - Descriptors that are *locally* invariant w.r.t. scale and rotation can handle a wide range of *global* transformations

 SIFT detector returns a characteristic scale that can be normalized out, but no characteristic orientation

- SIFT detector returns a characteristic scale that can be normalized out, but no characteristic orientation
- Hack for finding a reference orientation:
 - Create histogram of local gradient directions in the patch
 - Assign reference orientation at peak of smoothed histogram

SIFT detector: Example outputs

• Detected keypoints with characteristic scales and orientations:

SIFT descriptors

• Inspiration: complex neurons in the primary visual cortex

- Extraordinarily robust detection and description technique
 - Can handle changes in viewpoint
 - Up to about 60 degree out-of-plane rotation
 - · Can handle significant changes in illumination
 - Sometimes even day vs. night
 - · Fast and efficient—can run in real time
 - Lots of code available

A hard matching problem

NASA Mars Rover images

Answer below (look for tiny colored squares...)

NASA Mars Rover images with SIFT feature matches Figure by Noah Snavely

Local invariance beyond SIFT

• Can we make local descriptors invariant w.r.t. viewpoint changes?

Local invariance beyond SIFT

- Can we make local descriptors invariant w.r.t. viewpoint changes?
- Affine transformations approximate viewpoint changes for roughly planar objects and roughly orthographic cameras

Affine adaptation

More cumbersome in practice and not as successful as SIFT

K. Mikolajczyk and C. Schmid, Scale and affine invariant interest point detectors, IJCV 60(1):63-86, 2004