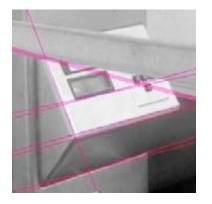


Fitting

- We've learned how to detect edges, corners, blobs. Now what?
- We would like to form a higher-level, more compact representation of the features in the image by grouping multiple features according to a simple model

Fitting

• Choose a *parametric model* to represent a set of features



simple model: lines

simple model: circles

complicated model: car

Source: K. Grauman

Fitting: Challenges

Case study: Line detection

- Noise in the measured feature locations
- Extraneous data: clutter (outliers), multiple lines
- Missing data: occlusions

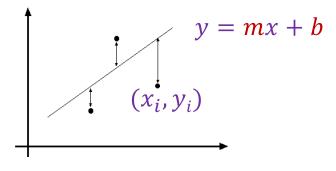
Fitting: Overview

- Least squares line fitting
- Robust fitting
- RANSAC

Least squares line fitting: First attempt

- Data: $(x_1, y_1), \dots, (x_n, y_n)$
- Line equation: $y_i = mx_i + b$
- Find (*m*, *b*) to minimize

 $E = \sum_{i=1}^{n} (y_i - mx_i - b)^2$



• Equivalent to finding least-squares solution to:

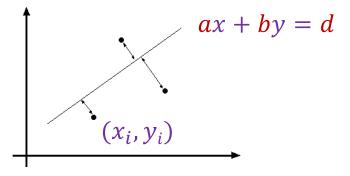
$$\begin{bmatrix} x_1 & 1\\ \vdots & \vdots\\ x_n & 1 \end{bmatrix} \begin{pmatrix} m\\ b \end{pmatrix} = \begin{bmatrix} y_1\\ \vdots\\ y_n \end{bmatrix}$$
$$X \quad B \quad Y$$

• Solution is given by $X^T X B = X^T Y$

Is this a good solution?

- Slope-intercept parametrization fails for vertical lines
- Solution is not equivariant w.r.t. rotation

- Line parametrization: ax + by = d
 - (*a*, *b*) is the *unit normal* to the line (i.e., $a^2 + b^2 = 1$)
 - *d* is the distance between the line and the origin



- Perpendicular distance between point (x_i, y_i) and line ax + by = d (assuming $a^2 + b^2 = 1$): $|ax_i + by_i - d|$
- Objective function:

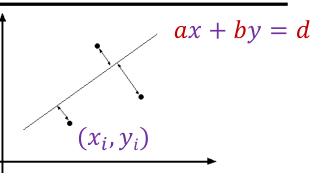
$$E = \sum_{i=1}^{n} (ax_i + by_i - d)^2$$

$$E = \sum_{i=1}^{n} (ax_i + by_i - d)^2$$
for *d* first:

• Solve

$$\frac{\partial E}{\partial d} = -2\sum_{i=1}^{n} (ax_i + by_i - d) = 0$$
$$d = \frac{a}{n} \sum_{i=1}^{n} x_i + \frac{b}{n} \sum_{i=1}^{n} y_i = a\bar{x} + b\bar{y}$$

$$E = \sum_{i=1}^{n} (ax_i + by_i - d)^2$$



- Solve for *d* first: $d = a\bar{x} + b\bar{y}$
- Plugging back in:

$$E = \sum_{i=1}^{n} (a(x_i - \bar{x}) + b(y_i - \bar{y}))^2$$

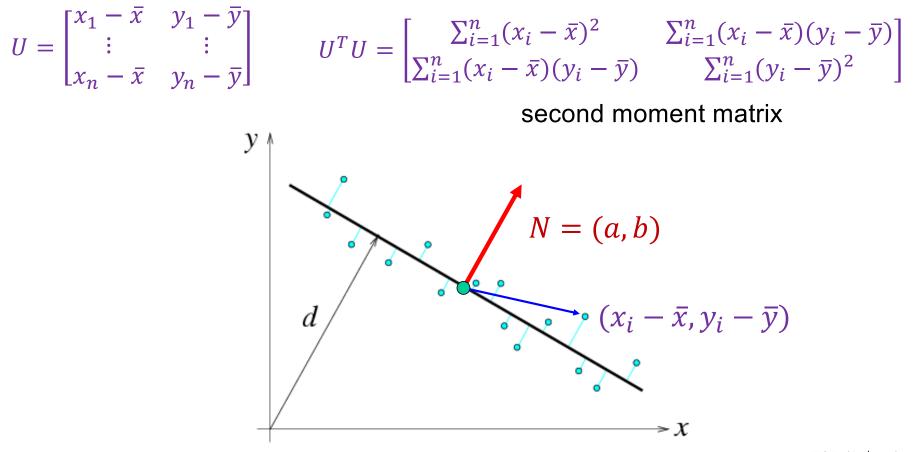
$$E = \sum_{i=1}^{n} (ax_i + by_i - d)^2$$

- Solve for *d* first: $d = a\bar{x} + b\bar{y}$
- Plugging back in:

$$E = \sum_{i=1}^{n} (a(x_i - \bar{x}) + b(y_i - \bar{y}))^2 = \left\| \begin{bmatrix} x_1 - \bar{x} & y_1 - \bar{y} \\ \vdots & \vdots \\ x_n - \bar{x} & y_n - \bar{y} \end{bmatrix} \binom{a}{b} \right\|^2$$

$$U \qquad N$$

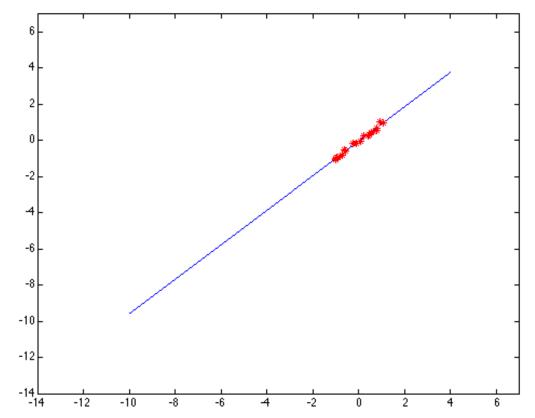
- We want to find N that minimizes $||UN||^2$ subject to $||N||^2 = 1$
 - Solution is given by the eigenvector of U^TU associated with the smallest eigenvalue



F&P (2nd ed.) sec. 22.1

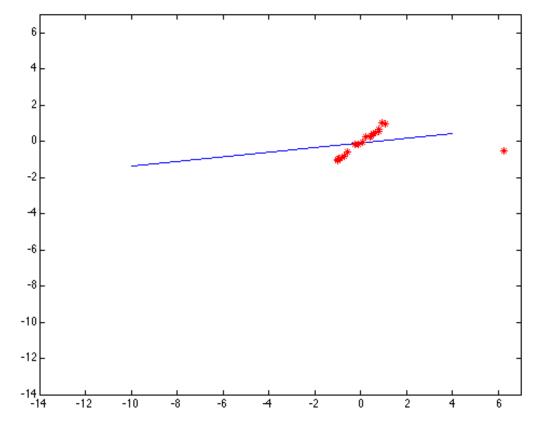
Least squares: Robustness to noise

• Least squares fit to the red points:



Least squares: Robustness to noise

• Least squares fit with an outlier:



Problem: squared error heavily penalizes outliers

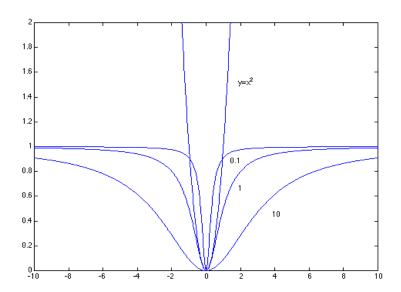
Robust estimators

• General approach: find model parameters θ that minimize

$$\sum_{i} \rho_{\sigma}(r(x_i;\theta))$$

 $r(x_i; \theta)$: residual of x_i w.r.t. model parameters θ

 ρ_{σ} : robust function with scale parameter σ , e.g., $\rho_{\sigma}(u) = \frac{u^2}{\sigma^2 + u^2}$



Robust estimators

• General approach: find model parameters θ that minimize

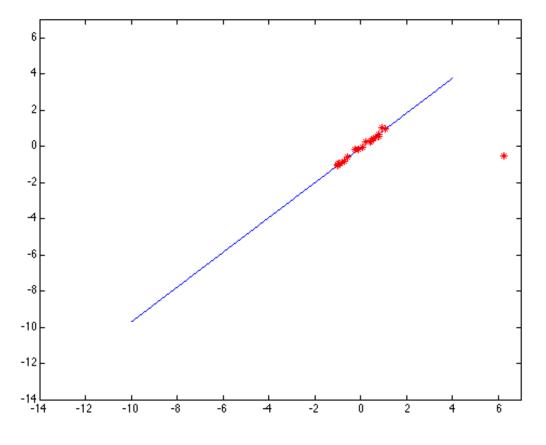
$$\sum_{i} \rho_{\sigma}(r(x_i;\theta))$$

 $r(x_i; \theta)$: residual of x_i w.r.t. model parameters θ

 ρ_{σ} : robust function with scale parameter σ , e.g., $\rho_{\sigma}(u) = \frac{u^2}{\sigma^2 + u^2}$

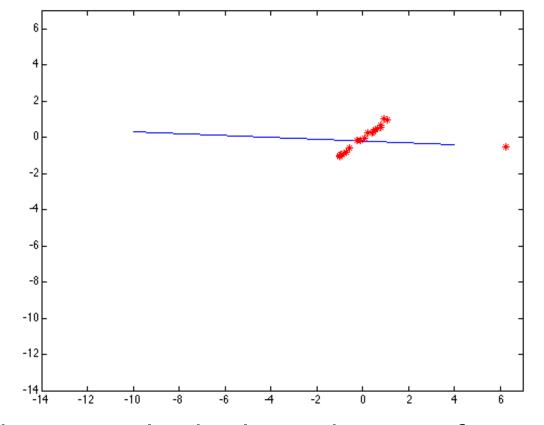
- Nonlinear optimization problem that must be solved iteratively
 - Least squares solution can be used for initialization
 - Scale of robust function should be chosen carefully

Choosing the scale: Just right



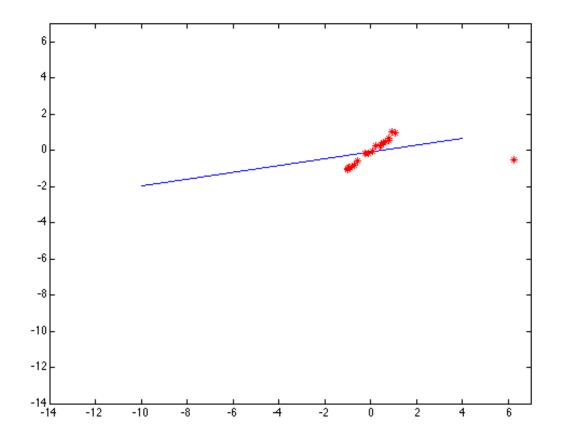
The effect of the outlier is minimized

Choosing the scale: Too small



The error value is almost the same for every point and the fit is very poor

Choosing the scale: Too large



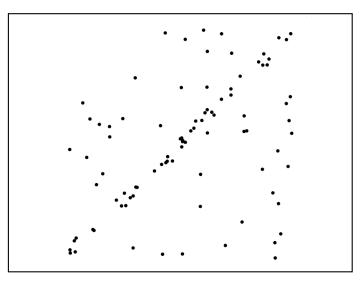
Behaves much the same as least squares

Fitting: Overview

- Least squares line fitting
- Robust fitting
- RANSAC

Voting schemes

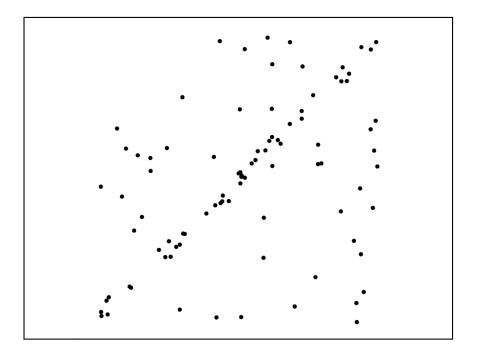
- Robust fitting can deal with a few outliers what if we have very many?
- Basic idea: let each point *vote* for all the models that are compatible with it
 - Hopefully the outliers will not vote consistently for any single model
 - The model that receives the most votes is the best fit to the image



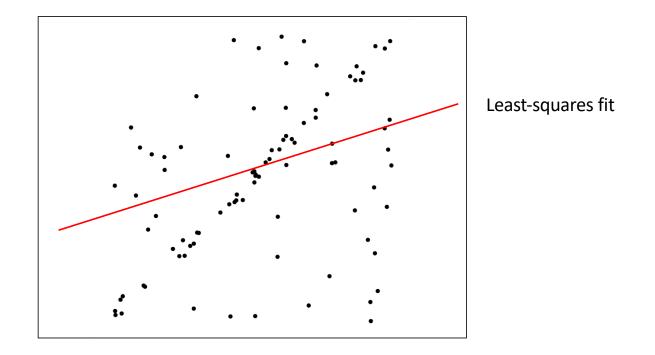
RANSAC

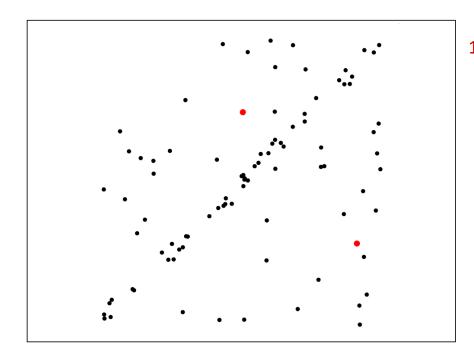
- Random sample consensus: very general framework for model fitting in the presence of outliers
- Outline:
 - Randomly choose a small initial subset of points
 - Fit a model to that subset
 - Find all inlier points that are "close" to the model and reject the rest as outliers
 - Do this many times and choose the model with the most inliers

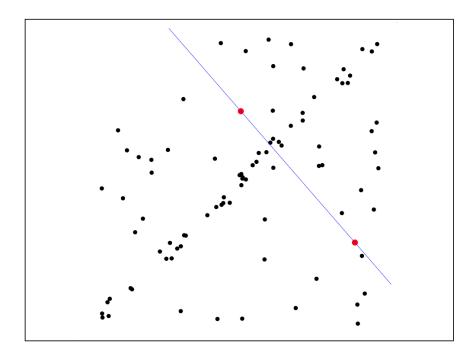
M. Fischler and R. Bolles. <u>Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and</u> <u>Automated Cartography</u>. Comm. of the ACM, Vol 24, pp 381-395, 1981



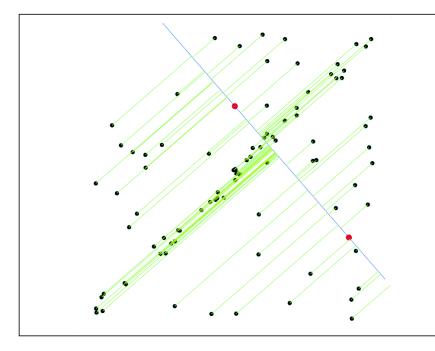
Source: R. Raguram



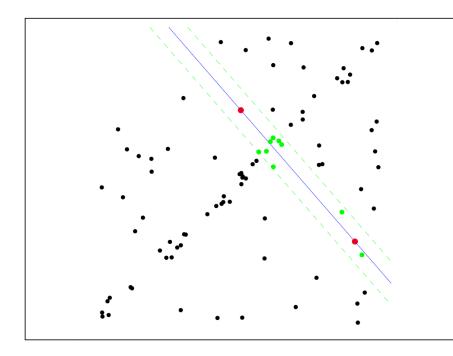




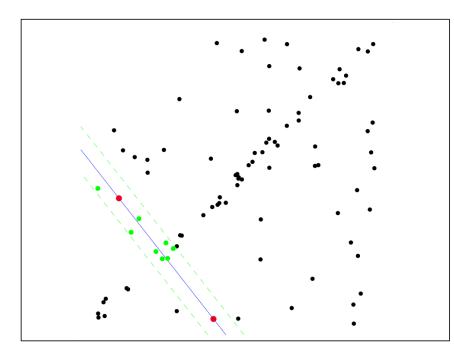
- 1. Randomly select minimal subset of points
- 2. Hypothesize a model



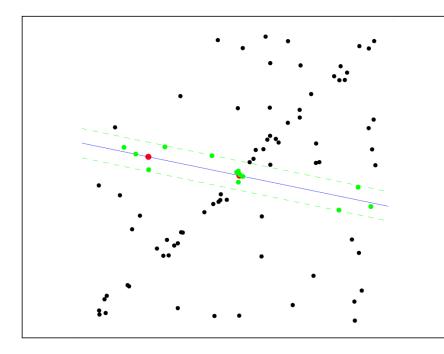
- 1. Randomly select minimal subset of points
- 2. Hypothesize a model
- 3. Compute error function



- 1. Randomly select minimal subset of points
- 2. Hypothesize a model
- 3. Compute error function
- 4. Select points consistent with model



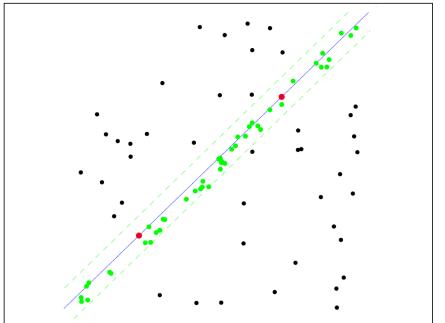
- 1. Randomly select minimal subset of points
- 2. Hypothesize a model
- 3. Compute error function
- 4. Select points consistent with model
- 5. Repeat hypothesize-andverify loop



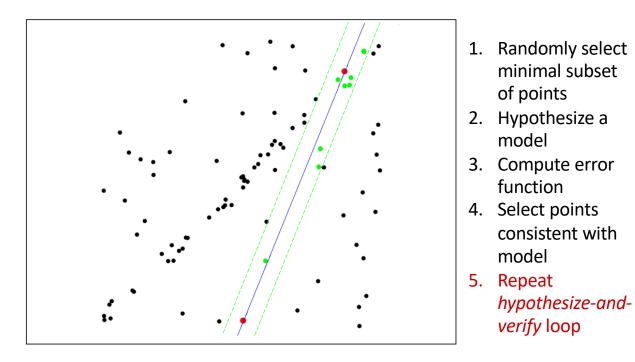
- 1. Randomly select minimal subset of points
- 2. Hypothesize a model
- 3. Compute error function
- 4. Select points consistent with model
- 5. Repeat hypothesize-andverify loop

Source: R. Raguram

Uncontaminated sample



- Randomly select minimal subset of points
- 2. Hypothesize a model
- 3. Compute error function
- 4. Select points consistent with model
- 5. Repeat hypothesize-andverify loop



RANSAC loop

Repeat *N* times:

- Draw *s* points uniformly at random
- Fit model to these *s* points
- Find *inliers* to the model among the remaining points (points whose distance or residual w.r.t. model is less than *t*)
- If there are *d* or more inliers, accept the model and refit using all inliers

RANSAC: Choosing the parameters

- Initial number of points s
 - Typically minimum number needed to fit the model
- Distance threshold *t* for inliers
 - Need suitable assumptions, e.g., given zero-mean Gaussian noise with std. dev. σ , $t = 1.96\sigma$ will give ~95% probability of capturing all inliers
- Consensus set size *d*
 - Should match expected inlier ratio

RANSAC: Choosing the parameters

- Choosing the number of iterations (initial samples) N:
 - Choose N so that, with probability p (e.g. 99%), at least one initial sample is free from outliers
 - Assuming an outlier ratio of *e*:

$$(1 - (1 - e)^{s})^{N} = 1 - p$$

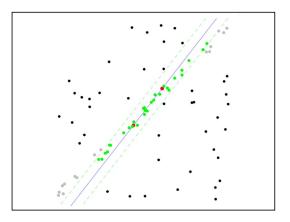
N = log(1 - p) /log(1 - (1 - e)^{s})

•				proport	ion of o	1200			
-	S	5%	10%	20%	25%	30%	40%	50%	- 1000-
•	2	2	3	5	6	7	11	17	
	3	3	4	7	9	11	19	35	800-
	4	3	5	9	13	17	34	72	600-
	5	4	6	12	17	26	57	146	400-
	6	4	7	16	24	37	97	293	200-
	7	4	8	20	33	54	163	588	200
	8	5	9	26	44	78	272	1177	0 0.2 0.4 0.6 0.8

Source: M. Pollefeys

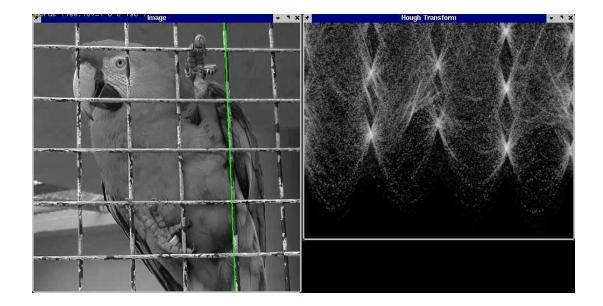
RANSAC pros and cons

- Pros
 - Simple and general
 - Applicable to many different problems
 - Often works well in practice
- Cons
 - Lots of parameters to set
 - Number of iterations grows exponentially as outlier ratio increases
 - Can't always get a good initialization of the model based on the minimum number of samples

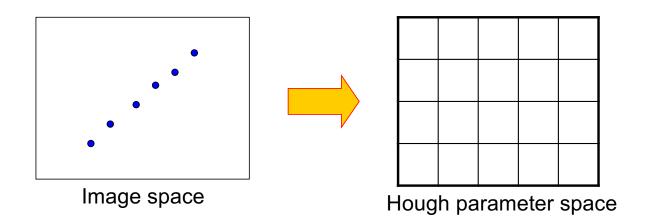


Fitting: Overview

- Least squares line fitting
- Robust fitting
- RANSAC
- Hough transform

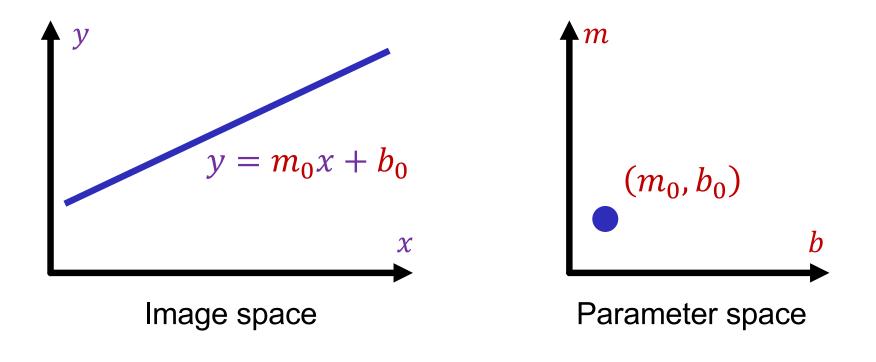


- Possibly the earliest voting scheme but still useful!
 - Discretize parameter space into bins
 - For each feature point in the image, put a vote in every bin in the parameter space that could have generated this point
 - · Find bins that have the most votes



P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

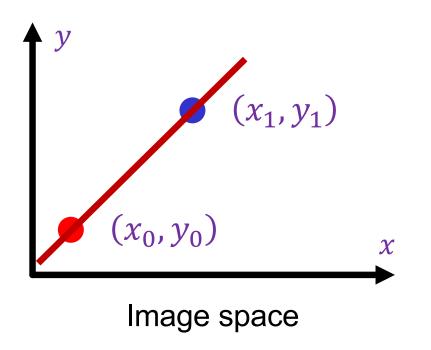
- What does a line in the image space correspond to?
 - A point in the parameter space

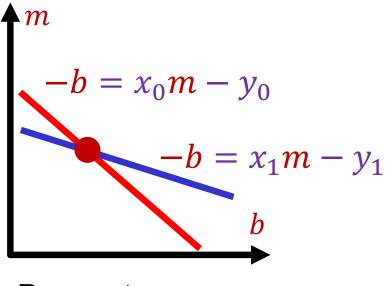


- What does a **point** in the image space correspond to?
 - A line in the parameter space: all (m, b) that satisfy $-b = x_0m y_0$



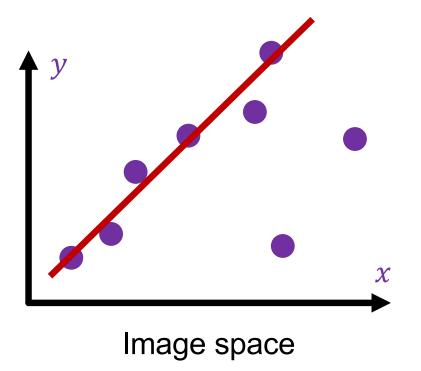
- What about **two points** in the image space?
 - A **point** in the parameter space, corresponding to the unique line that passes through both points

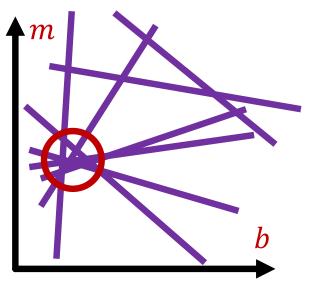




Parameter space

- What about **many points** in the image space?
 - Plot all the lines in the parameter space and try to find a spot where a large number of them intersect

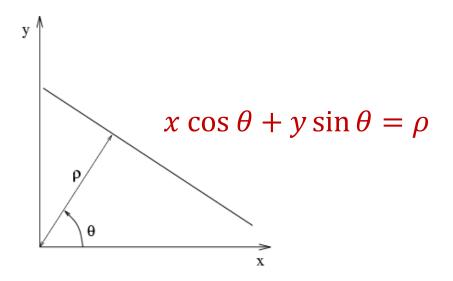




Parameter space

Parameter space representation

- In practice, we don't want to use the (*m*, *b*) space!
 - Unbounded parameter domains
 - Vertical lines require infinite m
- Alternative: polar representation
 - Each image point (x, y) yields a *sinusoid* in the (θ, ρ) parameter space

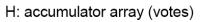


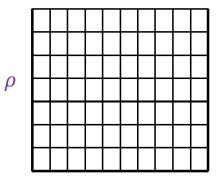
Algorithm outline

- Initialize accumulator *H* to all zeros
- For each feature point (*x*, *y*)
 - For $\theta = 0$ to 180 $\rho = x \cos \theta + y \sin \theta$

 $H(\theta, \rho) += 1$

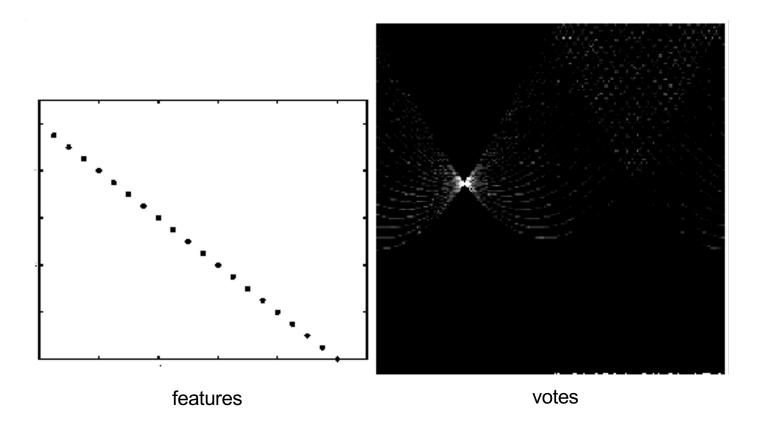
- Find the value(s) of (θ, ρ) where H(θ, ρ) is a local maximum (perform NMS on the accumulator array)
 - The detected line in the image is given by $\rho = x \cos \theta + y \sin \theta$





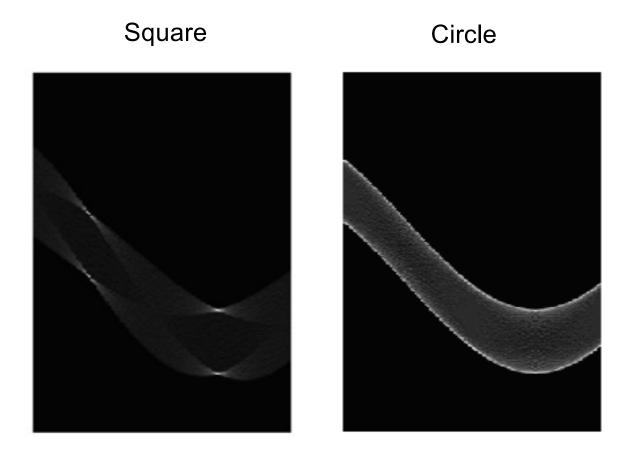
θ

Basic illustration

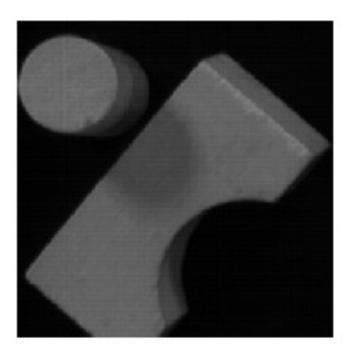


Hough transform demo

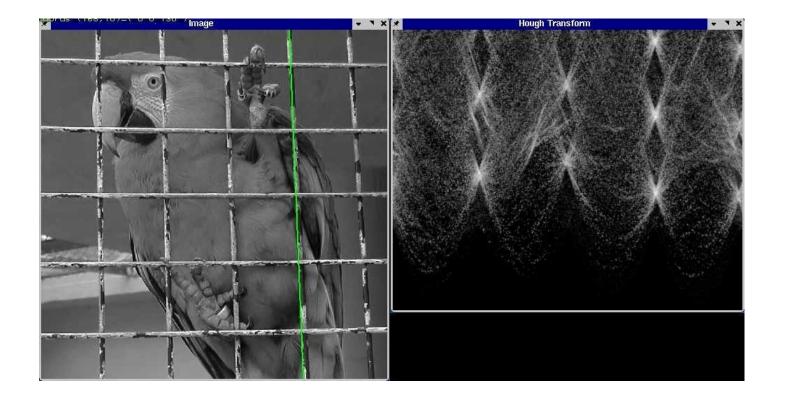
Other shapes



Several lines

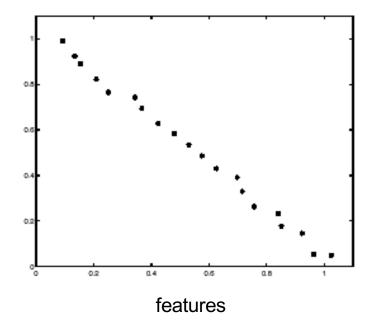


A more complicated image

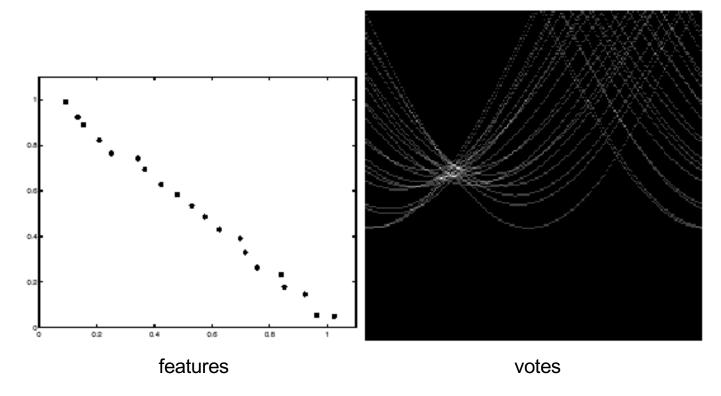


Source

Effect of noise

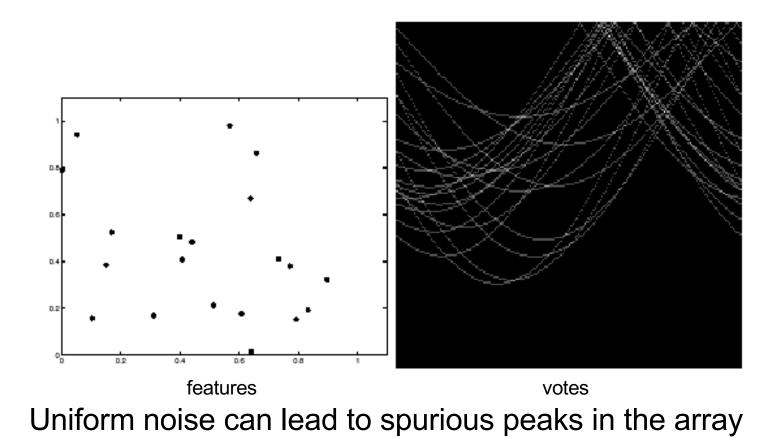


Effect of noise



Peak gets fuzzy and hard to locate

Effect of outliers



Dealing with noise

- How to choose a good grid discretization?
 - **Too coarse:** large votes obtained when too many different lines correspond to a single bucket
 - **Too fine:** miss lines because some points that are not exactly collinear cast votes for different buckets
- Increment neighboring bins (smoothing in accumulator array)
- Try to get rid of irrelevant features
 - E.g., take only edge points with significant gradient magnitude

Hough transform: Pros and cons

- Pros
 - Can deal with non-locality and occlusion
 - Can detect multiple instances of a model
 - Some robustness to noise: noise points unlikely to contribute consistently to any single bin
 - Leads to a surprisingly general strategy for shape localization (more on this next)
- Cons
 - Complexity increases exponentially with the number of model parameters in practice, not used beyond three or four dimensions
 - Non-target shapes can produce spurious peaks in parameter space
 - It's hard to pick a good grid size

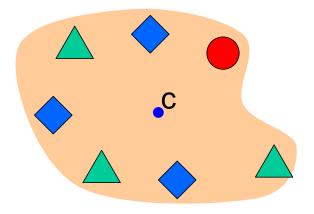
Fitting: Overview

- Least squares line fitting
- Robust fitting
- RANSAC
- Hough transform
- Generalized Hough transform

Generalized Hough transform

• We want to find a template defined by its reference point (center) and several distinct types of landmark points in stable spatial configuration

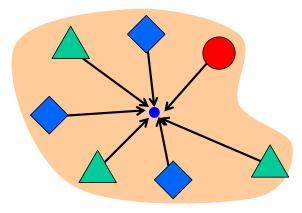
Template

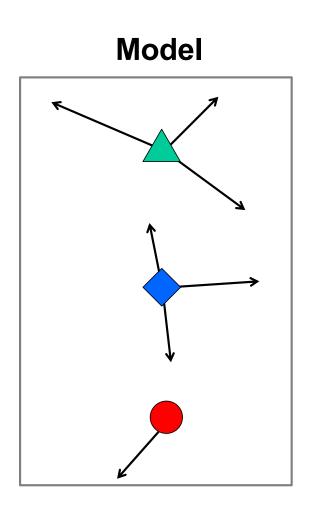


Generalized Hough transform

 Template representation: for each type of landmark point, store all possible displacement vectors towards the center

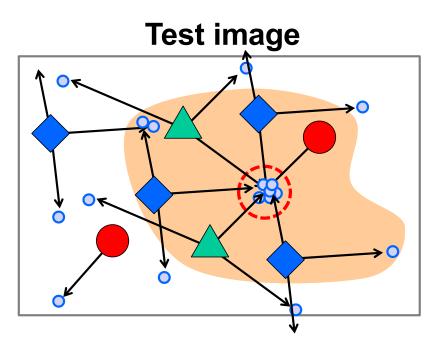
Template

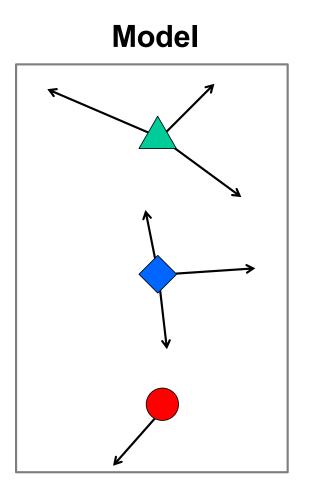




Generalized Hough transform

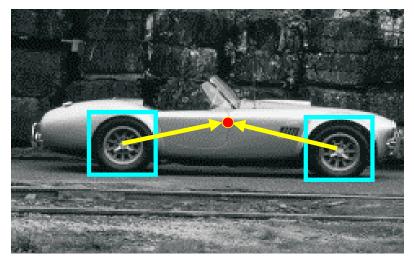
- Detecting the template:
 - For each feature in a new image, look up that feature type in the model and vote for the possible center locations associated with that type in the model





Application in recognition

• Index displacements by "visual codeword"



training image

visual codeword with displacement vectors

B. Leibe, A. Leonardis, and B. Schiele, <u>Combined Object Categorization and Segmentation with an Implicit</u> <u>Shape Model</u>, ECCV Workshop on Statistical Learning in Computer Vision 2004

Application in recognition

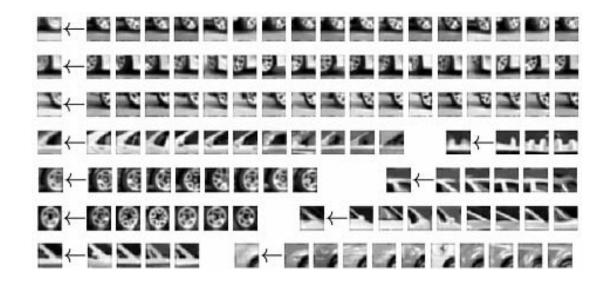
• Index displacements by "visual codeword"

test image

B. Leibe, A. Leonardis, and B. Schiele, <u>Combined Object Categorization and Segmentation with an Implicit</u> <u>Shape Model</u>, ECCV Workshop on Statistical Learning in Computer Vision 2004

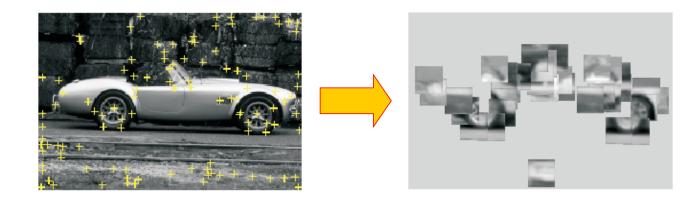
Implicit shape models: Training

1. Build *codebook* of patches around extracted interest points using clustering (more on this in a future lecture)



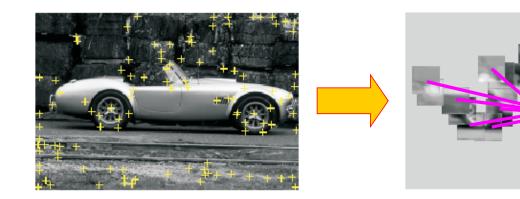
Implicit shape models: Training

- 1. Build *codebook* of patches around extracted interest points using clustering
- 2. Map the patch around each interest point to closest codebook entry



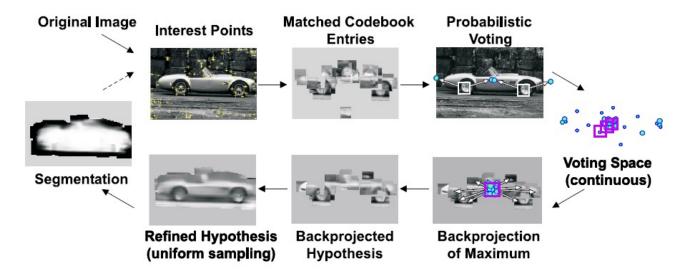
Implicit shape models: Training

- 1. Build *codebook* of patches around extracted interest points using clustering
- 2. Map the patch around each interest point to closest codebook entry
- 3. For each codebook entry, store all positions it was found, relative to object center

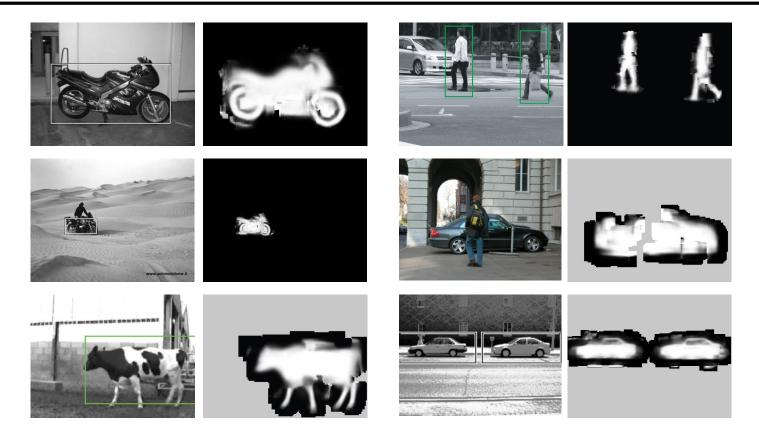


Implicit shape models: Testing

- 1. Given test image, extract patches, match to codebook entry
- 2. Cast votes for possible positions of object center
- 3. Search for maxima in voting space
- 4. Extract weighted segmentation mask based on stored masks for the codebook occurrences

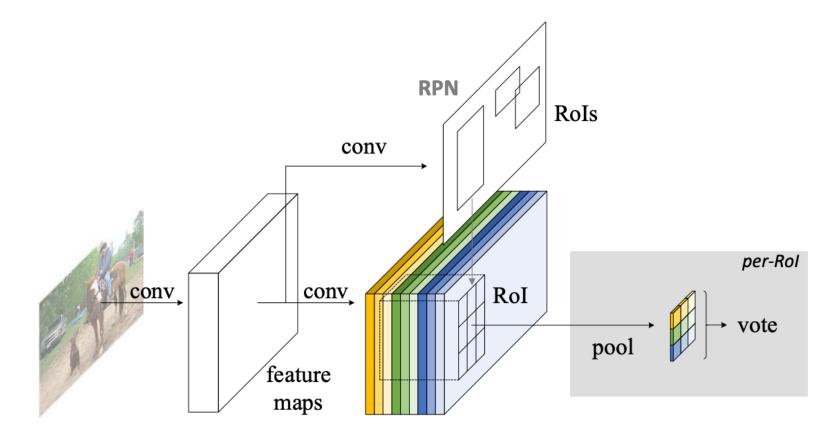


Additional examples



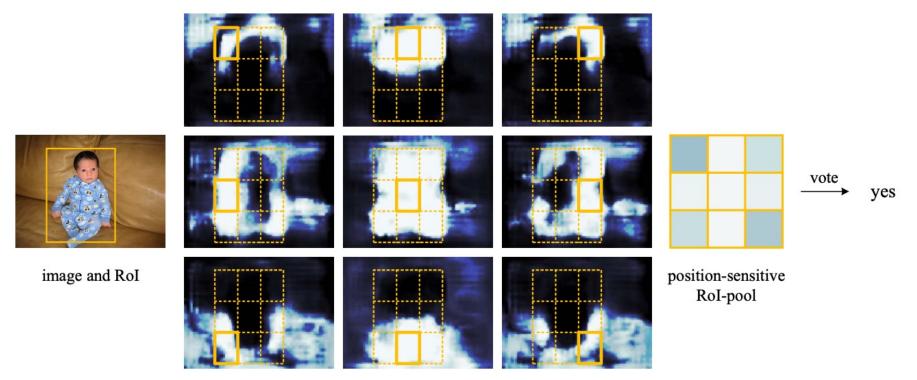
B. Leibe, A. Leonardis, and B. Schiele, <u>Robust Object Detection with Interleaved</u> <u>Categorization and Segmentation</u>, IJCV 77 (1-3), pp. 259-289, 2008.

A more recent example: Voting for detection



J. Dai et al. R-FCN: Object Detection via Region-based Fully Convolutional Networks. arXiv 2016

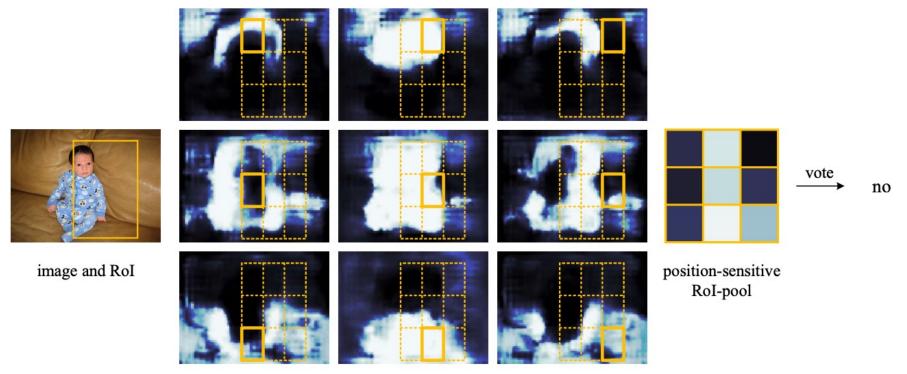
A more recent example: Voting for detection



position-sensitive score maps

J. Dai et al. R-FCN: Object Detection via Region-based Fully Convolutional Networks. arXiv 2016

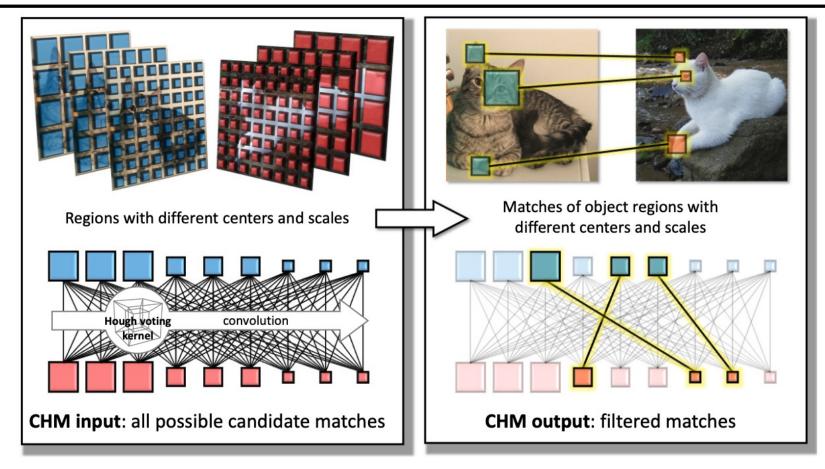
A more recent example: Voting for detection



position-sensitive score maps

J. Dai et al. R-FCN: Object Detection via Region-based Fully Convolutional Networks. arXiv 2016

Convolutional Hough matching networks



J. Min and M. Cho. Convolutional Hough matching networks. CVPR 2021