
Fitting

Fitting
• We’ve learned how to detect edges,

corners, blobs. Now what?
• We would like to form a higher-level,

more compact representation of the
features in the image by grouping
multiple features according to a
simple model

Source: K. Grauman

Fitting
• Choose a parametric model to represent a set of features

simple model: lines simple model: circles

complicated model: car

Fitting: Challenges

• Noise in the measured feature locations
• Extraneous data: clutter (outliers), multiple lines
• Missing data: occlusions

Case study: Line detection

Fitting: Overview
• Least squares line fitting
• Robust fitting
• RANSAC

Least squares line fitting: First attempt
• Data: (𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛)
• Line equation: 𝑦𝑖	 = 	𝑚𝑥! 	+ 	𝑏
• Find (𝑚, 𝑏) to minimize

 𝐸 = ∑!"#$ 𝑦! −𝑚𝑥! − 𝑏 %

• Equivalent to finding least-squares solution to:
𝑥# 1
⋮ ⋮
𝑥$ 1

𝑚
𝑏 =

𝑦#
⋮
𝑦$

• Solution is given by 𝑋&𝑋𝐵 = 𝑋&𝑌

𝑋 𝐵 𝑌

(𝑥! , 𝑦𝑖)

𝑦 = 𝑚𝑥 + 𝑏

Is this a good solution?
• Slope-intercept parametrization fails for vertical lines
• Solution is not equivariant w.r.t. rotation

• Line parametrization: 𝑎𝑥 + 𝑏𝑦 = 𝑑
• (𝑎, 𝑏) is the unit normal to the line

(i.e., 𝑎2 + 𝑏2 = 1)
• 𝑑 is the distance between the line and

the origin
• Perpendicular distance between point (𝑥!, 𝑦𝑖) and line
𝑎𝑥 + 𝑏𝑦 = 𝑑	(assuming 𝑎2+ 𝑏2 = 1):

|𝑎𝑥𝑖	 + 	𝑏𝑦𝑖	 − 	𝑑|
• Objective function:

𝐸 =7
!"#

	$

𝑎𝑥𝑖	 + 	𝑏𝑦𝑖	 − 	𝑑 %

Total least squares

(𝑥! , 𝑦𝑖)

𝑎𝑥 + 𝑏𝑦 = 𝑑

• Solve for 𝑑 first:
()
(* = −2∑!"#	$ 𝑎𝑥𝑖	 + 	𝑏𝑦𝑖	 − 	𝑑 = 0

𝑑 = +
$
∑!"#	$ 𝑥𝑖 +

,
$
∑!"#	$ 𝑦𝑖 = 𝑎�̅� + 𝑏;𝑦

Total least squares

(𝑥! , 𝑦𝑖)

𝐸 =7
!"#

	$

𝑎𝑥𝑖	 + 	𝑏𝑦𝑖	 − 	𝑑 %
𝑎𝑥 + 𝑏𝑦 = 𝑑

• Solve for 𝑑 first: 𝑑 = 𝑎�̅� + 𝑏;𝑦
• Plugging back in:

𝐸 =7
!"#

	$

𝑎(𝑥! − �̅�) + 	𝑏(𝑦𝑖 − ;𝑦) % =
𝑥# − �̅� 𝑦# − ;𝑦
⋮ ⋮

𝑥$ − �̅� 𝑦$ − ;𝑦

𝑎
𝑏

%

Total least squares

(𝑥! , 𝑦𝑖)

𝐸 =7
!"#

	$

𝑎𝑥𝑖	 + 	𝑏𝑦𝑖	 − 	𝑑 %
𝑎𝑥 + 𝑏𝑦 = 𝑑

• Solve for 𝑑 first: 𝑑 = 𝑎�̅� + 𝑏;𝑦
• Plugging back in:

𝐸 =7
!"#

	$

𝑎(𝑥! − �̅�) + 	𝑏(𝑦𝑖 − ;𝑦) % =
𝑥# − �̅� 𝑦# − ;𝑦
⋮ ⋮

𝑥$ − �̅� 𝑦$ − ;𝑦

𝑎
𝑏

%

• We want to find 𝑁 that minimizes 𝑈𝑁 % subject to 𝑁 % = 	1
• Solution is given by the eigenvector of 𝑈𝑇𝑈 associated with the

smallest eigenvalue

Total least squares

(𝑥! , 𝑦𝑖)

𝐸 =7
!"#

	$

𝑎𝑥𝑖	 + 	𝑏𝑦𝑖	 − 	𝑑 %

𝑈 𝑁

𝑎𝑥 + 𝑏𝑦 = 𝑑

Total least squares

𝑁 = (𝑎, 𝑏)

second moment matrix

F&P (2nd ed.) sec. 22.1

𝑈"𝑈 =
∑!#$
% (𝑥! − �̅�)& ∑!#$

% (𝑥! − �̅�)(𝑦! − 1𝑦)
∑!#$
% (𝑥! − �̅�)(𝑦! − 1𝑦) ∑!#$

% (𝑦! − 1𝑦)&
𝑈 =

𝑥$ − �̅� 𝑦$ − 1𝑦
⋮ ⋮

𝑥% − �̅� 𝑦% − 1𝑦

(𝑥! − �̅�, 𝑦! − ;𝑦)

Least squares: Robustness to noise
• Least squares fit to the red points:

Least squares: Robustness to noise
• Least squares fit with an outlier:

Problem: squared error heavily penalizes outliers

Robust estimators
• General approach: find model parameters 𝜃 that minimize

7
!

𝜌- 𝑟(𝑥!; 𝜃)

 𝑟 𝑥𝑖; 𝜃 : residual of 𝑥! w.r.t. model parameters 𝜃

 𝜌': robust function with scale parameter 𝜎, e.g., 𝜌' 𝑢 = (!

'!)(!

Robust estimators
• General approach: find model parameters 𝜃 that minimize

7
!

𝜌- 𝑟(𝑥!; 𝜃)

 𝑟 𝑥𝑖; 𝜃 : residual of 𝑥! w.r.t. model parameters 𝜃

 𝜌': robust function with scale parameter 𝜎, e.g., 𝜌' 𝑢 = (!

'!)(!

• Nonlinear optimization problem that must be solved iteratively
• Least squares solution can be used for initialization
• Scale of robust function should be chosen carefully

Choosing the scale: Just right

The effect of the outlier is minimized

The error value is almost the same for every
point and the fit is very poor

Choosing the scale: Too small

Choosing the scale: Too large

Behaves much the same as least squares

Fitting: Overview
• Least squares line fitting
• Robust fitting
• RANSAC

Voting schemes
• Robust fitting can deal with a few outliers – what if we have

very many?
• Basic idea: let each point vote for all the models that are

compatible with it
• Hopefully the outliers will not vote consistently for any single model
• The model that receives the most votes is the best fit to the image

RANSAC
• Random sample consensus: very general framework for

model fitting in the presence of outliers
• Outline:

• Randomly choose a small initial subset of points
• Fit a model to that subset
• Find all inlier points that are “close” to the model and reject the rest as

outliers
• Do this many times and choose the model with the most inliers

M. Fischler and R. Bolles. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and
Automated Cartography. Comm. of the ACM, Vol 24, pp 381-395, 1981

http://www.ai.sri.com/pubs/files/836.pdf
http://www.ai.sri.com/pubs/files/836.pdf

RANSAC for line fitting example

Source: R. Raguram

RANSAC for line fitting example

Least-squares fit

Source: R. Raguram

RANSAC for line fitting example

1. Randomly select
minimal subset
of points

Source: R. Raguram

RANSAC for line fitting example

1. Randomly select
minimal subset
of points

2. Hypothesize a
model

Source: R. Raguram

RANSAC for line fitting example

1. Randomly select
minimal subset
of points

2. Hypothesize a
model

3. Compute error
function

Source: R. Raguram

RANSAC for line fitting example

1. Randomly select
minimal subset
of points

2. Hypothesize a
model

3. Compute error
function

4. Select points
consistent with
model

Source: R. Raguram

RANSAC for line fitting example

1. Randomly select
minimal subset
of points

2. Hypothesize a
model

3. Compute error
function

4. Select points
consistent with
model

5. Repeat
hypothesize-and-
verify loop

Source: R. Raguram

RANSAC for line fitting example

1. Randomly select
minimal subset
of points

2. Hypothesize a
model

3. Compute error
function

4. Select points
consistent with
model

5. Repeat
hypothesize-and-
verify loop

Source: R. Raguram

RANSAC for line fitting example

1. Randomly select
minimal subset
of points

2. Hypothesize a
model

3. Compute error
function

4. Select points
consistent with
model

5. Repeat
hypothesize-and-
verify loop

Uncontaminated sample

Source: R. Raguram

RANSAC for line fitting example

1. Randomly select
minimal subset
of points

2. Hypothesize a
model

3. Compute error
function

4. Select points
consistent with
model

5. Repeat
hypothesize-and-
verify loop

Source: R. Raguram

RANSAC loop
Repeat 𝑁 times:
• Draw 𝑠 points uniformly at random
• Fit model to these 𝑠 points
• Find inliers to the model among the remaining points

(points whose distance or residual w.r.t. model is less than 𝑡)
• If there are 𝑑 or more inliers, accept the model and refit using

all inliers

RANSAC: Choosing the parameters
• Initial number of points 𝑠

• Typically minimum number needed to fit the model
• Distance threshold 𝑡 for inliers

• Need suitable assumptions, e.g., given zero-mean Gaussian noise with
std. dev. 𝜎, 𝑡 = 1.96𝜎 will give ~95% probability of capturing all inliers

• Consensus set size 𝑑
• Should match expected inlier ratio

Adapted from M. Pollefeys

RANSAC: Choosing the parameters
• Choosing the number of iterations (initial samples) 𝑁:

• Choose 𝑁 so that, with probability 𝑝 (e.g. 99%), at least one initial
sample is free from outliers

• Assuming an outlier ratio of 𝑒:
1 − 1 − 𝑒 * + = 1 − 𝑝

𝑁 = log 1 − 𝑝 /log(1 − 1 − 𝑒 *)

proportion of outliers e
s 5% 10% 20% 25% 30% 40% 50%
2 2 3 5 6 7 11 17
3 3 4 7 9 11 19 35
4 3 5 9 13 17 34 72
5 4 6 12 17 26 57 146
6 4 7 16 24 37 97 293
7 4 8 20 33 54 163 588
8 5 9 26 44 78 272 1177

Source: M. Pollefeys

RANSAC pros and cons
• Pros

• Simple and general
• Applicable to many different problems
• Often works well in practice

• Cons
• Lots of parameters to set
• Number of iterations grows exponentially as outlier ratio increases
• Can’t always get a good initialization

of the model based on the minimum
number of samples

Fitting: Overview
• Least squares line fitting
• Robust fitting
• RANSAC
• Hough transform

Hough transform
• Possibly the earliest voting scheme – but still useful!

• Discretize parameter space into bins
• For each feature point in the image, put a vote in every bin in the

parameter space that could have generated this point
• Find bins that have the most votes

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

Image space Hough parameter space

https://inspirehep.net/files/53d80b0393096ba4afe34f5b65152090

Hough transform
• What does a line in the image space correspond to?

• A point in the parameter space

Image space Parameter space

𝑦

𝑥

𝑦 = 𝑚D𝑥 + 𝑏D

𝑚

𝑏

𝑚D, 𝑏D

Hough transform
• What does a point in the image space correspond to?

• A line in the parameter space: all (𝑚, 𝑏) that satisfy −𝑏 = 𝑥,𝑚 − 𝑦,

Image space Parameter space

−𝑏 = 𝑥D𝑚− 𝑦D

𝑥D, 𝑦D

𝑦

𝑥

𝑚

𝑏

Hough transform
• What about two points in the image space?

• A point in the parameter space, corresponding to the unique line
that passes through both points

Image space Parameter space

−𝑏 = 𝑥D𝑚− 𝑦D

𝑥D, 𝑦D

−𝑏 = 𝑥E𝑚− 𝑦E

𝑥E, 𝑦E

𝑦

𝑥

𝑚

𝑏

Hough transform
• What about many points in the image space?

• Plot all the lines in the parameter space and try to find a spot where
a large number of them intersect

Image space Parameter space

𝑦

𝑥

𝑚

𝑏

• In practice, we don’t want to use the (𝑚, 𝑏) space!
• Unbounded parameter domains
• Vertical lines require infinite 𝑚

• Alternative: polar representation
• Each image point (𝑥, 𝑦) yields a sinusoid in the (𝜃, 𝜌) parameter space

Parameter space representation

𝑥	cos	𝜃 + 𝑦 sin𝜃 = 𝜌

Algorithm outline
• Initialize accumulator 𝐻 to all zeros
• For each feature point 𝑥, 𝑦

• For 𝜃	 = 	0	to 180
 𝜌	 = 	𝑥	cos 𝜃	 + 	𝑦	sin 𝜃
 𝐻(𝜃, 𝜌) 	+= 	1

• Find the value(s) of (𝜃, 𝜌)	where 𝐻(𝜃, 𝜌)	
is a local maximum (perform NMS on the
accumulator array)
• The detected line in the image is given by

 𝜌	 = 	𝑥	cos 𝜃	 + 	𝑦	sin 𝜃

𝜃

𝜌

features votes

Basic illustration

Hough transform demo

https://www.youtube.com/watch?v=ebfi7qOFLuo

Square Circle

Other shapes

Several lines

A more complicated image

Source

http://ostatic.com/files/images/ss_hough.jpg

features votes

Effect of noise

features votes

Effect of noise

Peak gets fuzzy and hard to locate

Effect of outliers

Uniform noise can lead to spurious peaks in the array
features votes

Dealing with noise
• How to choose a good grid discretization?

• Too coarse: large votes obtained when too many different lines
correspond to a single bucket

• Too fine: miss lines because some points that are not exactly
collinear cast votes for different buckets

• Increment neighboring bins (smoothing in accumulator array)
• Try to get rid of irrelevant features

• E.g., take only edge points with significant gradient magnitude

Hough transform: Pros and cons
• Pros

• Can deal with non-locality and occlusion
• Can detect multiple instances of a model
• Some robustness to noise: noise points unlikely to contribute

consistently to any single bin
• Leads to a surprisingly general strategy for shape localization

(more on this next)
• Cons

• Complexity increases exponentially with the number of model
parameters – in practice, not used beyond three or four dimensions

• Non-target shapes can produce spurious peaks in parameter space
• It’s hard to pick a good grid size

Fitting: Overview
• Least squares line fitting
• Robust fitting
• RANSAC
• Hough transform
• Generalized Hough transform

Generalized Hough transform
• We want to find a template defined by its reference point

(center) and several distinct types of landmark points in stable
spatial configuration

c

Template

Generalized Hough transform
• Template representation: for each

type of landmark point, store all
possible displacement vectors
towards the center

Model

Template

Generalized Hough transform
• Detecting the template:

• For each feature in a new image, look
up that feature type in the model and
vote for the possible center locations
associated with that type in the model

Model

Test image

Application in recognition
• Index displacements by “visual codeword”

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit
Shape Model, ECCV Workshop on Statistical Learning in Computer Vision 2004

training image

visual codeword with
displacement vectors

http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf
http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf

Application in recognition
• Index displacements by “visual codeword”

test image

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit
Shape Model, ECCV Workshop on Statistical Learning in Computer Vision 2004

http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf
http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf

Implicit shape models: Training
1. Build codebook of patches around extracted interest points

using clustering

Implicit shape models: Training
1. Build codebook of patches around extracted interest points

using clustering
2. Map the patch around each interest point to closest

codebook entry

Building a codebook
Get many images

1. find interest points;
2. find windows;
3. build feature vectors

We believe there are k kinds of interest point
a wheel; a bush; a doorhandle; a window; etc.
Wheels mostly look like one another (but not exactly) and not like windows
We know k (get to this later)

Write:

<latexit sha1_base64="vE/Lwr4pQob3jc8So8/So+7+e/8=">AAAB8HicbVDJSgNBEK1xjXGLevTSGARPYUbcjkEvHiOYRZIh9HR6kia9DN09YhjyFV48KOLVz/Hm39hJ5qCJDwoe71VRVS9KODPW97+9peWV1bX1wkZxc2t7Z7e0t98wKtWE1oniSrcibChnktYts5y2Ek2xiDhtRsObid98pNowJe/tKKGhwH3JYkawddJD1oli9DTusm6p7Ff8KdAiCXJShhy1bumr01MkFVRawrEx7cBPbJhhbRnhdFzspIYmmAxxn7YdlVhQE2bTg8fo2Ck9FCvtSlo0VX9PZFgYMxKR6xTYDsy8NxH/89qpja/CjMkktVSS2aI45cgqNPke9ZimxPKRI5ho5m5FZIA1JtZlVHQhBPMvL5LGaSW4qJzfnZWr13kcBTiEIziBAC6hCrdQgzoQEPAMr/Dmae/Fe/c+Zq1LXj5zAH/gff4AsSKQWg==</latexit>xi
<latexit sha1_base64="o1BysnBJGHFBhNtczriTZULcPwA=">AAAB8HicbVDLSgMxFL3xWeur6tJNsAiuyoz4WhbduKxgH9IOJZNm2tgkMyQZoQz9CjcuFHHr57jzb0zbWWjrgQuHc+7l3nvCRHBjPe8bLS2vrK6tFzaKm1vbO7ulvf2GiVNNWZ3GItatkBgmuGJ1y61grUQzIkPBmuHwZuI3n5g2PFb3dpSwQJK+4hGnxDrpIeuEEabj7mO3VPYq3hR4kfg5KUOOWrf01enFNJVMWSqIMW3fS2yQEW05FWxc7KSGJYQOSZ+1HVVEMhNk04PH+NgpPRzF2pWyeKr+nsiINGYkQ9cpiR2YeW8i/ue1UxtdBRlXSWqZorNFUSqwjfHke9zjmlErRo4Qqrm7FdMB0YRal1HRheDPv7xIGqcV/6JyfndWrl7ncRTgEI7gBHy4hCrcQg3qQEHCM7zCG9LoBb2jj1nrEspnDuAP0OcPkpOQRg==</latexit>cj

Feature vector of k’th example interest point

Feature vector of j’th center, which describes j’th kind (unknown)

Building a codebook
We believe there are k kinds of interest point

a wheel; a bush; a doorhandle; a window; etc.
Wheels mostly look like one another (but not exactly) and not like windows
 So each wheel (say) feature vector should be close to one another
 encode this with a wheel center, etc

Write:

Notice:

<latexit sha1_base64="iQPd7WVVxl5cAU5SnlH9nJxK198=">AAACYnicbZE/b9QwGMadQKEEaK90hMHiSmE6JYiWLpUqWBiLxLWVzqeT47y5mHPsyH5TGkX5kt2YWPgg+HIZoOWdHv3ev36cVko6jOOfQfjg4dajx9tPoqfPnu/sjvZeXDhTWwFTYZSxVyl3oKSGKUpUcFVZ4GWq4DJdfV7nL6/BOmn0N2wqmJd8qWUuBUePFqOGZaCQL1r5vTtlCnJkLUthKXXLreVN1wrRJfSQlam5aWVOD+TBWyzoNQg0lkpHjWernq3nd4xFMT2km3qDBdgf0nkMOhsmMiuXBU4Wo3E8ifug90UyiDEZ4nwxumWZEXUJGoXizs2SuMK5H4pSKOgiVjuouFjxJcy81LwEN297izr6xpOM5v7k3GikPf27o+Wlc02Z+sqSY+Hu5tbwf7lZjfnJvJW6qhG02CzKa0XR9H7QTFpvlWq84MJKfysVBbdcoP+VyJuQ3H3yfXHxfpIcT46+fhiffRrs2CYvyWvyjiTkIzkjX8g5mRJBfgVbwU6wG/wOo3Av3N+UhsHQs0/+ifDVHwHzt2U=</latexit>

�ij =

⇢
1 if i’th vector is of k’th type
0 otherwise

<latexit sha1_base64="1kPrmiXtJqGTuObn5h+o+rHrVFU=">AAACAXicbZDLSsNAFIYn9VbrLepGcDNYBFclEW8boejGZQV7gSaEyWTSjp2ZhJmJUELc+CpuXCji1rdw59s4vSy09YeBj/+cw5nzhymjSjvOt1VaWFxaXimvVtbWNza37O2dlkoyiUkTJyyRnRApwqggTU01I51UEsRDRtrh4HpUbz8QqWgi7vQwJT5HPUFjipE2VmDveSrjQU4L6EWEaWTwvoCX0A3sqlNzxoLz4E6hCqZqBPaXFyU440RozJBSXddJtZ8jqSlmpKh4mSIpwgPUI12DAnGi/Hx8QQEPjRPBOJHmCQ3H7u+JHHGlhjw0nRzpvpqtjcz/at1Mxxd+TkWaaSLwZFGcMagTOIoDRlQSrNnQAMKSmr9C3EcSYW1Cq5gQ3NmT56F1XHPPaqe3J9X61TSOMtgHB+AIuOAc1MENaIAmwOARPINX8GY9WS/Wu/UxaS1Z05ld8EfW5w/HbZZ0</latexit>X

i

�ij = 1 (Also, we don’t know these!)

Building a codebook
Idea:
 Choose

To minimize:

So that: example takes the kind of the closest center
 and center is close to all examples of that kind

<latexit sha1_base64="imzIIHuGxQmFWf6X1D7hJt6junw=">AAACN3icbZDLSsNAFIYn3q23qks3g0XQhSURb0vRjSup0KrQxDCZnrSjkwszJ2IJeSs3voY73bhQxK1v4DR24e2HgY//nMOZ8wepFBpt+9EaGR0bn5icmq7MzM7NL1QXl850kikOLZ7IRF0ETIMUMbRQoISLVAGLAgnnwfXRoH5+A0qLJG5iPwUvYt1YhIIzNJZfPXF1Fvm5uCqo2wGJrGRXQojt9dwNQnpb+GKzJF74VxuXzX9tV4luDz2/WrPrdin6F5wh1MhQDb/64HYSnkUQI5dM67Zjp+jlTKHgEoqKm2lIGb9mXWgbjFkE2svLuwu6ZpwODRNlXoy0dL9P5CzSuh8FpjNi2NO/awPzv1o7w3Dfy0WcZggx/1oUZpJiQgch0o5QwFH2DTCuhPkr5T2mGEcTdcWE4Pw++S+cbdWd3frO6Xbt4HAYxxRZIatknThkjxyQY9IgLcLJHXkiL+TVureerTfr/at1xBrOLJMfsj4+Aa63rPs=</latexit>X

ij

�ij
⇥
(xi � cj)

T (xi � cj)
⇤

<latexit sha1_base64="vHKCrLxVMkuRh/N5zEPNFnO+d8Q=">AAAB8nicbVDLSsNAFJ3UV62vqks3g0VwVRLxtSy6cVnBPiANZTKZtGMnM2HmRiihn+HGhSJu/Rp3/o3TNgttPXDhcM693HtPmApuwHW/ndLK6tr6RnmzsrW9s7tX3T9oG5VpylpUCaW7ITFMcMlawEGwbqoZSULBOuHodup3npg2XMkHGKcsSMhA8phTAlbyexETQPo5f5z0qzW37s6Al4lXkBoq0OxXv3qRolnCJFBBjPE9N4UgJxo4FWxS6WWGpYSOyID5lkqSMBPks5Mn+MQqEY6VtiUBz9TfEzlJjBknoe1MCAzNojcV//P8DOLrIOcyzYBJOl8UZwKDwtP/ccQ1oyDGlhCqub0V0yHRhIJNqWJD8BZfXibts7p3Wb+4P681boo4yugIHaNT5KEr1EB3qIlaiCKFntErenPAeXHenY95a8kpZg7RHzifP6WRkYI=</latexit>

�ij
<latexit sha1_base64="o1BysnBJGHFBhNtczriTZULcPwA=">AAAB8HicbVDLSgMxFL3xWeur6tJNsAiuyoz4WhbduKxgH9IOJZNm2tgkMyQZoQz9CjcuFHHr57jzb0zbWWjrgQuHc+7l3nvCRHBjPe8bLS2vrK6tFzaKm1vbO7ulvf2GiVNNWZ3GItatkBgmuGJ1y61grUQzIkPBmuHwZuI3n5g2PFb3dpSwQJK+4hGnxDrpIeuEEabj7mO3VPYq3hR4kfg5KUOOWrf01enFNJVMWSqIMW3fS2yQEW05FWxc7KSGJYQOSZ+1HVVEMhNk04PH+NgpPRzF2pWyeKr+nsiINGYkQ9cpiR2YeW8i/ue1UxtdBRlXSWqZorNFUSqwjfHke9zjmlErRo4Qqrm7FdMB0YRal1HRheDPv7xIGqcV/6JyfndWrl7ncRTgEI7gBHy4hCrcQg3qQEHCM7zCG9LoBb2jj1nrEspnDuAP0OcPkpOQRg==</latexit>cjand

Approximation
Minimize:

Is intractable as an exact problem.
BUT
 if you know deltas, easy to choose c’s
 center is average of all points of that kind
 if you know centers, easy to choose deltas
 each point goes to closest center

<latexit sha1_base64="imzIIHuGxQmFWf6X1D7hJt6junw=">AAACN3icbZDLSsNAFIYn3q23qks3g0XQhSURb0vRjSup0KrQxDCZnrSjkwszJ2IJeSs3voY73bhQxK1v4DR24e2HgY//nMOZ8wepFBpt+9EaGR0bn5icmq7MzM7NL1QXl850kikOLZ7IRF0ETIMUMbRQoISLVAGLAgnnwfXRoH5+A0qLJG5iPwUvYt1YhIIzNJZfPXF1Fvm5uCqo2wGJrGRXQojt9dwNQnpb+GKzJF74VxuXzX9tV4luDz2/WrPrdin6F5wh1MhQDb/64HYSnkUQI5dM67Zjp+jlTKHgEoqKm2lIGb9mXWgbjFkE2svLuwu6ZpwODRNlXoy0dL9P5CzSuh8FpjNi2NO/awPzv1o7w3Dfy0WcZggx/1oUZpJiQgch0o5QwFH2DTCuhPkr5T2mGEcTdcWE4Pw++S+cbdWd3frO6Xbt4HAYxxRZIatknThkjxyQY9IgLcLJHXkiL+TVureerTfr/at1xBrOLJMfsj4+Aa63rPs=</latexit>X

ij

�ij
⇥
(xi � cj)

T (xi � cj)
⇤

Issues
How to start?
 centers are randomly chosen from data
 quite good, better to follow
When to stop?
 center locations change little; OR
 deltas do not change
What about kinds with no examples?
 (you can’t average 0 points!)
 choose center randomly from data

Algorithm: K-means

Starting K-means

Vector Quantization

Represent a feature vector by its kind by
1. Finding the closest center
2. Recording its number (1…k) --- this is its code

Implicit shape models: Training
1. Build codebook of patches around extracted interest points

using clustering
2. Map the patch around each interest point to closest

codebook entry
3. For each codebook entry, store all positions it was found,

relative to object center

Implicit shape models: Training
For each codebook entry, store all positions it was found,
relative to object center

Recall you know location, orientation and scale for each
codebook entry – so each ”knows” where the object center
should be

Implicit shape models: Testing
1. Given test image, extract patches, match to codebook entry
2. Cast votes for possible positions of object center
3. Search for maxima in voting space
4. Extract weighted segmentation mask based on stored masks

for the codebook occurrences

Additional examples

B. Leibe, A. Leonardis, and B. Schiele, Robust Object Detection with Interleaved
Categorization and Segmentation, IJCV 77 (1-3), pp. 259-289, 2008.

https://link.springer.com/content/pdf/10.1007/s11263-007-0095-3.pdf
https://link.springer.com/content/pdf/10.1007/s11263-007-0095-3.pdf

A more recent example: Voting for detection

J. Dai et al. R-FCN: Object Detection via Region-based Fully Convolutional Networks. arXiv 2016

https://arxiv.org/pdf/1605.06409.pdf

A more recent example: Voting for detection

J. Dai et al. R-FCN: Object Detection via Region-based Fully Convolutional Networks. arXiv 2016

https://arxiv.org/pdf/1605.06409.pdf

A more recent example: Voting for detection

J. Dai et al. R-FCN: Object Detection via Region-based Fully Convolutional Networks. arXiv 2016

https://arxiv.org/pdf/1605.06409.pdf

Convolutional Hough matching networks

J. Min and M. Cho. Convolutional Hough matching networks. CVPR 2021

https://openaccess.thecvf.com/content/CVPR2021/papers/Min_Convolutional_Hough_Matching_Networks_CVPR_2021_paper.pdf

