

1

3

Application: 3D from a single image

A. Criminisi et al. Single View Metrology. IJCV 2000

2

> Application: Image editing, augmented reality

K. Karsch and V. Hedau and D. Forsyth and D. Hoiem. Rendering Synthetic Obiects into Legacy Photographs. SIG GRAPH Asia 2011

4

5

Camera calibration using vanishing points

- If world coordinates of reference 3D points are not known, in special cases, we may be able to use vanishing points

Source: A. Efros, A. C Ciminisisi
7

Outline

- Camera calibration using vanishing points
- Measurements from a single image
- Applications of single-view metrology

6

Camera calibration using vanishing points

- If world coordinates of reference 3D points are not known, in special cases, we may be able to use vanishing points

8

Review: Vanishing points

- All lines having the same direction share the same vanishing point

Computing vanishing points

- Let's parameterize the line using point $X_{0}=\left(X_{0}, Y_{0}, Z_{0}, 1\right)^{T}$ and direction vector $\boldsymbol{D}=\left(D_{1}, D_{2}, D_{3}\right)^{T}$

$$
\boldsymbol{X}_{t}=\left(\begin{array}{c}
X_{0}+t D_{1} \\
Y_{0}+t D_{2} \\
Z_{0}+t D_{3} \\
1
\end{array}\right) \cong\left(\begin{array}{c}
X_{0} / t+D_{1} \\
Y_{0} / t+D_{2} \\
Z_{0} / t+D_{3} \\
1 / t
\end{array}\right) \quad \boldsymbol{X}_{\infty}=\left(\begin{array}{c}
D_{1} \\
D_{2} \\
D_{3} \\
0
\end{array}\right)
$$

- X_{∞} is a point at infinity, v is its projection: $v \cong P X_{\infty}$

Calibration from vanishing points

- Consider a scene with three orthogonal vanishing directions:
- Consider a scene with three orthogonal vanishing directions:

.${ }^{1}$
- Note: v_{1}, v_{2} are finite vanishing points and v_{3} is an infinite vanishing point

- v_{2}
- We can align the world coordinate system with these directions

13

Projection of the world coordinate system

$$
\begin{aligned}
& {\left[\begin{array}{llll}
p_{11} & p_{12} & p_{13} & p_{14} \\
p_{21} & p_{22} & p_{23} & p_{24} \\
p_{31} & p_{32} & p_{33} & p_{34}
\end{array}\right]\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right)=\boldsymbol{p}_{2}} \\
& \boldsymbol{p}_{1} \\
& \boldsymbol{p}_{2}
\end{aligned} \boldsymbol{p}_{3} \quad \boldsymbol{p}_{4}-2
$$

Projection of the world coordinate system
$\left[\begin{array}{llll}p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34}\end{array}\right]\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right)=\boldsymbol{p}_{3}$
$\begin{array}{llll}\boldsymbol{p}_{1} & \boldsymbol{p}_{2} & \boldsymbol{p}_{3} & \boldsymbol{p}_{4}\end{array}$
Vanishing points in
x, y, z directions
(i.e., $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, v_{3}$)

14

Projection of the world coordinate system

$\left[\begin{array}{llll}{\left[\begin{array}{lll}p_{11} & p_{12} & p_{13} \\ p_{21} & p_{22} & p_{23} \\ p_{31} & p_{32} & p_{23}\end{array}\right.} \\ \underbrace{\boldsymbol{p}_{1}}_{\begin{array}{c}\text { Vanishing points in } \\ x, y, z \text { directions } \\ \left.\text { (i.e., } \boldsymbol{v}_{1}, v_{2}, v_{3}\right)\end{array}} \boldsymbol{p}_{2} & \boldsymbol{p}_{3} & \boldsymbol{p}_{4}\end{array}\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)=\boldsymbol{p}_{4}\right.$

- Problem: this only gives us the four columns up to independent scale factors, additional constraints needed to solve for them

17

Calibration from vanishing points

- Let us align the world coordinate system with three orthogonal vanishing directions in the scene:

$$
\boldsymbol{e}_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad \boldsymbol{e}_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \quad \boldsymbol{e}_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \quad \begin{array}{ll}
\boldsymbol{v}_{i} \cong \boldsymbol{K} \boldsymbol{R} \boldsymbol{e}_{i} \\
\boldsymbol{e}_{i} \cong \boldsymbol{R}^{T} \boldsymbol{K}^{-1} \boldsymbol{v}_{i}
\end{array}
$$

- Orthogonality constraint: $\boldsymbol{e}_{i}^{T} \boldsymbol{e}_{j}=0$

$$
\underbrace{\boldsymbol{v}_{i}^{T} \boldsymbol{K}^{-T} \boldsymbol{R} \boldsymbol{R}^{T} \boldsymbol{K}^{-1} \boldsymbol{v}_{j}}_{\boldsymbol{e}_{i}^{T}}=0
$$

Calibration from vanishing points

- Let us align the world coordinate system with three orthogonal vanishing directions in the scene:
$\boldsymbol{e}_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right), \quad \boldsymbol{e}_{2}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right), \quad \boldsymbol{e}_{3}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$
$v_{i} \cong K[R \mid t]\binom{e_{i}}{0}$

Calibration from vanishing points

- Let us align the world coordinate system with three orthogonal vanishing directions in the scene:

$$
\boldsymbol{e}_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad \boldsymbol{e}_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \quad \boldsymbol{e}_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \quad \begin{array}{ll}
\boldsymbol{v}_{i} \cong \boldsymbol{K} \boldsymbol{R} \boldsymbol{e}_{i} \\
\boldsymbol{e}_{i} \cong \boldsymbol{R}^{T} \boldsymbol{K}^{-1} \boldsymbol{v}_{i}
\end{array}
$$

- Orthogonality constraint: $\boldsymbol{e}_{i}^{T} \boldsymbol{e}_{j}=0$

$$
\boldsymbol{v}_{i}^{T} \boldsymbol{K}^{-T} \boldsymbol{K}^{-1} \boldsymbol{v}_{j}=0
$$

- Extrinsic parameter matrix (\boldsymbol{R}) disappears and we are left with constraints on the calibration matrix!

Calibration from vanishing points

$$
\boldsymbol{v}_{i}^{T} \boldsymbol{K}^{-T} \boldsymbol{K}^{-1} \boldsymbol{v}_{j}=0
$$

- How many constraints do we get?
- Three: one for each pair of vanishing points
- How many unknown parameters does K have?
- Three: f, p_{x}, p_{y}
- A couple of complications:
- The constraints are nonlinear, but it's not hard to do the algebra (omitted)
- At least two finite vanishing points are needed to solve for both focal length and principal point

21

Rotation from vanishing points

- Constraints on vanishing points: $v_{i} \cong K R e_{i}$
- We just used orthogonality constraints to solve for K
- Now we have:

$$
\begin{gathered}
\boldsymbol{K}^{-1} \boldsymbol{v}_{i} \cong \boldsymbol{R} \boldsymbol{e}_{i} \\
\text { Notice: } \boldsymbol{R} \boldsymbol{e}_{1}=\left[\begin{array}{lll}
\boldsymbol{r}_{1} & \boldsymbol{r}_{2} & \boldsymbol{r}_{3}
\end{array}\right]\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\boldsymbol{r}_{1} \\
\text { Thus, } \boldsymbol{r}_{i} \cong \boldsymbol{K}^{-1} \boldsymbol{v}_{i}
\end{gathered}
$$

- The scale ambiguity goes away since we require $\left\|r_{i}\right\|^{2}=1$

Calibration from vanishing points

22

Calibration from vanishing points: Summary

1. Solve for intrinsic parameters (focal length, principal point) using three orthogonal vanishing points
2. Get extrinsic parameters (rotation) directly from vanishing points once calibration matrix is known

- Advantages
- No need for calibration chart, 2D-3D correspondences
- Could be completely automatic
- Disadvantages
- Only applies to certain kinds of scenes
- It is tricky to accurately localize vanishing points
- Need at least two finite vanishing points

24

Outline

- Camera calibration using vanishing points
- Measurements from a single image
- Measuring height above the ground plane
- Measuring within planes

25

Using a ruler

IGURE 24.3: Left, an image of a ruler and an object, which just happen to be standing perpendicular to a ground plane. In an uncalibrated image like this, we an measure the height of the object. Construct the line bB, and intersect that with he horizon to get the point V. The line from the top of the object 1 to the true height of the object on the ruter (h) is parallel in $S D$ to bD. In turn, the line Ih h ielding the height of the sject Right shows aD view; the line Th mut be parallel to bB, and so in the image these two lines intersect at the horizon.

26

Using a ruler

FIGURE 24.4: Left, an image of a ruler which just happens to be standing perpendicular to a ground plane. In an uncalibrated image like this, we can measure the height of the camera focal point above the ground plane. The plane through the focal point parallet to the ground plan (and so the same height above the ground plane as the focal point) must form the horizon, so the intersection between horizon and ruler yields the height of the focal point. Right shows a 3D view; the bottom plane is the ground plane, and the top plane is the plane through the focal point parallel to the ground plane.

Working without a ruler is harder than might seem

Working without a ruler is harder than might seem

Parametrize the reference line segment in 3D
using affine coordinates to get $\mathbf{p}+t \mathbf{d}$, where \mathbf{d} is a unit vector (so a step of 1 in t is a step of length 1 along the reference segment). Write $c_{i j}$ for the i, j 'th component of the 3×4 camera matrix. Then the homogeneous coordinates for the image line will be

$$
\left(\begin{array}{l}
\left(c_{11} p_{1}+c_{12} p_{2}+c_{13} p_{3}+c_{14}\right)+t\left(c_{11} d_{1}+c_{12} d_{2}+c_{13} d_{3}+c_{14}\right) \\
\left(c_{21} p_{1}+c_{22} p_{2}+c_{23} p_{3}+c_{24}\right)+t\left(c_{21} d_{1}+c_{22} d_{2}+c_{23} d_{3}+c_{24}\right) \\
\left(c_{31} p_{1}+c_{32} p_{2}+c_{33} p_{3}+c_{34}\right)+t\left(c_{31} d_{1}+c_{32} d_{2}+c_{33} d_{3}+c_{34}\right)
\end{array}\right)=\left(\begin{array}{c}
a+b t \\
c+d t \\
e+f t
\end{array}\right)
$$

SInce we know the image is a line, we can ignore one of these three homogeneous coordinates, so the transformation is a projective transformation. Now on the 3D

Working without a ruler is harder than might seem

- Now on the 3D reference line segment, the points $t=0$ and $t=1$ are the same distance apart as the points $t=1$ and $t=2$. But in the image line, using affine coordinates, these points are

$$
\frac{a}{c}, \frac{a+b}{c+d}, \frac{a+2 b}{c+2 d}
$$

which are not, in general, evenly spaced (check this with, for example, $a=0, b=1$, $c=1, d=1$.
FIGURE 24.5: Left, a perspective camera views a reference object perpendicular to a ground plane. This produces a line segment in the image plane. Right shows the reference object and the line segment in the image plane.

The Cross-ratio

The Cross-ratio

A clever trick from projective geometry allows us to use a reference object to measure heights. Write $\mathbf{P}_{1}, \ldots, \mathbf{P}_{4}$ for the coordinates of four points on a projective line, written in homogeneous coordinates. Write \mathcal{M} for a projective transformation of the line to itself (so a 2×2 matrix with non-zero determinant. Finally, write

$$
d\left(\mathbf{P}_{i}, \mathbf{P}_{j}\right)=\operatorname{det}\left(\left[\mathbf{P}_{i} \mathbf{P}_{j}\right]\right)
$$

Notice that

$$
\left.\operatorname{det}\left(\left[\mathcal{M} \mathbf{P}_{i} \mathcal{M} \mathbf{P}_{j}\right)\right]\right)=\operatorname{det}\left(\mathcal{M}\left[\mathbf{P}_{i} \mathbf{P}_{j}\right]\right)=\operatorname{det}(\mathcal{M}) \operatorname{det}\left(\left[\mathbf{P}_{i} \mathbf{P}_{j}\right]\right)
$$

which means that

$$
\frac{d\left(\mathbf{P}_{1}, \mathbf{P}_{2}\right) d\left(\mathbf{P}_{3}, \mathbf{P}_{4}\right)}{d\left(\mathbf{P}_{1}, \mathbf{P}_{3}\right) d\left(\mathbf{P}_{2}, \mathbf{P}_{4}\right)}
$$

is a projective invariant - computing the value of this cross ratio using $\mathbf{P}_{1}, \ldots, \mathbf{P}$ or using $\mathcal{M} \mathbf{P}_{1}, \ldots, \mathcal{M} \mathbf{P}_{4}$ will yield the same number, as long as \mathcal{M} is a projective transformation.

The Cross-ratio

Now check that the cross-ratio of the four points $(0,1),(a, 1),(b, 1)$ and $(1,0)$ is a / b (notice the last point is the point at infinity). We can use this observation to measure height relative to a reference object. Using the notation of Figure 24.6, we

The Cross-ratio

36

37

Single-view measurement examples

A. Criminisi, I. Reid, and A. Zisserman, Single View Metrology, IJCV 2000

Figure from UPenn CIS580 slides
51

Single-view measurement examples

That booth is still there! (Oxford, September 2022)
A. Criminisi, I. Reid, and A. Zisserman, Single View Metroloay IJCV 2000 Figure from UPenn CIS580 slides

50

Another example

- Are the heights of the two groups of people consistent with one another?
- Measure heights using Christ as reference

A. Criminisi, M. Kemp, and A. Zisserman, Biraina Pictorial Space to Life: computer technicues for the analvsis of paintinas.

55

Measurements within planes

- Simplest approach: unwarp then measure
- What kind of warp is this?

Image rectification: Example

Putting everything together: Single-view modeling

Image rectification

- To unwarp (rectify) an image, solve for homography \boldsymbol{H} given four pairs of matches assumed to have a known configuration (e.g., square)

路
\qquad
56

57

59

Outline

- Camera calibration using vanishing points
- Measurements from a single image
- Applications of single-view metrology

Application: Object detection

D. Hoiem, A.A. Efros, and M. Hebert. Putting Obiects in Perspective, CVPR 2006

60

Application: Object detection

(d) P (person \mid geometry)

Application: Image editing

- Inserting synthetic objects into images

K. Karsch and V. Hedau and D. Forsyth and D. Hoiem. Renderinq Svnthetic Obiects into Legacy Photographs. SIGGRAPH Asia 2011

63

Application: Image editing

- Inserting synthetic objects into images:

64

