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Consider two views of the same 3D scene
• What constraints must hold 

between two projections of the 
same 3D point?



Consider two views of the same 3D scene
• Given a 2D point in one view, 

where can we find the 
corresponding point in the 
other view?



Consider two views of the same 3D scene
• Given only 2D correspondences,

how can we calibrate the two 
cameras, i.e., estimate their 
relative position and orientation 
and the intrinsic parameters?



Consider two views of the same 3D scene
• Key idea: we want to answer 

all these questions without 
explicit 3D reasoning, by 
considering the projections of 
camera centers and visual 
rays into the other view



! !′
• Suppose we have two cameras with centers !, !′
• The baseline is the line connecting the origins 

Epipolar geometry setup



! !′

Epipolar geometry setup

• Epipoles #, #′ are where the baseline intersects the image planes, 
or projections of the other camera in each view

# #′



• Consider a point !, which projects to " and "′

Epipolar geometry setup
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• The plane formed by !, ", and "′ is called an epipolar plane
• There is a family of planes passing through " and "′

Epipolar geometry setup
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• Epipolar lines connect the epipoles to the projections of !
• Equivalently, they are intersections of the epipolar plane with the 

image planes – thus, they come in matching pairs

Epipolar geometry setup
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Epipolar plane

Epipolar geometry setup: Summary
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Epipoles

Epipolar lines



Example configuration: Converging cameras



Example configuration: Converging cameras

• Epipoles are finite, may be visible in the image

! !′# #′



Example configuration: Motion parallel to image plane

• Where are the epipoles and what do the epipolar lines look like?
! !′



Example configuration: Motion parallel to image plane

! !′

• Epipoles infinitely far away, epipolar lines parallel
# #′



Example configuration: Motion parallel to image plane



Example configuration: Motion perpendicular to image plane



Example configuration: Motion perpendicular to image plane



• Epipole is “focus of expansion” 
and coincides with the principal 
point of the camera

• Epipolar lines go out from 
principal point

!

!′

#′

#

Example configuration: Motion perpendicular to image plane
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Epipolar constraint

!

"

• Suppose we observe a single point " in one image



• Where can we find the !′ corresponding to ! in the other image?

Epipolar constraint
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Epipolar constraint

! !′

#

$ $′
• Where can we find the #′ corresponding to # in the other image?
• Along the epipolar line corresponding to # (projection of visual 

ray connecting ! with # into the second image plane)



Epipolar constraint

! !′# #′

$′

• Similarly, all points in the left image corresponding to $′ have 
to lie along the epipolar line corresponding to $′



• Potential matches for ! have to lie on the matching epipolar line "′
• Potential matches for !′ have to lie on the matching epipolar line "

Epipolar constraint
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Epipolar constraint: Example



• Whenever two points ! and !′ lie on matching epipolar lines # and #′, 
the visual rays corresponding to them meet in space, i.e., ! and !′
could be projections of the same 3D point $

Epipolar constraint

% %′& &′

!′!
#′#

$



• Remember: in general, two rays do not meet in space!

Epipolar constraint
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• Caveat: if ! and !′ satisfy the epipolar constraint, this doesn’t mean 
they have to be projections of the same 3D point

Epipolar constraint
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Math of the epipolar constraint: Calibrated case

• Assume the intrinsic and extrinsic parameters of the cameras are known, 
world coordinate system is set to that of the first camera 

• Then the projection matrices are given by ![# | %] and !′[( | )]
• We can pre-multiply the projection matrices (and the image points) by 

the inverse calibration matrices to get normalized image coordinates:
*+,-. = !01*23456 ≅ # %]8, *′+,-. = !:01*23456: ≅ ( )]8

* *′

8

)
(



Math of the epipolar constraint: Calibrated case

• We have !" ≅ $! + &
• This means the three vectors !", $!, and & are linearly dependent
• This constraint can be written using the triple product 

!" ' &× $! = 0

! !"
+

, -] !
1 $ &] !

1
= $! + &&

$

!0123 ≅ , -]+ !′0123 ≅ $ &]+= (!, 1)8



Math of the epipolar constraint: Calibrated case

! !"
# = (!, 1))

*
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Recall: ,×. =
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= [,×].

!" 8 *× +! = 0 !")[*×]+! = 0
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Math of the epipolar constraint: Calibrated case

!" # $× &! = 0

! !"
) = (!, 1).

$
&

!".[$×]&! = 0

Essential Matrix

!".1! = 0

2 3] !
1 & $] !

1
= &! + $

H. C. Longuet-Higgins. A computer algorithm for reconstructing a scene from two projections. 

Nature 293 (5828): 133–135, September 1981

https://cseweb.ucsd.edu/classes/fa01/cse291/hclh/SceneReconstruction.pdf


The essential matrix
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The essential matrix: Properties

! !"
#

!"$%! = 0

• %! is the epipolar line associated with ! ()′ = %!)

)"

Recall: a line is given by +, + ./ + 0 = 0 or )1! = 0
where ) = (+, ., 0)$ and ! = (,, /, 1)$



The essential matrix: Properties

! !"
#

• %! is the epipolar line associated with ! (&′ = %!)
• %)!′ is the epipolar line associated with !′ (& = %)!′)
• %* = + and   %,*′ = +
• % is singular (rank two) and has five degrees of freedom

!")%! = 0

&
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Epipolar constraint: Uncalibrated case

• The calibration matrices ! and !′ of the two cameras are unknown
• We can write the epipolar constraint in terms of unknown normalized 

coordinates:
#$%&'() *#$%&' = 0, 

where #$%&' = !-.#, #′$%&' = !(-.#′

# #(
/



Epipolar constraint: Uncalibrated case

!"#$%&' (!"#$% = 0

! !&
+

!&',! = 0, where , = -′/'(-/0

!"#$% = -/1!
!′"#$% = -&/1!′

Fundamental Matrix

Faugeras et al., (1992), Hartley (1992)

https://en.wikipedia.org/wiki/Fundamental_matrix_(computer_vision)


The fundamental matrix
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The fundamental matrix: Properties

! !"
#

!"$%! = 0
• %! is the epipolar line associated with ! ()′ = %!)
• %$!′ is the epipolar line associated with !′ () = %$!′)
• %+ = , and   %-+′ = ,
• % is singular (rank two) and has seven degrees of freedom

) )′
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Estimating the fundamental matrix
• Given: correspondences ! = ($, &, 1)) and !* = ($′, &′, 1))



Estimating the fundamental matrix
• Given: correspondences ! = ($, &, 1)) and !* = ($′, &′, 1))
• Constraint: !′,-! = 0

$*, &*, 1
/00 /01 /02
/10 /11 /12
/20 /21 /22

$
&
1

= 0 $*$, $*&, $′, &*$, &*&, &′, $, &, 1

/00
/01
/02
/10
/11
/12
/20
/21
/22

= 0



The eight point algorithm

⋮
"#" "#$ "′ $#" $#$ $′ " $ 1

⋮
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= ,

• Homogeneous least squares to find -:

arg min
- 4(

5- )
) Eigenvector of 565 with 

smallest eigenvalue

5



Enforcing rank-2 constraint
• We know ! needs to be singular/rank 2. How do we force it to 

be singular?
• Solution: take SVD of the initial estimate and throw out the 

smallest singular value

!"#"$ = &'()

' =
*+ 0 0
0 *- 0
0 0 *.

! = &/′()

'′ =
*+ 0 0
0 *- 0
0 0 0



Enforcing rank-2 constraint

Initial ! estimate Rank-2 estimate



Normalized eight point algorithm

⋮
"#" "#$ "′ $#" $#$ $′ " $ 1

⋮

'((
'()
'(*
')(
'))
')*
'*(
'*)
'**

= ,

• Recall that ", $, "′, $′ are pixel coordinates. What might be the 
order of magnitude of each column of .?

• This causes numerical instability!

.

100 100 10* 100 100 10* 10* 10* 1



The normalized eight-point algorithm
• In each image, center the set of points at the origin, and scale 

it so the mean squared distance between the origin and the 
points is 2 pixels

• Use the eight-point algorithm to compute ! from the 
normalized points

• Enforce the rank-2 constraint 
• Transform fundamental matrix back to original units: if " and 
"′ are the normalizing transformations in the two images, 
then the fundamental matrix in original coordinates is "′$!"

R. Hartley. In defense of the eight-point algorithm. TPAMI 1997

https://www.cse.unr.edu/~bebis/CS485/Handouts/hartley.pdf


• Linear estimation minimizes the sum of squared algebraic
distances between points !"# and epipolar lines $!% (or points 
!% and epipolar lines $&!"#):

'
"
!"#&$!%

(

• Nonlinear approach: minimize sum of squared geometric
distances 

'
"
dist(!"#, $!%)( + dist(!%, $&!"#)(

Nonlinear estimation

xi

FT !xi Fxi

!xi



Comparison of estimation algorithms

8-point Normalized 8-point Nonlinear least squares

Av. Dist. 1 2.33 pixels 0.92 pixel 0.86 pixel

Av. Dist. 2 2.18 pixels 0.85 pixel 0.80 pixel



Seven-point algorithm
• Set up least squares system with seven pairs of matches and 

solve for null space (two vectors) using SVD 
• Solve for polynomial equation to get coefficients of linear 

combination of null space vectors that satisfies det(%) = 0

Source: e.g., M. Pollefeys tutorial (2000)

http://cmp.felk.cvut.cz/cmp/courses/dzo/resources/tutorial-pollefeys-eccv/node57.html


From epipolar geometry to camera calibration

• Estimating the fundamental matrix is known as “weak 
calibration”

• If we know the calibration matrices of the two cameras, we 
can estimate the essential matrix: ! = #′%&#

• The essential matrix gives us the relative rotation and 
translation between the cameras, or their extrinsic parameters

• Alternatively, if the calibration matrices are known (or in 
practice, if good initial guesses of the intrinsics are available), 
the five-point algorithm can be used to estimate relative 
camera pose

D. Nister. An efficient solution to the five-point relative pose problem. IEEE Trans. PAMI, 2004

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.129.1518&rep=rep1&type=pdf


The Fundamental Matrix Song

http://danielwedge.com/fmatrix/

http://danielwedge.com/fmatrix/

