

Odilon Redon, Cyclops, 1914

Overview

- Camera calibration
 - Intrinsic camera parameters
 - Extrinsic camera parameters
 - Estimation
- First taste of 3D reconstruction: triangulation

Perspective projection in normalized coordinates

• Normalized (camera) coordinate system: camera center is at the origin, the *principal axis* is the *z*-axis, *x* and *y* axes of the image plane are parallel to *x* and *y* axes of the world

Perspective projection in normalized coordinates

Camera calibration: Overview

• **Camera calibration:** figuring out transformation from *world* coordinate system to *image* coordinate system

Camera calibration: Overview

• **Camera calibration:** figuring out transformation from *world* coordinate system to *image* coordinate system

- **Principal point (***p***):** point where principal axis intersects the image plane
- In the *normalized* coordinate system, the origin of the image is at the principal point
- In the *image* coordinate system: the origin is in the corner

- What are the units of the focal length f and principal point coordinates (p_x, p_y) ?
 - Same as world units presumably metric units
- What units do we want for measuring image coordinates?
 - Pixel units
- Thus, we need to introduce *scaling factors* for mapping from world to pixel units

Intrinsic parameters: Scaling factors

 In general, the camera coordinate frame will be related to the world coordinate frame by a rotation and a translation

- In general, the camera coordinate frame will be related to the world coordinate frame by a rotation and a translation
- In non-homogeneous coordinates, the transformation from world to normalized camera coordinate system is given by:

3D transformation matrix (4 x 4)

 $x \cong K[I|0]X_{cam}$

- What is the projection of the camera center in world coordinates? $PC = K[R \mid -R\widetilde{C}] \left(\widetilde{C}_{1} \right) = K(R\widetilde{C} - R\widetilde{C}) = 0$
- The camera center is the null space of the projection matrix!

Camera parameters: Summary

- Intrinsic parameters
 - Principal point coordinates
 - Focal length
 - Pixel magnification factors
 - Skew (non-rectangular pixels) not important in practice
 - Radial distortion important in practice!

radial distortion

 $\boldsymbol{K} = \begin{bmatrix} m_{\chi} & 0 & 0 \\ 0 & m_{y} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} f & 0 & p_{\chi} \\ 0 & f & p_{y} \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \alpha_{\chi} & 0 & \beta_{\chi} \\ 0 & \alpha_{y} & \beta_{y} \\ 0 & 0 & 1 \end{bmatrix}$

Overview

- Camera calibration
 - Intrinsic camera parameters
 - Extrinsic camera parameters
 - Estimation

 $x \cong K[R \ t]X$

$$\begin{pmatrix} x \\ y \\ 1 \end{pmatrix} \cong \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \end{bmatrix} \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix}$$

• Given *n* points with known 3D coordinates X_i and known image projections x_i , estimate the camera parameters

• Given *n* points with known 3D coordinates X_i and known image projections x_i , estimate the camera parameters

Known 2D image coords	Known 3D locations
880 214	312.747 309.140 30.086
43 203	305.796 311.649 30.356
270 197	307.694 312.358 30.418
886 347	310.149 307.186 29.298
745 302	311.937 310.105 29.216
943 128	311.202 307.572 30.682
476 590	307.106 306.876 28.660
419 214	309.317 312.490 30.230
317 335	307.435 310.151 29.318
783 521	308.253 306.300 28.881
235 427	306.650 309.301 28.905
665 429	308.069 306.831 29.189
655 362	309.671 308.834 29.029
427 333	308.255 309.955 29.267
412 415	307.546 308.613 28.963
746 351	311.036 309.206 28.913
434 415	307.518 308.175 29.069
525 234	309.950 311.262 29.990
716 308	312.160 310.772 29.080
602 187	311.988 312.709 30.514

Image credit: J. Hays

Camera calibration: Linear method

• Recall homography fitting:

$$\boldsymbol{x}_{i} \cong \boldsymbol{P}\boldsymbol{X}_{i}$$
 $\boldsymbol{x}_{i} \times \boldsymbol{P}\boldsymbol{X}_{i} = \boldsymbol{0}$ $\begin{pmatrix} \boldsymbol{x}_{i} \\ \boldsymbol{y}_{i} \\ 1 \end{pmatrix} \times \begin{pmatrix} \boldsymbol{P}_{1}^{T}\boldsymbol{X}_{i} \\ \boldsymbol{P}_{2}^{T}\boldsymbol{X}_{i} \\ \boldsymbol{P}_{3}^{T}\boldsymbol{X}_{i} \end{pmatrix} = \boldsymbol{0}$

$$\begin{bmatrix} \mathbf{0}^T & -\mathbf{X}_i^T & y_i \mathbf{X}_i^T \\ \mathbf{X}_i^T & \mathbf{0}^T & -x_i \mathbf{X}_i^T \\ -y_i \mathbf{X}_i^T & x_i \mathbf{X}_i^T & \mathbf{0}^T \end{bmatrix} \begin{pmatrix} \mathbf{P}_1 \\ \mathbf{P}_2 \\ \mathbf{P}_3 \end{pmatrix} = 0$$

One match gives two linearly independent constraints

Camera calibration: Linear method

• Final linear system:

$$\begin{bmatrix} \mathbf{0}^{T} & \mathbf{X}_{1}^{T} & -y_{1}\mathbf{X}_{1}^{T} \\ \mathbf{X}_{1}^{T} & \mathbf{0}^{T} & -x_{1}\mathbf{X}_{1}^{T} \\ \dots & \dots & \dots \\ \mathbf{0}^{T} & \mathbf{X}_{n}^{T} & -y_{n}\mathbf{X}_{n}^{T} \\ \mathbf{X}_{n}^{T} & \mathbf{0}^{T} & -x_{n}\mathbf{X}_{n}^{T} \end{bmatrix} \begin{pmatrix} \mathbf{P}_{1} \\ \mathbf{P}_{2} \\ \mathbf{P}_{3} \end{pmatrix} = 0 \qquad \mathbf{A}\mathbf{p} = 0$$

- One 2D/3D correspondence gives two linearly independent equations
 - The projection matrix has 11 degrees of freedom
 - 6 correspondences needed for a minimal solution
- Homogeneous least squares: find p minimizing $||Ap||^2$
 - Solution is eigenvector of $A^{T}A$ corresponding to smallest eigenvalue

Camera calibration: Linear method

• Final linear system:

$$\begin{bmatrix} \mathbf{0}^{T} & \mathbf{X}_{1}^{T} & -y_{1}\mathbf{X}_{1}^{T} \\ \mathbf{X}_{1}^{T} & \mathbf{0}^{T} & -x_{1}\mathbf{X}_{1}^{T} \\ \dots & \dots & \dots \\ \mathbf{0}^{T} & \mathbf{X}_{n}^{T} & -y_{n}\mathbf{X}_{n}^{T} \\ \mathbf{X}_{n}^{T} & \mathbf{0}^{T} & -x_{n}\mathbf{X}_{n}^{T} \end{bmatrix} \begin{pmatrix} \mathbf{P}_{1} \\ \mathbf{P}_{2} \\ \mathbf{P}_{3} \end{pmatrix} = 0 \qquad \mathbf{A}\mathbf{p} = 0$$

- What if all the *n* 3D points are *coplanar*, i.e., there exists a set of line parameters $\Pi^T = (a, b, c, d)^T$ such that $\Pi^T X_i = 0$ for all *i*?
 - Then we will get *degenerate solutions* $(\Pi, 0, 0)$, $(0, \Pi, 0)$, or $(0, 0, \Pi)$

Camera calibration: Linear vs. nonlinear

• Linear calibration is easy to formulate and solve, but it doesn't directly tell us the camera parameters

$$\begin{pmatrix} x \\ y \\ 1 \end{pmatrix} \cong \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \end{bmatrix} \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix} \quad \text{vs.} \quad \boldsymbol{x} \cong \boldsymbol{K} [\boldsymbol{R} \mid \boldsymbol{t}] \boldsymbol{X}$$

Camera calibration: Linear vs. nonlinear

- Linear calibration is easy to formulate and solve, but it doesn't directly tell us the camera parameters
- In practice, non-linear methods are preferred
 - Write down objective function in terms of intrinsic and extrinsic parameters, as sum of squared distances between measured 2D points and estimated projections of 3D points:

 $\sum_{i} \|\operatorname{proj}(\boldsymbol{K}[\boldsymbol{R} \mid \boldsymbol{t}]\boldsymbol{X}_{i}) - \boldsymbol{x}_{i}\|_{2}^{2}$

- Can include radial distortion and constraints such as known focal length, orthogonality, visibility of points
- Minimize error using non-linear optimization package
- Can initialize solution with output of linear method (perform QR decomposition to get *K* and *R* from *P*)

Overview

- Camera calibration
 - Intrinsic camera parameters
 - Extrinsic camera parameters
 - Estimation
- First taste of 3D reconstruction: triangulation

• Given projections of a 3D point in two or more images (with known camera matrices), find the coordinates of the point

• Given projections of a 3D point in two or more images (with known camera matrices), find the coordinates of the point

• Given projections of a 3D point in two or more images (with known camera matrices), find the coordinates of the point

 We want to intersect the two visual rays corresponding to x₁ and x₂, but because of noise and numerical errors, they don't meet exactly

Triangulation: Geometric approach

Find shortest segment connecting the two viewing rays and let
X be the midpoint of that segment

Triangulation: Nonlinear approach

• Find **X** that minimizes

 $\|\operatorname{proj}(\boldsymbol{P}_{1}\boldsymbol{X}) - \boldsymbol{x}_{1}\|_{2}^{2} + \|\operatorname{proj}(\boldsymbol{P}_{2}\boldsymbol{X}) - \boldsymbol{x}_{2}\|_{2}^{2}$

Triangulation: Linear approach

$\boldsymbol{x}_1 \cong \boldsymbol{P}_1 \boldsymbol{X}$	$\boldsymbol{x}_1 \times \boldsymbol{P}_1 \boldsymbol{X} = \boldsymbol{0}$	$[\boldsymbol{x}_{1\times}]\boldsymbol{P}_{1}\boldsymbol{X}=\boldsymbol{0}$
$\boldsymbol{x}_2 \cong \boldsymbol{P}_2 \boldsymbol{X}$	$\boldsymbol{x}_2 \times \boldsymbol{P}_2 \boldsymbol{X} = \boldsymbol{0}$	$[\boldsymbol{x}_{2\times}]\boldsymbol{P}_{2}\boldsymbol{X}=\boldsymbol{0}$

• Rewrite cross product as matrix multiplication:

$$\boldsymbol{a} \times \boldsymbol{b} = \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix} \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = [\boldsymbol{a}_{\times}]\boldsymbol{b}$$

Triangulation: Linear approach

\boldsymbol{x}_1	\simeq	P ₁ X
<i>x</i> ₂	\cong	P ₂ X

 $x_1 \times P_1 X = 0$ $x_2 \times P_2 X = 0$

$[x_{1\times}]$	P ₁ X	=	0
$[x_{2\times}]$	P ₂ X	=	0

Two independent equations each in terms of three unknown entries of *X*

Preview: Structure from motion

• Given 2D point correspondences between multiple images, compute the camera parameters and the 3D points

Preview: Structure from motion

- **Structure:** Given *known cameras* and projections of the same 3D point in two or more images, compute the 3D coordinates of that point
 - Triangulation!

Preview: Structure from motion

- Motion: Given a set of *known* 3D points seen by a camera, compute the camera parameters
 - Calibration!

Multi-view geometry "Bible"

