Single-view metrology

Many slides adapted from
S. Seitz, D. Hoiem

R. Magritte, Personal Values, 1952

Application: 3D from a single image

A. Criminisi et al. Single View Metrology, IJCV 2000

Application: 3D from a single image

J. Vermeer, Music Lesson, 1662

A. Criminisi et al. Bringi ictori ife: I
Proc. Computers and the History of Art, 2002

Application: Image editing, augmented reality

K. Karsch and V. Hedau and D. Forsyth and D. Hoiem. i
Legacy Photographs. SIGGRAPH Asia 2011



http://dhoiem.cs.illinois.edu/courses/vision_spring10/sources/criminisi00.pdf
http://research.microsoft.com/apps/pubs/default.aspx?id=67260
http://dhoiem.cs.illinois.edu/publications/sa2011_relighting_highres.pdf
http://dhoiem.cs.illinois.edu/publications/sa2011_relighting_highres.pdf

Reminder: Beware!

http://en.wikipedia.org/wiki/Ames room

Outline

+ Camera calibration using vanishing points
* Measurements from a single image
» Applications of single-view metrology

Camera calibration using vanishing points

» If world coordinates of reference 3D points are not known,
in special cases, we may be able to use vanishing points

Source: A. Efros, A. Criminisi

Camera calibration using vanishing points

» If world coordinates of reference 3D points are not known,
in special cases, we may be able to use vanishing points
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Review: Vanishing points
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« All lines having the same direction share the same vanishing
point

Computing vanishing points

Xy
Xo

* Let's parameterize the line using point X, = (X,, Yy, Zy, 1)" and direction
vector D = (D, D5, D3)":

Xo +tDy Xo/t + Dy D,

X, = Y0+tD2 ~ Yo/t+D2 X, = D2
E7N\ Zo+tDs | T\ Zo/t + D4 “ \Ds
1 1/t 0

* X is a point at infinity, v is its projection: v = PX.,

Calibration from vanishing points

» Consider a scene with three orthogonal vanishing directions:

* Note: v, v, are finite vanishing points and v; is an infinite
vanishing point
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Calibration from vanishing points
+ Consider a scene with three orthogonal vanishing directions:
V1 v,
* We can align the world coordinate system with these directions
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Projection of the world coordinate system

P=|DP21 P22 D23 D2

P31 P32 P33 P34

P11 P12z P13 P14]

Projection of the world coordinate system

P11 P12 P13 DPia (1)
P21 P22 P23 D24 0 =p1
P31 P32 P33 P34 0

P1 P2 D3 DPa
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Projection of the world coordinate system

P11 P12z P13 Pia 8
D21 P22 P23 D24 1 =Dps3
P31 P32 P33 P34 0

P1 P2 P3 Dz

L J
Y

Vanishing points in
x, y, z directions
(i.e., vi, vz, v3)
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Projection of the world coordinate system
0

P11 P12 P13 DPia 1
P21 P22 P23 D24 0 =p>
P31 P32 P33 DP3a 0
P1 P2 DP3 DPa
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Projection of the world coordinate system

P11 P12z P13 Pia 0

0
P21 P22 P23 P2 0 = Pg4
P31 P32 P33 P34 1
P1 P2 DP3 Pa
( , J '\
Vanishing points in Projection of
x, y, z directions world origin

(i.e., V1, U, )

* Problem: this only gives us the four columns up to independent
scale factors, additional constraints needed to solve for them

Calibration from vanishing points

* Let us align the world coordinate system with three
orthogonal vanishing directions in the scene:

1 0 0 ..
el = (0), eZ = (1), e3 = (0) vi = K[R|t] (Ol>
0 0 1
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Calibration from vanishing points

* Let us align the world coordinate system with three
orthogonal vanishing directions in the scene:

1 0 0
e = <O> e, = (1) e; = <O> v; = KRe;
0 0 1

e; = RTK 1y,
+ Orthogonality constraint: e; e; = 0
v K"TRRTK1v;
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Calibration from vanishing points
* Let us align the world coordinate system with three
orthogonal vanishing directions in the scene:
1 0 0
e = (0) e, = (1) e; = (0) v; = KRe;
0 0 1
e; = RTK 1y,
* Orthogonality constraint: eL-Tej =0
W K~TK1w; = 0
» Extrinsic parameter matrix (R) disappears and we are left
with constraints on the calibration matrix!
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Calibration from vanishing points

v/ K"K 'v; =0

+ How many constraints do we get?
« Three: one for each pair of vanishing points
* How many unknown parameters does K have?
* Three: f,py, 0y
* A couple of complications:
* The constraints are nonlinear, but it's not hard to do the algebra

(omitted)
* Atleast two finite vanishing points are needed to solve for both focal

length and principal point

Calibration from vanishing points

1 finite van: I 2 finite vanishing p 3 finite vanishing points
it

2 infinite vanishing points 1 infinite vanishing point

Cannot recover focal Can solve for focal length, principal point

length, principal point is
the third vanishing point
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Rotation from vanishing points

» Constraints on vanishing points: v; = KRe;
» We just used orthogonality constraints to solve for K

* Now we have:
K 'v; = Re;

1
Notice: Re; = [T1 T2 T3] (0) =71
0
Thus, r; = K 'v;

+ The scale ambiguity goes away since we require ||r;[|> = 1
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Calibration from vanishing points: Summary

1. Solve for intrinsic parameters (focal length, principal point)
using three orthogonal vanishing points

2. Get extrinsic parameters (rotation) directly from vanishing
points once calibration matrix is known

* Advantages

* No need for calibration chart, 2D-3D correspondences

» Could be completely automatic

Disadvantages

» Only applies to certain kinds of scenes

« Itis tricky to accurately localize vanishing points

» Need at least two finite vanishing points
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Outline

» Camera calibration using vanishing points

* Measurements from a single image
* Measuring height above the ground plane
* Measuring within planes
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Using a ruler

FIGURE 24.3: Left, an image of a ruler and an object, which just happen to be
standing perpendicular to a ground plane. In an uncalibrated image like this, we
can measure the height of the object. Construct the line bB, and intersect that with
the horizon to get the point V. The line from the top of the object T to the true
height of the object on the ruler (h) is parallel in 3D to bB. In turn, the line Th
must intersect the horizon at V. So if you construct VT, it will intersect the ruler
at h yielding the height of the object. Right shows a 3D view; the line Th must be
parallel to bB, and so in the image these two lines intersect at the horizon.

Comparing heights

Vanishing

lide by Steve Seitz
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Using a ruler

FIGURE 24.4: Left, an image of a ruler which just happens to be standing perpen-
dicular to a ground plane. In an uncalibrated image like this, we can measure the
height of the camera focal point above the ground plane. The plane through the focal
point parallel to the ground plan (and so the same height above the ground plane
as the focal point) must form the horizon, so the intersection between horizon and
ruler yields the height of the focal point. Right shows a 3D view; the bottom plane
is the ground plane, and the top plane is the plane through the focal point parallel
to the ground plane.
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Working without a ruler is harder than might seem

FIGURE 24.5: Left, a perspective camera views a reference object perpendicular to a
ground plane. This produces a line segment in the image plane. Right shows the
reference object and the line segment in the image plane.
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Working without a ruler is harder than might seem

Parametrize the reference line segment in 3D

using affine coordinates to get p +td, where d is a unit vector (so a step of 1in ¢ is
a step of length 1 along the reference segment). Write c;; for the 4, j'th component
of the 3 x 4 camera matrix. Then the homogeneous coordinates for the image line
will be

(c11p1 + c12p2 + c13p3 + c14) + t(c11dy + cr2da + c13d3 + c14) a+bt
(€21p1 + c22D2 + Ca3p3 + C24) + t(co1d1 + co2da + c23d3 + c24) = c+dt
(e31p1 + c32p2 + €33p3 + c34) + t(cs1dy + c32da + c33d3 + c34) e+ ft

SInce we know the image is a line, we can ignore one of these three homogeneous
coordinates, so the transformation is a projective transformation. Now on the 3D

Working without a ruler is harder than might seem

A bt
e+ ft

FIGURE 24.5: Left, a perspective camera views a reference object perpendicular to a
ground plane. This produces a line segment in the image plane. Right shows the
reference object and the line segment in the image plane.
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Working without a ruler is harder than might seem

‘ ‘ Now on the 3D
reference line segment, the points t = 0 and ¢ = 1 are the same distance apart as
the points ¢ = 1 and ¢ = 2. But in the image line, using affine coordinates, these

points are
a a+b a+2b

¢ ec+d c+2d

which are not, in general, evenly spaced (check this with, for example, a =0, b =1,
c=1,d=1).
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The Cross-ratio

A clever trick from projective geometry allows us to use a reference object to
measure heights. Write Py, ..., Py for the coordinates of four points on a projective
line, written in homogeneous coordinates. Write M for a projective transformation
of the line to itself (so a 2 x 2 matrix with non-zero determinant. Finally, write

d<P7, P7) = det ([P,P7]) .
Notice that

det (MP;MP;)]) = det (M[P,P;]) = det (M) det. ([P;P;))

The Cross-ratio

which means that
d(P1,P2)d(P3,Py)

d(P1,P3)d(P2,Py)
is a projective invariant — computing the value of this cross ratio using Py, ..., Py
or using MPy,..., MP, will yield the same number, as long as M is a projective
transformation.
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The Cross-ratio

Now check that the cross-ratio of the four points (0, 1), (a,1), (b,1) and (1,0)
is a/b (notice the last point is the point at infinity). We can use this observation to
measure height relative to a reference object. Using the notation of Figure 24.6, we

35

34

The Cross-ratio
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FIGURE 24.6: A perspective camera views a reference object and another object per-
pendicular to a ground plane. This produces a line segment in the image plane.
Constructing appropriate lines in the figure and taking a cross ratio yields the height
of the object.
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The Cross-ratio

FIGURE 24.7: A building and a person viewed in a more ertreme perspective view
than that of 24.6. The person has known height, and can act as reference object.
The same construction as in that figure yields the height of the building relative to

Single-view measurement examples

That booth is still there! (Oxford, September 2022)

A. Criminisi, I. Reid, and A. Zisserman, Single View Metrology, IJCV 2000
Figure from UPenn CIS580 slides,
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the person.
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Single-view measurement examples
A. Criminisi, |. Reid, and A. Zisserman, Single View Metrology, IJCV 2000
Figure from UPenn CIS580 slides
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Another example

* Are the heights of the two groups of people consistent with
one another?

» Measure heights using Christ as reference

S - ]

Piero della Francesca, Flage”ation, ca. 1455

A. Criminisi, M. Kemp, and A. Zisserman, Bringi ictor: ife:
Proc. Computers and the History of Art, 2002
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http://dhoiem.cs.illinois.edu/courses/vision_spring10/sources/criminisi00.pdf
http://cis.upenn.edu/~cis580/Spring2015/Lectures/cis580-04-singleview.pdf
http://dhoiem.cs.illinois.edu/courses/vision_spring10/sources/criminisi00.pdf
http://cis.upenn.edu/~cis580/Spring2015/Lectures/cis580-04-singleview.pdf
http://research.microsoft.com/apps/pubs/default.aspx?id=67260

Measurements within planes

Image rectification

oW A

—_

» To unwarp (rectify) an image, solve for homography H given
four pairs of matches assumed to have a known configuration

(e.g., square)

» Simplest approach: unwarp then measure
*  What kind of warp is this?
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Image rectification: Example Putting everything together: Single-view modeling

A. Criminisi et al. Bringing Picto
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http://research.microsoft.com/apps/pubs/default.aspx?id=67260

Putting everything together: Single-view modeling

J. Vermeer, Music Lesson, 1662

A. Criminisi et al. Bri ictori ife; I
Proc. Computers and the History of Art, 2002

Outline

« Camera calibration using vanishing points
* Measurements from a single image
» Applications of single-view metrology
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Application: Fully automatic modeling

Automatic Photo Pop-up

D. Hoiem A.A. Efros M. Hebert
Carnegie Mellon University

D. Hoiem, A A. Efros, and M. Hebert, Automatic Photo Pop-up, SIGGRAPH 2005
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Application: Object detection

D. Hoiem, A.A. Efros, and M. Hebert. Rutting Objects in Perspective, CVPR 2006
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http://research.microsoft.com/apps/pubs/default.aspx?id=67260
http://dhoiem.cs.illinois.edu/publications/popup.pdf
https://web.engr.illinois.edu/~dhoiem/publications/hoiem_cvpr06.pdf

Application: Object detection

(2) P(person|viewpoint,geometry)

D. Hoiem, A.A. Efros, and M. Hebert. Putting Objects in Perspective, CVPR 2006

Application: Image editing

+ Inserting synthetic objects into images

K. Karsch and V. Hedau and D. Forsyth and D. Hoiem. Rendering Synthetic Objects info
Legacy Photoaraphs. SIGGRAPH Asia 2011
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Application: Image editing
* Inserting synthetic objects into images:
K. Karsch and V. Hedau and D. Forsyth and D. Hoiem. Rendering Synthetic Objects into.
Legacy Photoaraphs. SIGGRAPH Asia 2011
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