
Image alignment

Source

http://blog.flickr.net/en/2010/01/27/a-look-into-the-past/
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Alignment: Fitting of transformations
• Previously: fitting a model to features in one image

• Alignment: fitting a model to a transformation between pairs of 
features (matches) in two images

• Given: points !",… , !%
• Find: model & that minimizes
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• Given: matches (!", !"3 ), … , (!%, !%3 )
• Find: transformation 4 that minimizes
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Alignment: Overview
• Motivation
• Fitting of transformations

• Affine transformations
• Homographies

• Robust alignment 
• Descriptor-based feature matching
• RANSAC

• Large-scale alignment
• Inverted indexing
• Vocabulary trees



Alignment applications: Panorama stitching

http://matthewalunbrown.com/autostitch/autostitch.html

http://matthewalunbrown.com/autostitch/autostitch.html


Alignment applications: Instance recognition

David G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV 60 (2), pp. 91-110, 2004 

Model images Test image

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf


Alignment applications: Instance recognition

T. Weyand and B. Leibe, Visual landmark recognition from Internet photo collections: 
A large-scale evaluation, CVIU 2015 

https://arxiv.org/abs/1409.5400


Alignment applications: Large-scale reconstruction

S. Agarwal et al. Building Rome in a Day. ICCV 2009

https://grail.cs.washington.edu/rome/rome_paper.pdf


Feature-based alignment
• Find a set of of feature matches that agree in terms of:

a) Local appearance
b) Geometric configuration

?



Feature-based alignment really works!

Source: N. Snavely



Feature-based alignment really works!

Source: N. Snavely



Alignment: Overview
• Motivation
• Fitting of transformations

• Affine transformations
• Homographies



Alignment: Fitting of transformations
• Given: matches ("#, "#% ), … , ("(, "(% )
• Find: transformation ) that minimizes 
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2D transformation models

• Similarity
(translation, 
scale, rotation)

• Affine

• Projective
(homography)



Recall: Rotation

• Estimating the rotation matrix requires enforcing nonlinear 
constraints, so we will skip the details
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2D transformation models

• Similarity
(translation, 
scale, rotation)

• Affine

• Projective
(homography)



Let’s start with affine transformations
• Simple fitting procedure: linear least squares
• Approximates viewpoint changes for roughly planar objects 

and roughly orthographic cameras
• Can be used to initialize fitting for more complex models



Fitting an affine transformation
• Assume we know the correspondences, how do we get the 

transformation?

Want to find !, " to minimize
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Fitting an affine transformation
• Assume we know the correspondences, how do we get the 

transformation?
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Fitting an affine transformation
• How many matches do we need to solve for the transformation 

parameters?
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Fitting a homography
• A homography is a plane projective transformation 

(transformation taking a quad to another arbitrary quad)



Homography in the real world
• The transformation between two views of a planar surface

• The transformation between images from two cameras that 
share the same center



Application: Panorama stitching

Source: Hartley & Zisserman



Fitting a homography
• Recall:
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Last time: Alignment
• Motivation
• Fitting of transformations

• Affine transformations
• Homographies



Fitting a homography
• We need 2D homogeneous coordinates:

• All homogeneous coordinate vectors that are scalar multiples of each 
other represent the same point!

• Equation for homography in homogeneous coordinates:

!′
#′
1

≅
ℎ'' ℎ'( ℎ')
ℎ(' ℎ(( ℎ()
ℎ)' ℎ)( ℎ))

!
#
1

Converting to homogeneous
coordinates

Converting from homogeneous
coordinates

(!, #) ⟹
!
#
1

!
#
.

⟹ (!/., #/.)

0′ ≅ 10
“equal up to scale”



Fitting a homography
• Constraint from a match !", !"$ :  !"$ ≅ &!"
• How can we get rid of the scale ambiguity? 
• Cross product trick: !"$ × &!" = )
• Recall cross product:
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• Let /01, /21, /31 be the rows of &. Then
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Fitting a homography
• Constraint from a match !", !"$ :

!"$ × &!" =
("$
)"$
1

×
+,-!"
+.-!"
+/-!"

=
)"$+/-!" − +.-!"
+,-!" − ("$+/-!"
("$+.-!" − )"$+,-!"

• Rearranging the terms:
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• Are these equations independent?



Fitting a homography
• Final linear system:
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• Homogeneous least squares: find , minimizing 0, -
• Solution is eigenvector of 010 corresponding to smallest eigenvalue

• What is the minimum number of matches needed for a solution?
• Four: 0 has 8 degrees of freedom (9 parameters, but scale is arbitrary), 

one match gives us two linearly independent equations

0, = !



Alignment: Overview
• Motivation
• Fitting of transformations

• Affine transformations
• Homographies

• Robust alignment 
• Descriptor-based feature matching
• RANSAC



Robust feature-based alignment
• So far, we’ve assumed that we are given a set of 

correspondences between the two images we want to align
• What if we don’t know the correspondences?
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Robust feature-based alignment
• So far, we’ve assumed that we are given a set of 

correspondences between the two images we want to align
• What if we don’t know the correspondences?

?



Robust feature-based alignment



Robust feature-based alignment

• Extract features



Robust feature-based alignment

• Extract features
• Compute putative matches



Robust feature-based alignment

• Extract features
• Compute putative matches
• Loop:

• Hypothesize transformation !



Robust feature-based alignment

• Extract features
• Compute putative matches
• Loop:

• Hypothesize transformation !
• Verify transformation (search for other matches consistent with !)



Robust feature-based alignment

• Extract features
• Compute putative matches
• Loop:

• Hypothesize transformation !
• Verify transformation (search for other matches consistent with !)



Generating putative correspondences

?



Generating putative correspondences

• Need to compare feature descriptors of local patches 
surrounding interest points
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Feature descriptors
• Recall: feature detection vs. feature description



Comparing feature descriptors
• Simplest descriptor: vector of raw intensity values
• How to compare two such vectors ! and "?

• Sum of squared differences (SSD):

SSD !, " ='
(
)( − +( ,

• Normalized correlation: dot product between ! and " normalized to 
have zero mean and unit norm:

- !, " = ∑(()( − 0!)(+( − 0")
∑2()2 − 0!), ∑2(+2 − 0"),

• Why would we prefer normalized correlation over SSD?



Disadvantage of intensity vectors as descriptors
• Small deformations can affect the matching score a lot



• Descriptor computation:
• Divide patch into 4×4 sub-patches
• Compute histogram of gradient orientations (8 reference angles) 

inside each sub-patch
• Resulting descriptor: 4×4×8 = 128 dimensions

Feature descriptors: SIFT

David G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV 60 (2), pp. 91-110, 2004. 

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf


• Descriptor computation:

• Divide patch into 4×4 sub-patches

• Compute histogram of gradient orientations (8 reference angles) 

inside each sub-patch

• Resulting descriptor: 4×4×8 = 128 dimensions

• What are the advantages of SIFT descriptor over raw pixel 

values?

• Gradients are less sensitive to illumination change

• Pooling of gradients over the sub-patches achieves robustness to 

small shifts, but still preserves some spatial information

Feature descriptors: SIFT

David G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV 60 (2), pp. 91-110, 2004. 

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf


Generating putative correspondences

?

• For each patch in one image, find a short list of patches in the 
other image that could match it based solely on appearance



Rejection of ambiguous matches

Source: Y. Furukawa

• How can we tell which putative matches are more reliable?
• Heuristic: compare distance of nearest neighbor to that of 
second nearest neighbor



Rejection of ambiguous matches

• How can we tell which putative matches are more reliable?

• Heuristic: compare distance of nearest neighbor to that of 

second nearest neighbor

• Ratio of closest distance to second-closest distance will be high for 

features that are not distinctive

David G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV 60 (2), pp. 91-110, 2004. 

Threshold of 0.8 found to 

provide good separation

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf


Robust alignment
• Even after filtering out ambiguous matches, the set of 

putative matches still contains a very high percentage of 
outliers

• Solution: RANSAC
• RANSAC loop:

1. Randomly select a seed group of matches
2. Compute transformation from seed group
3. Find inliers to this transformation 
4. If the number of inliers is sufficiently large, re-compute least-squares 

estimate of transformation on all of the inliers
• At the end, keep the transformation with the largest number of inliers



RANSAC example: Translation

Putative matches



RANSAC example: Translation

Select one match, count inliers



RANSAC example: Translation

Select one match, count inliers



RANSAC example: Translation

Select translation with the most inliers



Alternative for robust alignment: Hough voting
• A single SIFT match can vote for translation, rotation, and 

scale parameters of a transformation between two images
• Votes can be accumulated in a 4D Hough space with large bins
• Clusters of matches falling into the same bin should undergo a more 

precise verification procedure

David G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV 60 (2), pp. 91-110, 2004. 

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf


Alignment: Overview
• Motivation
• Fitting of transformations

• Affine transformations
• Homographies

• Robust alignment 
• Descriptor-based feature matching
• RANSAC

• Large-scale alignment
• Inverted indexing
• Vocabulary trees



Scalability: Alignment to large databases
• What if we need to align a test image with thousands or 

millions of images in a model database?
• Efficient putative match generation: approximate descriptor similarity 

search, inverted indices

Model 
database

?
Test image



Large-scale visual search

Figure from: Kristen Grauman and Bastian Leibe, Visual Object Recognition, Synthesis Lectures on Artificial 
Intelligence and Machine Learning, April 2011, Vol. 5, No. 2, Pages 1-181

Inverted indexing

Reranking/
Geometric 
verification

http://dx.doi.org/10.2200/S00332ED1V01Y201103AIM011


How to do the indexing?

• Idea: find a set of visual codewords to which descriptors can be quantized



Recall: Visual codebook for implicit shape models

Appearance codebook

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model, 
ECCV Workshop on Statistical Learning in Computer Vision 2004

!"
!#

!$

⋮

http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf


K-means clustering
• We want to find ! cluster centers and an assignment of 

points to cluster centers to minimize the sum of squared 
Euclidean distances between each point and its assigned 
cluster center:
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K-means clustering
• We want to find ! cluster centers and an assignment of 

points to cluster centers to minimize the sum of squared 
Euclidean distances between each point and its assigned 
cluster center:

"
#
"

$
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• Algorithm:
• Randomly initialize ! cluster centers
• Iterate until convergence:

– Assign each data point to its nearest center
– Recompute each cluster center as the mean of all points 

assigned to it



K-means example

Source

http://shabal.in/visuals/kmeans/1.html


How to do the indexing?

• Cluster descriptors in the database to form codebook
• At query time, quantize descriptors in query image to nearest codevectors
• Problem solved?



Efficient indexing technique: Vocabulary trees

D. Nistér and H. Stewénius, Scalable Recognition with a Vocabulary Tree, CVPR 2006

Test image

Database

Vocabulary tree 
with inverted 

index

http://www.vis.uky.edu/~stewe/publications/nister_stewenius_cvpr2006.pdf


Hierarchical k-means 
clustering of 

descriptor space 
(vocabulary tree) Slide credit: D. Nister



Slide credit: D. Nister
Vocabulary tree/inverted index



Populating the vocabulary tree/inverted index
Slide credit: D. Nister

Model images



Populating the vocabulary tree/inverted index
Slide credit: D. Nister

Model images



Populating the vocabulary tree/inverted index
Slide credit: D. Nister

Model images



Populating the vocabulary tree/inverted index
Slide credit: D. Nister

Model images



Looking up a test image Slide credit: D. Nister

Test imageModel images


