Light and shading

P. Claesz, Still Life with a Skull and a Writing Quill, 1628

Image formation

• What determines the *brightness* of an image pixel?

Slide by L. Fei-Fei

Outline

- Small taste of radiometry
- In-camera transformation of light
- Reflectance properties of surfaces
- Diffuse and specular reflection
- Shape from shading
- Estimating direction of light sources

Radiometry of image formation

meter

What is the relationship between E and L?

Fundamental radiometric relation

- Image irradiance (E) is linearly related to scene radiance (L)
- Irradiance is *directly* proportional to the area of the lens $(\frac{\pi d^2}{4})$ and *inversely* proportional to the squared distance between the lens and the image plane (f)
- The irradiance decreases as the angle between the viewing ray and the optical axis (α) increases

Fundamental radiometric relation

$$E = \left[\frac{\pi}{4} \left(\frac{d}{f}\right)^2 \cos^4 \alpha\right] L$$

S. B. Kang and R. Weiss. <u>Can we calibrate a camera using an image of a flat, textureless Lambertian surface?</u> ECCV 2000

From light rays to pixel values

- Camera response function: the mapping f from irradiance to pixel values
 - Needed for applications like estimation of scene reflectance properties, creating high dynamic range (HDR) images
 - For further reading: M. Brown, <u>Understanding the In-Camera Image Processing Pipeline</u> for Computer Vision, CVPR 2016 Tutorial

Figure source: P. Debevec and J. Malik. Recovering High Dynamic Range Radiance Maps from Photographs. SIGGRAPH 1997

Outline

- Small taste of radiometry
- In-camera transformation of light
- Reflectance properties of surfaces

Recall: Image formation

What determines the brightness of an image pixel?

Slide by L. Fei-Fei

What can happen to light when it hits a surface?

Basic models of reflection

Specular reflection: light is reflected about the surface normal

• **Diffuse reflection:** light scatters equally in all directions

Slide from D. Hoiem

Other possible effects

Transparency

Refraction

Slide from D. Hoiem

Other possible effects

Subsurface scattering

Slide from D. Hoiem Image source

Other possible effects

Fluorescence

Phosphorescence

Slide from D. Hoiem

Image source

Bidirectional reflectance distribution function (BRDF)

- How bright a surface appears when viewed from one direction when light falls on it from another
- Definition: ratio of the radiance in the emitted direction to irradiance in the incident direction

Source: Steve Seitz

Bidirectional reflectance distribution function (BRDF)

- How bright a surface appears when viewed from one direction when light falls on it from another
- Definition: ratio of the radiance in the emitted direction to irradiance in the incident direction
- Can be incredibly complicated!

Basic models of reflection in detail

Specular reflection: light is reflected about the surface normal

 Diffuse reflection: light scatters equally in all directions

Slide from D. Hoiem

Specular reflection

 Radiation arriving along a source direction leaves along the specular direction (source direction reflected about normal)

Specular reflection

- Radiation arriving along a source direction leaves along the specular direction (source direction reflected about normal)
- On real surfaces, energy usually goes into a "lobe" of directions

Specular reflection

 Radiation arriving along a source direction leaves along the specular direction (source direction reflected about normal)

- On real surfaces, energy usually goes into a "lobe" of directions
- Phong model: reflected energy falls of with $\cos^n(\delta\theta)$

Changing the exponent

Moving the light source

Diffuse reflection

- Light scatters equally in all directions
 - E.g., brick, matte plastic, rough wood

Diffuse reflection

- Light scatters equally in all directions
 - E.g., brick, matte plastic, rough wood

 This happens because of microfacets that scatter incoming light randomly

Image source

Diffuse reflection

- Light scatters equally in all directions
 - For a fixed incidence angle, BRDF is constant

What if we change the incidence angle?

Diffuse reflection: Lambert's law

$$I = \rho (S \cdot N)$$

= $\rho ||S|| \cos \theta$

- I: reflected intensity (technically: radiosity, or total power leaving the surface per unit area)
- ρ : albedo (fraction of incident irradiance reflected by the surface)
- S: direction of light source (magnitude proportional to intensity of the source)
- N: unit surface normal

Diffuse vs. specular: Significance for vision applications

Same lighting, as close as possible camera settings, but different **camera position**

Source: J. Johnson and D. Fouhey

Outline

- Small taste of radiometry
- In-camera transformation of light
- Reflectance properties of surfaces
- Diffuse and specular reflection
- Shape from shading

Photometric stereo, or shape from shading

 Can we reconstruct the shape of an object based on shading cues?

Luca della Robbia, Cantoria, 1438

Photometric stereo, or shape from shading

- Can we reconstruct the shape of an object based on shading cues?
- Assuming a Lambertian object, given the image intensity (I), can we recover the light source direction (S) and the surface normal (N)?
- Can we do this from a single image?

Shape from shading ambiguity

Source: <u>J. Johnson and D. Fouhey</u>

Shape from shading ambiguity

 Humans assume light from above (and the blueness also tells you distance)

Source: <u>J. Johnson and D. Fouhey</u> <u>Image source</u>

Photometric stereo

Assume:

- A Lambertian object
- A local shading model (each point on a surface receives light only from sources visible at that point)
- A set of known light source directions
- A set of pictures of an object, obtained in exactly the same camera/object configuration but using different sources
- Orthographic projection
- Goal: reconstruct object shape and albedo

F&P 2nd ed., sec. 2.2.4

Example 1

F&P 2nd ed., sec. 2.2.4

Example 2

Image model

- Known: source vectors S_j and pixel values $I_j(x, y)$
- **Unknown:** surface normal N(x, y) and albedo $\rho(x, y)$

Image model

- **Known:** source vectors S_j and pixel values $I_j(x, y)$
- Unknown: surface normal N(x, y) and albedo $\rho(x, y)$
- Assume that the response function of the camera is a linear scaling by a factor of k
- Lambert's law:

$$I_{j}(x,y) = k \rho(x,y) (N(x,y) \cdot S_{j})$$

$$= (\rho(x,y)N(x,y)) \cdot (k S_{j})$$

$$= g(x,y) \cdot V_{j}$$

Least squares problem

For each pixel, set up a linear system:

$$\begin{bmatrix} V_1^T \\ V_2^T \\ \vdots \\ V_n^T \end{bmatrix} g(x,y) = \begin{bmatrix} I_1(x,y) \\ I_2(x,y) \\ \vdots \\ I_n(x,y) \end{bmatrix}$$

$$\underset{\text{known}}{\underset{\text{unknown}}{|}} 1 \times 1$$

$$\underset{\text{known}}{\underset{\text{known}}{|}} 1 \times 1$$

- Obtain least-squares solution for g(x,y), which we defined as $\rho(x,y)N(x,y)$
- Since N(x, y) is the *unit* normal, $\rho(x, y)$ is given by the magnitude of g(x, y)
- Finally, $N(x,y) = \frac{1}{\rho(x,y)}g(x,y)$

Synthetic example

Recovering a surface from normals

Recall: the surface is written as

Write the estimated vector g as

$$g(x,y) = \begin{bmatrix} g_1(x,y) \\ g_2(x,y) \\ g_3(x,y) \end{bmatrix}$$

This means the unit normal has the following form:

$$N(x,y) = \frac{1}{\sqrt{f_x^2 + f_y^2 + 1}} \begin{bmatrix} f_x \\ f_y \\ 1 \end{bmatrix}$$

Then we obtain values for the partial derivatives of the surface:

$$f_x(x,y) = \frac{g_1(x,y)}{g_3(x,y)}$$
$$f_y(x,y) = \frac{g_2(x,y)}{g_3(x,y)}$$

$$f_{y}(x,y) = \frac{g_{2}(x,y)}{g_{3}(x,y)}$$

Recovering a surface from normals

 We can now recover the surface height at any point by integration along some path, e.g.

$$f(x,y) =$$

$$\int_0^x f_x(s,0)ds + \int_0^y f_y(x,t)dt + C$$

 For robustness, it is better to take integrals over many different paths and average the results

Recovering a surface from normals

 We can now recover the surface height at any point by integration along some path, e.g.

$$f(x,y) =$$

$$\int_0^x f_x(s,0)ds + \int_0^y f_y(x,t)dt + C$$

 For robustness, it is better to take integrals over many different paths and average the results Note: integrability must be satisfied: for the surface f to exist, the mixed second partial derivatives must be equal (or at least similar in practice):

$$\frac{\partial}{\partial y} \left(\frac{g_1(x, y)}{g_3(x, y)} \right) = \frac{\partial}{\partial x} \left(\frac{g_2(x, y)}{g_3(x, y)} \right)$$

Surface recovered by integration

Limitations of model

- Orthographic camera model
- Simplistic reflectance and lighting model
- No shadows
- No interreflections
- No missing data
- Integration is tricky

Outline

- Small taste of radiometry
- In-camera transformation of light
- Reflectance properties of surfaces
- Diffuse and specular reflection
- Shape from shading
- Estimating direction of light sources

$$I(x,y) = N(x,y) \cdot S(x,y)$$

• Full 3D case:

$$\begin{bmatrix} N_{x}(x_{1}, y_{1}) & N_{y}(x_{1}, y_{1}) & N_{z}(x_{1}, y_{1}) \\ N_{x}(x_{2}, y_{2}) & N_{y}(x_{2}, y_{2}) & N_{z}(x_{2}, y_{2}) \\ \vdots & \vdots & \vdots \\ N_{x}(x_{n}, y_{n}) & N_{y}(x_{n}, y_{n}) & N_{z}(x_{n}, y_{n}) \end{bmatrix} \begin{bmatrix} S_{x} \\ S_{y} \\ S_{z} \end{bmatrix} = \begin{bmatrix} I(x_{1}, y_{1}) \\ I(x_{2}, y_{2}) \\ \vdots \\ I(x_{n}, y_{n}) \end{bmatrix}$$

Consider points on the occluding contour.

P. Nillius and J.-O. Eklundh. Automatic estimation of the projected light source direction. CVPR 2001

$$I(x,y) = N(x,y) \cdot S(x,y)$$

Full 3D case:

$$\begin{bmatrix} N_{x}(x_{1}, y_{1}) & N_{y}(x_{1}, y_{1}) & N_{z}(x_{1}, y_{1}) \\ N_{x}(x_{2}, y_{2}) & N_{y}(x_{2}, y_{2}) & N_{z}(x_{2}, y_{2}) \\ \vdots & \vdots & \vdots \\ N_{x}(x_{n}, y_{n}) & N_{y}(x_{n}, y_{n}) & N_{z}(x_{n}, y_{n}) \end{bmatrix} \begin{bmatrix} S_{x} \\ S_{y} \\ S_{z} \end{bmatrix} = \begin{bmatrix} I(x_{1}, y_{1}) \\ I(x_{2}, y_{2}) \\ \vdots \\ I(x_{n}, y_{n}) \end{bmatrix}$$

• For points on the occluding contour $(N_z = 0)$:

$$\begin{bmatrix} N_{x}(x_{1}, y_{1}) & N_{y}(x_{1}, y_{1}) \\ N_{x}(x_{2}, y_{2}) & N_{y}(x_{2}, y_{2}) \\ \vdots & \vdots \\ N_{x}(x_{n}, y_{n}) & N_{y}(x_{n}, y_{n}) \end{bmatrix} \begin{bmatrix} S_{x} \\ S_{y} \end{bmatrix} = \begin{bmatrix} I(x_{1}, y_{1}) \\ I(x_{2}, y_{2}) \\ \vdots \\ I(x_{n}, y_{n}) \end{bmatrix}$$

P. Nillius and J.-O. Eklundh. Automatic estimation of the projected light source direction. CVPR 2001

P. Nillius and J.-O. Eklundh. Automatic estimation of the projected light source direction. CVPR 2001

Application: Detecting composite photos

Real photo

Fake photo

M. K. Johnson and H. Farid. <u>Exposing Digital Forgeries by Detecting Inconsistencies in Lighting</u>. ACM Multimedia and Security Workshop, 2005