
Image alignment

Source

http://blog.flickr.net/en/2010/01/27/a-look-into-the-past/

Alignment: Fitting of transformations
• Previously: fitting a model to features in one image

• Given: points !",… , !%
• Find: model & that minimizes

'
(
residual(!(,&)

M

xi

Alignment: Fitting of transformations
• Previously: fitting a model to features in one image

• Alignment: fitting a model to a transformation between pairs of
features (matches) in two images

• Given: points !",… , !%
• Find: model & that minimizes

'
(
residual(!(,&)

• Given: matches (!", !"3), … , (!%, !%3)
• Find: transformation 4 that minimizes

'
(
residual(4(!(), !(3)

M

xi

T

!5
!(3

Alignment: Overview
• Motivation
• Fitting of transformations

• Affine transformations
• Homographies

• Robust alignment
• Descriptor-based feature matching
• RANSAC

• Large-scale alignment
• Inverted indexing
• Vocabulary trees

Alignment applications: Panorama stitching

http://matthewalunbrown.com/autostitch/autostitch.html

http://matthewalunbrown.com/autostitch/autostitch.html

Alignment applications: Instance recognition

David G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV 60 (2), pp. 91-110, 2004

Model images Test image

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

Alignment applications: Instance recognition

T. Weyand and B. Leibe, Visual landmark recognition from Internet photo collections:
A large-scale evaluation, CVIU 2015

https://arxiv.org/abs/1409.5400

Alignment applications: Large-scale reconstruction

S. Agarwal et al. Building Rome in a Day. ICCV 2009

https://grail.cs.washington.edu/rome/rome_paper.pdf

Feature-based alignment
• Find a set of of feature matches that agree in terms of:

a) Local appearance
b) Geometric configuration

?

Feature-based alignment really works!

Source: N. Snavely

Feature-based alignment really works!

Source: N. Snavely

Alignment: Overview
• Motivation
• Fitting of transformations

• Affine transformations
• Homographies

Alignment: Fitting of transformations
• Given: matches ("#, "#%), … , ("(, "(%)
• Find: transformation) that minimizes

*
+
residual()("+), "+%)

T

"4
"+%

2D transformation models

• Similarity
(translation,
scale, rotation)

• Affine

• Projective
(homography)

Recall: Rotation

• Estimating the rotation matrix requires enforcing nonlinear
constraints, so we will skip the details

!

"′
$′ = cos(!) −sin(!)

sin(!) cos(!)
"
$

2D transformation models

• Similarity
(translation,
scale, rotation)

• Affine

• Projective
(homography)

Let’s start with affine transformations
• Simple fitting procedure: linear least squares
• Approximates viewpoint changes for roughly planar objects

and roughly orthographic cameras
• Can be used to initialize fitting for more complex models

Fitting an affine transformation
• Assume we know the correspondences, how do we get the

transformation?

Want to find !, " to minimize

#
$%&

'
($) −!($ − " +

(-$, /$) (-$), /$))

-$)
/$)

= 2& 2+
23 24

-$
/$ + 6&

6+

($) ! "($

Fitting an affine transformation
• Assume we know the correspondences, how do we get the

transformation?

("#, %#) ("#', %#')

…
"# %# 0 0 1 0
0 0 "# %# 0 1

…

+,
+-
+.
+/
0,
0-

=
…
"#'
%#'
…

"#'
%#'

= +, +-
+. +/

"#
%# + 0,

0-

Fitting an affine transformation
• How many matches do we need to solve for the transformation

parameters?

…
"# $# 0 0 1 0
0 0 "# $# 0 1

…

'(
')
'*
'+
,(
,)

=
…
"#.
$#.
…

Fitting a homography
• A homography is a plane projective transformation

(transformation taking a quad to another arbitrary quad)

Homography in the real world
• The transformation between two views of a planar surface

• The transformation between images from two cameras that
share the same center

Application: Panorama stitching

Source: Hartley & Zisserman

Fitting a homography
• Recall:

!" = $! + &' + (
)! + ℎ' + + , '" = -! + .' + /

)! + ℎ' + +

Last time: Alignment
• Motivation
• Fitting of transformations

• Affine transformations
• Homographies

Fitting a homography
• We need 2D homogeneous coordinates:

• All homogeneous coordinate vectors that are scalar multiples of each
other represent the same point!

• Equation for homography in homogeneous coordinates:

!′
#′
1

≅
ℎ'' ℎ'(ℎ')
ℎ(' ℎ((ℎ()
ℎ)' ℎ)(ℎ))

!
#
1

Converting to homogeneous
coordinates

Converting from homogeneous
coordinates

(!, #) ⟹
!
#
1

!
#
.

⟹ (!/., #/.)

0′ ≅ 10
“equal up to scale”

Fitting a homography
• Constraint from a match !", !"$: !"$ ≅ &!"
• How can we get rid of the scale ambiguity?
• Cross product trick: !"$ × &!" =)
• Recall cross product:

*
+
,
×

*′
+′
,′

=
+,$ − +$,
,*′ − ,$*
*+$ − *$+

• Let /01, /21, /31 be the rows of &. Then

!"$ × &!" =
4"$
5"$
1

×
/01!"
/21!"
/31!"

=
5"$/31!" − /21!"
/01!" − 4"$/31!"
4"$/21!" − 5"$/01!"

Fitting a homography
• Constraint from a match !", !"$:

!"$ × &!" =
("$
)"$
1

×
+,-!"
+.-!"
+/-!"

=
)"$+/-!" − +.-!"
+,-!" − ("$+/-!"
("$+.-!" −)"$+,-!"

• Rearranging the terms:
1- −!"-)"$!"-
!"- 1- −("$!"-

−)"$!"- ("$!"- 1-

+,
+.
+/

= 1

• Are these equations independent?

Fitting a homography
• Final linear system:

!" #$" −&$'#$"
#$" !" −($'#$"
… … …
!" #*" −&*'#*"
#*" !" −(*' #*+

,$
,-
,.

= !

• Homogeneous least squares: find , minimizing 0, -
• Solution is eigenvector of 010 corresponding to smallest eigenvalue

• What is the minimum number of matches needed for a solution?
• Four: 0 has 8 degrees of freedom (9 parameters, but scale is arbitrary),

one match gives us two linearly independent equations

0, = !

Alignment: Overview
• Motivation
• Fitting of transformations

• Affine transformations
• Homographies

• Robust alignment
• Descriptor-based feature matching
• RANSAC

Robust feature-based alignment
• So far, we’ve assumed that we are given a set of

correspondences between the two images we want to align
• What if we don’t know the correspondences?

),(ii yx ¢¢
),(ii yx

Robust feature-based alignment
• So far, we’ve assumed that we are given a set of

correspondences between the two images we want to align
• What if we don’t know the correspondences?

?

Robust feature-based alignment

Robust feature-based alignment

• Extract features

Robust feature-based alignment

• Extract features
• Compute putative matches

Robust feature-based alignment

• Extract features
• Compute putative matches
• Loop:

• Hypothesize transformation !

Robust feature-based alignment

• Extract features
• Compute putative matches
• Loop:

• Hypothesize transformation !
• Verify transformation (search for other matches consistent with !)

Robust feature-based alignment

• Extract features
• Compute putative matches
• Loop:

• Hypothesize transformation !
• Verify transformation (search for other matches consistent with !)

Generating putative correspondences

?

Generating putative correspondences

• Need to compare feature descriptors of local patches
surrounding interest points

() ()=
?

feature
descriptor

feature
descriptor

?

Feature descriptors
• Recall: feature detection vs. feature description

Comparing feature descriptors
• Simplest descriptor: vector of raw intensity values
• How to compare two such vectors ! and "?

• Sum of squared differences (SSD):

SSD !, " ='
(
)(− +(,

• Normalized correlation: dot product between ! and " normalized to
have zero mean and unit norm:

- !, " = ∑(()(− 0!)(+(− 0")
∑2()2 − 0!), ∑2(+2 − 0"),

• Why would we prefer normalized correlation over SSD?

Disadvantage of intensity vectors as descriptors
• Small deformations can affect the matching score a lot

• Descriptor computation:
• Divide patch into 4×4 sub-patches
• Compute histogram of gradient orientations (8 reference angles)

inside each sub-patch
• Resulting descriptor: 4×4×8 = 128 dimensions

Feature descriptors: SIFT

David G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV 60 (2), pp. 91-110, 2004.

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

• Descriptor computation:

• Divide patch into 4×4 sub-patches

• Compute histogram of gradient orientations (8 reference angles)

inside each sub-patch

• Resulting descriptor: 4×4×8 = 128 dimensions

• What are the advantages of SIFT descriptor over raw pixel

values?

• Gradients are less sensitive to illumination change

• Pooling of gradients over the sub-patches achieves robustness to

small shifts, but still preserves some spatial information

Feature descriptors: SIFT

David G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV 60 (2), pp. 91-110, 2004.

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

Generating putative correspondences

?

• For each patch in one image, find a short list of patches in the
other image that could match it based solely on appearance

Rejection of ambiguous matches

Source: Y. Furukawa

• How can we tell which putative matches are more reliable?
• Heuristic: compare distance of nearest neighbor to that of
second nearest neighbor

Rejection of ambiguous matches

• How can we tell which putative matches are more reliable?

• Heuristic: compare distance of nearest neighbor to that of

second nearest neighbor

• Ratio of closest distance to second-closest distance will be high for

features that are not distinctive

David G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV 60 (2), pp. 91-110, 2004.

Threshold of 0.8 found to

provide good separation

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

Robust alignment
• Even after filtering out ambiguous matches, the set of

putative matches still contains a very high percentage of
outliers

• Solution: RANSAC
• RANSAC loop:

1. Randomly select a seed group of matches
2. Compute transformation from seed group
3. Find inliers to this transformation
4. If the number of inliers is sufficiently large, re-compute least-squares

estimate of transformation on all of the inliers
• At the end, keep the transformation with the largest number of inliers

RANSAC example: Translation

Putative matches

RANSAC example: Translation

Select one match, count inliers

RANSAC example: Translation

Select one match, count inliers

RANSAC example: Translation

Select translation with the most inliers

Alternative for robust alignment: Hough voting
• A single SIFT match can vote for translation, rotation, and

scale parameters of a transformation between two images
• Votes can be accumulated in a 4D Hough space with large bins
• Clusters of matches falling into the same bin should undergo a more

precise verification procedure

David G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV 60 (2), pp. 91-110, 2004.

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

Alignment: Overview
• Motivation
• Fitting of transformations

• Affine transformations
• Homographies

• Robust alignment
• Descriptor-based feature matching
• RANSAC

• Large-scale alignment
• Inverted indexing
• Vocabulary trees

Scalability: Alignment to large databases
• What if we need to align a test image with thousands or

millions of images in a model database?
• Efficient putative match generation: approximate descriptor similarity

search, inverted indices

Model
database

?
Test image

Large-scale visual search

Figure from: Kristen Grauman and Bastian Leibe, Visual Object Recognition, Synthesis Lectures on Artificial
Intelligence and Machine Learning, April 2011, Vol. 5, No. 2, Pages 1-181

Inverted indexing

Reranking/
Geometric
verification

http://dx.doi.org/10.2200/S00332ED1V01Y201103AIM011

How to do the indexing?

• Idea: find a set of visual codewords to which descriptors can be quantized

Recall: Visual codebook for implicit shape models

Appearance codebook

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model,
ECCV Workshop on Statistical Learning in Computer Vision 2004

!"
!#

!$

⋮

http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf

K-means clustering
• We want to find ! cluster centers and an assignment of

points to cluster centers to minimize the sum of squared
Euclidean distances between each point and its assigned
cluster center:

"
#
"

$
%#$ &# − ($)

Sum over
all points

Sum over
all clusters

Point &# is
assigned to

cluster *
Center of
cluster *

K-means clustering
• We want to find ! cluster centers and an assignment of

points to cluster centers to minimize the sum of squared
Euclidean distances between each point and its assigned
cluster center:

"
#
"

$
%#$ &# − ($)

• Algorithm:
• Randomly initialize ! cluster centers
• Iterate until convergence:

– Assign each data point to its nearest center
– Recompute each cluster center as the mean of all points

assigned to it

K-means example

Source

http://shabal.in/visuals/kmeans/1.html

How to do the indexing?

• Cluster descriptors in the database to form codebook
• At query time, quantize descriptors in query image to nearest codevectors
• Problem solved?

Efficient indexing technique: Vocabulary trees

D. Nistér and H. Stewénius, Scalable Recognition with a Vocabulary Tree, CVPR 2006

Test image

Database

Vocabulary tree
with inverted

index

http://www.vis.uky.edu/~stewe/publications/nister_stewenius_cvpr2006.pdf

Hierarchical k-means
clustering of

descriptor space
(vocabulary tree) Slide credit: D. Nister

Slide credit: D. Nister
Vocabulary tree/inverted index

Populating the vocabulary tree/inverted index
Slide credit: D. Nister

Model images

Populating the vocabulary tree/inverted index
Slide credit: D. Nister

Model images

Populating the vocabulary tree/inverted index
Slide credit: D. Nister

Model images

Populating the vocabulary tree/inverted index
Slide credit: D. Nister

Model images

Looking up a test image Slide credit: D. Nister

Test imageModel images

