Perspective projection

A. Mantegna, Martyrdom of St. Christopher, c. 1450

Overview

- Motivation: recovery of 3D structure
- Pinhole projection model
- Properties of projection
- Perspective projection matrix
- Orthographic projection

Given an image, can we recover 3D structure?

J. Vermeer, Music Lesson, 1662
A. Criminisi, M. Kemp, and A. Zisserman, Bringing Pictorial Space to Life: computer techniques for the analysis of paintings, Proc. Computers and the History of Art, 2002

Things aren't always as they appear...

Single-view ambiguity

Single-view ambiguity

Rashad Alakbarov shadow sculptures

Anamorphic perspective

Image source

Anamorphic perspective

H. Holbein The Younger, The Ambassadors, 1533
https://en.wikipedia.org/wiki/Anamorphosis

Our goal: Recovery of 3D structure

- When certain assumptions hold, we can recover structure from a single view

- In general, we need multi-view geometry

- But first, we need to understand the geometry of a single camera...

Overview

- Motivation: recovery of 3D structure
- Pinhole projection model

Review: Perspective projection equations

Review: Perspective projection equations

Canonical coordinate system

- The optical center (0) is at the origin
- The z axis is the optical axis perpendicular to the image plane
- The xy plane is parallel to the image plane, x and y axes are horizontal and vertical directions of the image plane

Review: Perspective projection equations

$$
(x, y, z) \rightarrow\left(f \frac{x}{z}, f \frac{y}{z}\right)
$$

Review: Perspective projection equations

Note: instead of dealing with an image that is upside down, most of the time we will pretend that the image plane is in front of the camera center

Overview

- Motivation: recovery of 3D structure
- Pinhole projection model
- Properties of projection
- What happens to:
- Lines
- Planes
- General 3D shapes

Projection of lines

Piero della Francesca, Flagellation of Christ, 1455-1460

Projection of lines

- Parallel lines meet at a vanishing point

Piero della Francesca, Flagellation of Christ, 1455-1460

Converging lines are a powerful perspective cue

Constructing the vanishing point of a line

- What about another line going in the same direction?

Projection of lines

- Do all parallel lines converge to a vanishing point?

Piero della Francesca, Flagellation of Christ, 1455-1460

Projection of lines

- Do all parallel lines converge to a vanishing point?
- Not parallel lines that are also parallel to the image plane!

Piero della Francesca, Flagellation of Christ, 1455-1460

Projection of planes

-What happens to planar patterns?

Piero della Francesca, Flagellation of Christ, 1455-1460

Projection of planes

- Patterns on non-fronto-paralle/ planes are distorted by a 2D homography

Piero della Francesca, Flagellation of Christ, 1455-1460

Projection of planes

- What about patterns on fronto-parallel planes?

Piero della Francesca, Flagellation of Christ, 1455-1460

Projection of planes

- Non-fronto-parallel planes have vanishing lines

Piero della Francesca, Flagellation of Christ, 1455-1460

Vanishing lines of planes

- Each family of parallel planes is associated with a vanishing line in the image
- How can we construct the vanishing line of a plane?

Vanishing lines of planes

- Each family of parallel planes is associated with a vanishing line in the image
- How can we construct the vanishing line of a plane?

Vanishing lines of planes

- Horizon: vanishing line of the ground plane
- What can the horizon tell us about the relative height of scene points and the camera?

Projection of 3D shapes

- What is are the relationships between the geometric properties of general 3D surfaces and their 2D projections?

Projection of 3D shapes

Figure 3. (a) A figure taken from Marr (1982).
J. Koenderink. What does the occluding contour tell us about solid shape? Perception 13 (321-330), 1984

Projection of 3D shapes

Figure 3. (a) A figure taken from Marr (1982). The suggestion is that convexities and concavities in the projection of the snake have to do with relative distances rather than with local shapes.
J. Koenderink. What does the occluding contour tell us about solid shape? Perception 13 (321-330), 1984

Projection of 3D shapes

Figure 3. (a) A figure taken from Marr (1982). The suggestion is that convexities and concavitie in the projection of the snake have to do with relative distances rather than with local shapes.
(b) A torus cut into two and pasted together again. The shaded regions are anticlastic, the other regions synclastic. The small insets show the generic case after a small deformation. In projection (right), this 'snake' has convexities where the body is locally egg-shaped, concavities where the body is locally saddle-shaped, inflexions at flexional curves of the body.
J. Koenderink. What does the occluding contour tell us about solid shape? Perception 13 (321-330), 1984

Projection of 3D shapes

Figure 4. Details from Dürer's "Samson killing the lion". (Bartsch \#2; the print dates from 1498.)
J. Koenderink. What does the occluding contour tell us about solid shape? Perception 13 (321-330), 1984

Projection of 3D shapes

- What is the shape of the projection of a sphere?

Image source: F. Durand

Projection of 3D shapes

- What is the shape of the projection of a sphere?

Projection of 3D shapes

- Are the widths of the projected columns equal?
- The exterior columns are wider
- This is not an optical illusion, and is not due to lens flaws
- Phenomenon pointed out by Leonardo Da Vinci

Perspective distortion: People

Overview

- Motivation: recovery of 3D structure
- Pinhole projection model
- Properties of projection
- Perspective projection matrix
- Orthographic projection

Recall: Homogeneous coordinates

- To form homogeneous coordinates from normal Euclidean coordinates, append 1 as the last entry:

$$
\begin{aligned}
& \qquad(x, y) \Rightarrow\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \\
& \text { homogeneous image } \\
& \text { coordinates }
\end{aligned}
$$

- To convert from homogeneous coordinates, divide by the last entry:

$$
\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right] \Rightarrow(x / w, y / w) \quad\left[\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right] \Rightarrow(x / w, y / w, z / w)
$$

In homogeneous coordinates, all scalar multiples represent the same point!

Perspective projection matrix

- Projection is a matrix multiplication using homogeneous coordinates:

$$
\begin{aligned}
& \text { if } \\
& \hline
\end{aligned}
$$

Orthographic projection

- Special case of perspective projection
- Distance from center of projection to image plane is infinite
- Also called "parallel projection"

Orthographic projection

- Special case of perspective projection
- Distance from center of projection to image plane is infinite
- Also called "parallel projection"

Orthographic projection

- Special case of perspective projection
- Distance from center of projection to image plane is infinite
- Also called "parallel projection"

- Assuming projection along the z axis, what's the matrix?

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Approximating an orthographic camera

