Image alignment

Source

Alignment: Fitting of transformations

• Previously: fitting a model to features in one image

- Given: points $x_1, ..., x_n$
- Find: model *M* that minimizes

$$\sum_{i}$$
 residual (x_i, \mathbf{M})

Alignment: Fitting of transformations

• Previously: fitting a model to features in one image

- Given: points x_1, \dots, x_n
- Find: model *M* that minimizes

$$\sum_{i}$$
 residual (x_i, M)

 Alignment: fitting a model to a transformation between pairs of features (matches) in two images

- Given: matches $(x_1, x'_1), \dots, (x_n, x'_n)$
- Find: transformation *T* that minimizes

$$\sum_{i}$$
 residual($T(x_i), x_i'$)

Alignment: Overview

- Motivation
- Fitting of transformations
 - Affine transformations
 - Homographies
- Robust alignment
 - Descriptor-based feature matching
 - RANSAC
- Large-scale alignment
 - Inverted indexing
 - Vocabulary trees

Alignment applications: Panorama stitching

http://matthewalunbrown.com/autostitch/autostitch.html

Alignment applications: Instance recognition

Model images

Test image

David G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV 60 (2), pp. 91-110, 2004

Alignment applications: Instance recognition

T. Weyand and B. Leibe, <u>Visual landmark recognition from Internet photo collections</u>:

<u>A large-scale evaluation</u>, CVIU 2015

Alignment applications: Large-scale reconstruction

Colosseum: 2,097 images, 819,242 points

Trevi Fountain: 1,935 images, 1,055,153 points

Pantheon: 1,032 images, 530,076 points

Hall of Maps: 275 images, 230,182 points

S. Agarwal et al. Building Rome in a Day. ICCV 2009

Feature-based alignment

- Find a set of of feature matches that agree in terms of:
 - a) Local appearance
 - b) Geometric configuration

Feature-based alignment *really works*!

Source: N. Snavely

Feature-based alignment *really works*!

Source: N. Snavely

Alignment: Overview

- Motivation
- Fitting of transformations
 - Affine transformations
 - Homographies

Alignment: Fitting of transformations

- Given: matches $(x_1, x_1'), \dots, (x_n, x_n')$
- Find: transformation *T* that minimizes

$$\sum_{i} \operatorname{residual}(T(x_i), x_i')$$

2D transformation models

 Similarity (translation, scale, rotation)

Affine

Projective (homography)

Recall: Rotation

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

 Estimating the rotation matrix requires enforcing nonlinear constraints, so we will skip the details

2D transformation models

Let's start with affine transformations

- Simple fitting procedure: linear least squares
- Approximates viewpoint changes for roughly planar objects and roughly orthographic cameras
- Can be used to initialize fitting for more complex models

Fitting an affine transformation

 Assume we know the correspondences, how do we get the transformation?

$$\begin{pmatrix} x_i' \\ y_i' \end{pmatrix} = \begin{bmatrix} m_1 & m_2 \\ m_3 & m_4 \end{bmatrix} \begin{pmatrix} x_i \\ y_i \end{pmatrix} + \begin{pmatrix} t_1 \\ t_2 \end{pmatrix}$$

$$x_i' \qquad \mathbf{M} \qquad \mathbf{x}_i \qquad \mathbf{t}$$

Want to find M, t to minimize

$$\sum_{i=1}^n \|\boldsymbol{x}_i' - \boldsymbol{M}\boldsymbol{x}_i - \boldsymbol{t}\|^2$$

Fitting an affine transformation

 Assume we know the correspondences, how do we get the transformation?

$$\begin{pmatrix} x_i' \\ y_i' \end{pmatrix} = \begin{bmatrix} m_1 & m_2 \\ m_3 & m_4 \end{bmatrix} \begin{pmatrix} x_i \\ y_i \end{pmatrix} + \begin{pmatrix} t_1 \\ t_2 \end{pmatrix}$$

$$\begin{bmatrix} \begin{pmatrix} m_1 \\ m_2 \\ m_3 \\ m_4 \\ t_1 \\ t_2 \end{pmatrix} = \begin{pmatrix} \dots \\ x_i' \\ y_i' \\ \dots \end{pmatrix}$$

Fitting an affine transformation

 How many matches do we need to solve for the transformation parameters?

$$\begin{bmatrix} x_i & y_i & 0 & 0 & 1 & 0 \\ 0 & 0 & x_i & y_i & 0 & 1 \end{bmatrix} \begin{pmatrix} m_1 \\ m_2 \\ m_3 \\ m_4 \\ t_1 \\ t_2 \end{pmatrix} = \begin{pmatrix} \dots \\ x_i' \\ y_i' \\ \dots \end{pmatrix}$$

 A homography is a plane projective transformation (transformation taking a quad to another arbitrary quad)

Homography in the real world

• The transformation between two views of a planar surface

 The transformation between images from two cameras that share the same center

Application: Panorama stitching

Source: Hartley & Zisserman

Recall:

$$x' = \frac{ax + by + c}{gx + hy + i},$$

$$y' = \frac{dx + ey + f}{gx + hy + i}$$

Last time: Alignment

- Motivation
- Fitting of transformations
 - Affine transformations
 - Homographies

We need 2D homogeneous coordinates:

$$(x,y) \Longrightarrow \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} \qquad \qquad \begin{pmatrix} x \\ y \\ w \end{pmatrix} \Longrightarrow (x/w, y/w)$$

Converting to homogeneous coordinates

Converting *from* homogeneous coordinates

- All homogeneous coordinate vectors that are scalar multiples of each other represent the same point!
- Equation for homography in homogeneous coordinates:

- Constraint from a match (x_i, x_i') : $x_i' \cong Hx_i$
- How can we get rid of the scale ambiguity?
- Cross product trick: $x_i' \times Hx_i = 0$
- Recall cross product:

$$\binom{a}{b} \times \binom{a'}{b'} = \binom{bc' - b'c}{ca' - c'a} \\ ab' - a'b$$

• Let h_1^T , h_2^T , h_3^T be the rows of H. Then

$$\boldsymbol{x}_{i}' \times \boldsymbol{H} \boldsymbol{x}_{i} = \begin{pmatrix} x_{i}' \\ y_{i}' \\ 1 \end{pmatrix} \times \begin{pmatrix} \boldsymbol{h}_{1}^{T} \boldsymbol{x}_{i} \\ \boldsymbol{h}_{2}^{T} \boldsymbol{x}_{i} \\ \boldsymbol{h}_{3}^{T} \boldsymbol{x}_{i} \end{pmatrix} = \begin{pmatrix} y_{i}' \boldsymbol{h}_{3}^{T} \boldsymbol{x}_{i} - \boldsymbol{h}_{2}^{T} \boldsymbol{x}_{i} \\ \boldsymbol{h}_{1}^{T} \boldsymbol{x}_{i} - x_{i}' \boldsymbol{h}_{3}^{T} \boldsymbol{x}_{i} \\ x_{i}' \boldsymbol{h}_{2}^{T} \boldsymbol{x}_{i} - y_{i}' \boldsymbol{h}_{1}^{T} \boldsymbol{x}_{i} \end{pmatrix}$$

Constraint from a match (x_i, x'_i):

$$\boldsymbol{x}_{i}' \times \boldsymbol{H} \boldsymbol{x}_{i} = \begin{pmatrix} \boldsymbol{x}_{i}' \\ \boldsymbol{y}_{i}' \\ 1 \end{pmatrix} \times \begin{pmatrix} \boldsymbol{h}_{1}^{T} \boldsymbol{x}_{i} \\ \boldsymbol{h}_{2}^{T} \boldsymbol{x}_{i} \\ \boldsymbol{h}_{3}^{T} \boldsymbol{x}_{i} \end{pmatrix} = \begin{pmatrix} \boldsymbol{y}_{i}' \boldsymbol{h}_{3}^{T} \boldsymbol{x}_{i} - \boldsymbol{h}_{2}^{T} \boldsymbol{x}_{i} \\ \boldsymbol{h}_{1}^{T} \boldsymbol{x}_{i} - \boldsymbol{x}_{i}' \boldsymbol{h}_{3}^{T} \boldsymbol{x}_{i} \\ \boldsymbol{x}_{i}' \boldsymbol{h}_{2}^{T} \boldsymbol{x}_{i} - \boldsymbol{y}_{i}' \boldsymbol{h}_{1}^{T} \boldsymbol{x}_{i} \end{pmatrix}$$

Rearranging the terms:

$$\begin{bmatrix} \mathbf{0}^T & -\mathbf{x}_i^T & y_i'\mathbf{x}_i^T \\ \mathbf{x}_i^T & \mathbf{0}^T & -x_i'\mathbf{x}_i^T \\ -y_i'\mathbf{x}_i^T & x_i'\mathbf{x}_i^T & \mathbf{0}^T \end{bmatrix} \begin{pmatrix} \mathbf{h}_1 \\ \mathbf{h}_2 \\ \mathbf{h}_3 \end{pmatrix} = \mathbf{0}$$

Are these equations independent?

Final linear system:

$$\begin{bmatrix} \mathbf{0}^{T} & \mathbf{x}_{1}^{T} & -y_{1}'\mathbf{x}_{1}^{T} \\ \mathbf{x}_{1}^{T} & \mathbf{0}^{T} & -x_{1}'\mathbf{x}_{1}^{T} \\ \dots & \dots & \dots \\ \mathbf{0}^{T} & \mathbf{x}_{n}^{T} & -y_{n}'\mathbf{x}_{n}^{T} \\ \mathbf{x}_{n}^{T} & \mathbf{0}^{T} & -x_{n}'\mathbf{x}_{n}^{T} \end{bmatrix} \begin{pmatrix} \mathbf{h}_{1} \\ \mathbf{h}_{2} \\ \mathbf{h}_{3} \end{pmatrix} = \mathbf{0} \qquad A\mathbf{h} = \mathbf{0}$$

- Homogeneous least squares: find h minimizing $||Ah||^2$
 - Solution is eigenvector of A^TA corresponding to smallest eigenvalue
- What is the minimum number of matches needed for a solution?
 - Four: A has 8 degrees of freedom (9 parameters, but scale is arbitrary), one match gives us two linearly independent equations

Alignment: Overview

- Motivation
- Fitting of transformations
 - Affine transformations
 - Homographies
- Robust alignment
 - Descriptor-based feature matching
 - RANSAC

- So far, we've assumed that we are given a set of correspondences between the two images we want to align
- What if we don't know the correspondences?

- So far, we've assumed that we are given a set of correspondences between the two images we want to align
- What if we don't know the correspondences?

Extract features

- Extract features
- Compute *putative matches*

- Extract features
- Compute *putative matches*
- Loop:
 - Hypothesize transformation T

Robust feature-based alignment

- Extract features
- Compute putative matches
- Loop:
 - Hypothesize transformation T
 - Verify transformation (search for other matches consistent with T)

Robust feature-based alignment

- Extract features
- Compute putative matches
- Loop:
 - Hypothesize transformation T
 - *Verify* transformation (search for other matches consistent with *T*)

Generating putative correspondences

Generating putative correspondences

 Need to compare feature descriptors of local patches surrounding interest points

Feature descriptors

• Recall: feature detection vs. feature description

Comparing feature descriptors

- Simplest descriptor: vector of raw intensity values
- How to compare two such vectors u and v?
 - Sum of squared differences (SSD):

$$SSD(\boldsymbol{u}, \boldsymbol{v}) = \sum_{i} (u_i - v_i)^2$$

 Normalized correlation: dot product between u and v normalized to have zero mean and unit norm:

$$\rho(\boldsymbol{u}, \boldsymbol{v}) = \frac{\sum_{i} (u_{i} - \overline{\boldsymbol{u}})(v_{i} - \overline{\boldsymbol{v}})}{\sqrt{\left(\sum_{j} (u_{j} - \overline{\boldsymbol{u}})^{2}\right)\left(\sum_{j} (v_{j} - \overline{\boldsymbol{v}})^{2}\right)}}$$

• Why would we prefer normalized correlation over SSD?

Disadvantage of intensity vectors as descriptors

• Small deformations can affect the matching score a lot

Feature descriptors: SIFT

- Descriptor computation:
 - Divide patch into 4×4 sub-patches
 - Compute histogram of gradient orientations (8 reference angles) inside each sub-patch
 - Resulting descriptor: $4 \times 4 \times 8 = 128$ dimensions

David G. Lowe. <u>Distinctive image features from scale-invariant keypoints</u>. *IJCV* 60 (2), pp. 91-110, 2004.

Feature descriptors: SIFT

- Descriptor computation:
 - Divide patch into 4×4 sub-patches
 - Compute histogram of gradient orientations (8 reference angles) inside each sub-patch
 - Resulting descriptor: $4 \times 4 \times 8 = 128$ dimensions
- What are the advantages of SIFT descriptor over raw pixel values?
 - Gradients are less sensitive to illumination change
 - Pooling of gradients over the sub-patches achieves robustness to small shifts, but still preserves some spatial information

David G. Lowe. <u>Distinctive image features from scale-invariant keypoints</u>. *IJCV* 60 (2), pp. 91-110, 2004.

Generating putative correspondences

• For each patch in one image, find a short list of patches in the other image that could match it based solely on appearance

Rejection of ambiguous matches

- How can we tell which putative matches are more reliable?
- Heuristic: compare distance of nearest neighbor to that of second nearest neighbor

Source: Y. Furukawa

Rejection of ambiguous matches

- How can we tell which putative matches are more reliable?
- Heuristic: compare distance of nearest neighbor to that of second nearest neighbor
 - Ratio of closest distance to second-closest distance will be high for features that are not distinctive

Threshold of 0.8 found to provide good separation

David G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV 60 (2), pp. 91-110, 2004.

Robust alignment

- Even after filtering out ambiguous matches, the set of putative matches still contains a very high percentage of outliers
- Solution: RANSAC
- RANSAC loop:
 - 1. Randomly select a *seed group* of matches
 - 2. Compute transformation from seed group
 - 3. Find *inliers* to this transformation
 - 4. If the number of inliers is sufficiently large, re-compute least-squares estimate of transformation on all of the inliers
- At the end, keep the transformation with the largest number of inliers

Alternative for robust alignment: Hough voting

- A single SIFT match can vote for translation, rotation, and scale parameters of a transformation between two images
 - Votes can be accumulated in a 4D Hough space with large bins
 - Clusters of matches falling into the same bin should undergo a more precise verification procedure

David G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV 60 (2), pp. 91-110, 2004.

Alignment: Overview

- Motivation
- Fitting of transformations
 - Affine transformations
 - Homographies
- Robust alignment
 - Descriptor-based feature matching
 - RANSAC
- Large-scale alignment
 - Inverted indexing
 - Vocabulary trees

Scalability: Alignment to large databases

- What if we need to align a test image with thousands or millions of images in a model database?
 - Efficient putative match generation: approximate descriptor similarity search, inverted indices

Large-scale visual search

Figure from: Kristen Grauman and Bastian Leibe, <u>Visual Object Recognition</u>, Synthesis Lectures on Artificial Intelligence and Machine Learning, April 2011, Vol. 5, No. 2, Pages 1-181

How to do the indexing?

Idea: find a set of visual codewords to which descriptors can be quantized

Recall: Visual codebook for implicit shape models

B. Leibe, A. Leonardis, and B. Schiele, <u>Combined Object Categorization and Segmentation with an Implicit Shape Mode</u>l, ECCV Workshop on Statistical Learning in Computer Vision 2004

K-means clustering

 We want to find K cluster centers and an assignment of points to cluster centers to minimize the sum of squared Euclidean distances between each point and its assigned cluster center:

K-means clustering

 We want to find K cluster centers and an assignment of points to cluster centers to minimize the sum of squared Euclidean distances between each point and its assigned cluster center:

$$\sum_{i} \sum_{k} a_{ik} ||\boldsymbol{x}_i - \boldsymbol{c}_k||^2$$

- Algorithm:
 - Randomly initialize K cluster centers
 - Iterate until convergence:
 - Assign each data point to its nearest center
 - Recompute each cluster center as the mean of all points assigned to it

K-means example

How to do the indexing?

- Cluster descriptors in the database to form codebook
- At query time, quantize descriptors in query image to nearest codevectors
- Problem solved?

Efficient indexing technique: Vocabulary trees

D. Nistér and H. Stewénius, Scalable Recognition with a Vocabulary Tree, CVPR 2006

Vocabulary tree/inverted index

Populating the vocabulary tree/inverted index

Populating the vocabulary tree/inverted index

Populating the vocabulary tree/inverted index

Looking up a test image