Epipolar geometry

Photo by Frank Dellaert

Many slides adapted from J. Johnson and D. Fouhey

Outline

- Motivation
- Epipolar geometry setup
- Epipolar constraint
- Essential matrix
- Fundamental matrix
- Estimating the fundamental matrix

Consider two views of the same 3D scene

- What constraints must hold between two projections of the same 3D point?

Consider two views of the same 3D scene

- Given a 2D point in one view, where can we find the corresponding point in the other view?

Consider two views of the same 3D scene

- Given only 2D correspondences, how can we calibrate the two cameras, i.e., estimate their relative position and orientation and the intrinsic parameters?

Consider two views of the same 3D scene

- Key idea: we want to answer all these questions without explicit 3D reasoning, by considering the projections of camera centers and visual rays into the other view

Epipolar geometry setup

- Suppose we have two cameras with centers $\boldsymbol{O}, \boldsymbol{O}^{\prime}$
- The baseline is the line connecting the origins

Epipolar geometry setup

- Epipoles e, e^{\prime} are where the baseline intersects the image planes, or projections of the other camera in each view

Epipolar geometry setup

- Consider a point X, which projects to x and x^{\prime}

Epipolar geometry setup

- The plane formed by $\boldsymbol{X}, \boldsymbol{O}$, and $\boldsymbol{0}^{\prime}$ is called an epipolar plane
- There is a family of planes passing through O and O^{\prime}

Epipolar geometry setup

- Epipolar lines connect the epipoles to the projections of X
- Equivalently, they are intersections of the epipolar plane with the image planes - thus, they come in matching pairs

Epipolar geometry setup: Summary

Example configuration: Converging cameras

Example configuration: Converging cameras

- Epipoles are finite, may be visible in the image

Example configuration: Motion parallel to image plane

- Where are the epipoles and what do the epipolar lines look like?

Example configuration: Motion parallel to image plane

- Epipoles infinitely far away, epipolar lines parallel

Example configuration: Motion parallel to image plane

Example configuration: Motion perpendicular to image plane

Example configuration: Motion perpendicular to image plane

Example configuration: Motion perpendicular to image plane

- Epipole is "focus of expansion" and coincides with the principal point of the camera
- Epipolar lines go out from principal point

Outline

- Motivation
- Epipolar geometry setup
- Epipolar constraint

Epipolar constraint

- Suppose we observe a single point x in one image

Epipolar constraint

- Where can we find the x^{\prime} corresponding to x in the other image?

Epipolar constraint

- Where can we find the x^{\prime} corresponding to x in the other image?
- Along the epipolar line corresponding to x (projection of visual ray connecting O with x into the second image plane)

Epipolar constraint

- Similarly, all points in the left image corresponding to x^{\prime} have to lie along the epipolar line corresponding to x^{\prime}

Epipolar constraint

- Potential matches for x have to lie on the matching epipolar line l^{\prime}
- Potential matches for x^{\prime} have to lie on the matching epipolar line l

Epipolar constraint: Example

Epipolar constraint

- Whenever two points x and x^{\prime} lie on matching epipolar lines l and l^{\prime}, the visual rays corresponding to them meet in space, i.e., x and x^{\prime} could be projections of the same 3D point X

Epipolar constraint

- Remember: in general, two rays do not meet in space!

Epipolar constraint

- Caveat: if x and x^{\prime} satisfy the epipolar constraint, this doesn't mean they have to be projections of the same 3D point

Outline

- Motivation
- Epipolar geometry setup
- Epipolar constraint
- Essential matrix

Math of the epipolar constraint: Calibrated case

- Assume the intrinsic and extrinsic parameters of the cameras are known, world coordinate system is set to that of the first camera
- Then the projection matrices are given by $K[I \mid 0]$ and $K^{\prime}[R \mid t]$
- We can pre-multiply the projection matrices (and the image points) by the inverse calibration matrices to get normalized image coordinates:

$$
x_{\text {norm }}=K^{-1} x_{\text {pixel }} \cong[I \mid 0] X, \quad x_{\text {norm }}^{\prime}=K^{\prime-1} x_{\text {pixel }}^{\prime} \cong[R \mid t] X
$$

Math of the epipolar constraint: Calibrated case

- We have $x^{\prime} \cong R x+t$
- This means the three vectors $x^{\prime}, R x$, and t are linearly dependent
- This constraint can be written using the triple product

$$
x^{\prime} \cdot[t \times(\boldsymbol{R} x)]=0
$$

Math of the epipolar constraint: Calibrated case

Math of the epipolar constraint: Calibrated case

H. C. Longuet-Higgins. A computer algorithm for reconstructing a scene from two projections.

Nature 293 (5828): 133-135, September 1981

The essential matrix

$$
\begin{gathered}
\boldsymbol{x}^{\prime T} \boldsymbol{E} \boldsymbol{x}=0 \\
\left(x^{\prime}, y^{\prime}, 1\right)\left[\begin{array}{lll}
e_{11} & e_{12} & e_{13} \\
e_{21} & e_{22} & e_{23} \\
e_{31} & e_{32} & e_{33}
\end{array}\right]\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)=0
\end{gathered}
$$

The essential matrix: Properties

$$
\boldsymbol{x}^{\prime T} \boldsymbol{E} \boldsymbol{x}=0
$$

- $E x$ is the epipolar line associated with $x\left(l^{\prime}=E x\right)$

Recall: a line is given by $a x+b y+c=0$ or $l^{T} x=0$ where $\boldsymbol{l}=(a, b, c)^{T}$ and $\boldsymbol{x}=(x, y, 1)^{T}$

The essential matrix: Properties

$$
\boldsymbol{x}^{\prime T} \boldsymbol{E} \boldsymbol{x}=0
$$

- $E x$ is the epipolar line associated with $x\left(l^{\prime}=E x\right)$
- $E^{T} \boldsymbol{x}^{\prime}$ is the epipolar line associated with $x^{\prime}\left(l=E^{T} x^{\prime}\right)$
- $\boldsymbol{E} \boldsymbol{e}=\mathbf{0}$ and $\boldsymbol{E}^{T} \boldsymbol{e}^{\prime}=\mathbf{0}$
- E is singular (rank two) and has five degrees of freedom

Outline

- Motivation
- Epipolar geometry setup
- Epipolar constraint
- Essential matrix
- Fundamental matrix

Epipolar constraint: Uncalibrated case

- The calibration matrices K and K^{\prime} of the two cameras are unknown
- We can write the epipolar constraint in terms of unknown normalized coordinates:

$$
\begin{gathered}
\boldsymbol{x}_{\text {norm }}^{\prime T} \boldsymbol{E} \boldsymbol{x}_{\text {norm }}=0 \\
\text { where } \boldsymbol{x}_{\mathrm{norm}}=\boldsymbol{K}^{-\mathbf{1}} \boldsymbol{x}, \boldsymbol{x}_{\text {norm }}^{\prime}=\boldsymbol{K}^{\prime-1} \boldsymbol{x}^{\prime}
\end{gathered}
$$

Epipolar constraint: Uncalibrated case

$$
\begin{aligned}
& \boldsymbol{x}_{\text {norm }}^{\prime T} \boldsymbol{E} \boldsymbol{x}_{\mathrm{norm}}=0 \longmapsto \boldsymbol{x}^{\prime T} \boldsymbol{F} \boldsymbol{x}=0, \text { where } \boldsymbol{F}=\boldsymbol{K}^{\prime-T} \boldsymbol{E} \boldsymbol{K}^{-1} \\
& \boldsymbol{x}_{\mathrm{norm}}=\boldsymbol{K}^{-\mathbf{1}} \boldsymbol{x}
\end{aligned}
$$

Fundamental Matrix

The fundamental matrix

$$
\begin{gathered}
\boldsymbol{x}^{\prime T} \boldsymbol{F} \boldsymbol{x}=0 \\
\left(x^{\prime}, y^{\prime}, 1\right)\left[\begin{array}{lll}
f_{11} & f_{12} & f_{13} \\
f_{21} & f_{22} & f_{23} \\
f_{31} & f_{32} & f_{33}
\end{array}\right]\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)=0
\end{gathered}
$$

The fundamental matrix: Properties

$$
\boldsymbol{x}^{\prime T} \boldsymbol{F} \boldsymbol{x}=0
$$

- $F x$ is the epipolar line associated with $x\left(l^{\prime}=F x\right)$
- $\boldsymbol{F}^{T} x^{\prime}$ is the epipolar line associated with $x^{\prime}\left(\boldsymbol{l}=\boldsymbol{F}^{T} x^{\prime}\right)$
- $\boldsymbol{F e}=\mathbf{0}$ and $\boldsymbol{F}^{T} \boldsymbol{e}^{\prime}=\mathbf{0}$
- F is singular (rank two) and has seven degrees of freedom

Outline

- Motivation
- Epipolar geometry setup
- Epipolar constraint
- Essential matrix
- Fundamental matrix
- Estimating the fundamental matrix

Estimating the fundamental matrix

- Given: correspondences $x=(x, y, 1)^{T}$ and $x^{\prime}=\left(x^{\prime}, y^{\prime}, 1\right)^{T}$

Estimating the fundamental matrix

- Given: correspondences $x=(x, y, 1)^{T}$ and $x^{\prime}=\left(x^{\prime}, y^{\prime}, 1\right)^{T}$
- Constraint: $x^{\prime T} F x=0$

$$
\left(x^{\prime}, y^{\prime}, 1\right)\left[\begin{array}{lll}
f_{11} & f_{12} & f_{13} \\
f_{21} & f_{22} & f_{23} \\
f_{31} & f_{32} & f_{33}
\end{array}\right]\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)=0 \quad \square\left(x^{\prime} x, x^{\prime} y, x^{\prime}, y^{\prime} x, y^{\prime} y, y^{\prime}, x, y, 1\right)\left(\begin{array}{l}
f_{13} \\
f_{21} \\
f_{22} \\
f_{23} \\
f_{31} \\
f_{32} \\
f_{33}
\end{array}\right)=0
$$

The eight point algorithm

- Homogeneous least squares to find f :

$$
\arg \min _{\|f\|=1}\|\boldsymbol{U f}\|_{2}^{2} \rightarrow \begin{aligned}
& \text { Eigenvector of } \boldsymbol{U}^{T} \boldsymbol{U} \text { with } \\
& \text { smallest eigenvalue }
\end{aligned}
$$

Enforcing rank-2 constraint

- We know F needs to be singular/rank 2. How do we force it to be singular?
- Solution: take SVD of the initial estimate and throw out the smallest singular value

$$
\begin{aligned}
& \boldsymbol{F}_{\text {init }}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T} \\
& \text {, } \\
& \boldsymbol{\Sigma}=\left[\begin{array}{ccc}
\sigma_{1} & 0 & 0 \\
0 & \sigma_{2} & 0 \\
0 & 0 & \boldsymbol{\nu}_{\mathbf{3}}
\end{array}\right] \longrightarrow \boldsymbol{\Sigma}^{\prime}=\left[\begin{array}{ccc}
\sigma_{1} & 0 & 0 \\
0 & \sigma_{2} & 0 \\
0 & 0 & 0
\end{array}\right] \\
& \boldsymbol{F}=\boldsymbol{U} \boldsymbol{\Sigma}^{\prime} \boldsymbol{V}^{T}
\end{aligned}
$$

Enforcing rank-2 constraint

Normalized eight point algorithm

$$
\underbrace{\left[\begin{array}{ccccccccc}
10^{6} & 10^{6} & 10^{3} & 10^{6} & 10^{6} & 10^{3} & 10^{3} & 10^{3} & 1 \\
x^{\prime} x & x^{\prime} y & x^{\prime} & y^{\prime} x & y^{\prime} y & y^{\prime} & x & y & 1 \\
& & & \vdots & & & & &
\end{array}\right]\left(\begin{array}{l}
f_{11} \\
f_{12} \\
f_{13} \\
f_{21} \\
f_{22} \\
f_{23} \\
f_{31} \\
f_{32} \\
f_{33}
\end{array}\right)=\mathbf{0} 0 .}
$$

- Recall that $x, y, x^{\prime}, y^{\prime}$ are pixel coordinates. What might be the order of magnitude of each column of U ?
- This causes numerical instability!

The normalized eight-point algorithm

- In each image, center the set of points at the origin, and scale it so the mean squared distance between the origin and the points is 2 pixels
- Use the eight-point algorithm to compute F from the normalized points
- Enforce the rank-2 constraint
- Transform fundamental matrix back to original units: if T and T^{\prime} are the normalizing transformations in the two images, then the fundamental matrix in original coordinates is $T^{\prime T} \boldsymbol{F T}$

Nonlinear estimation

- Linear estimation minimizes the sum of squared algebraic distances between points $\boldsymbol{x}_{i}^{\prime}$ and epipolar lines $\boldsymbol{F} \boldsymbol{x}_{i}$ (or points x_{i} and epipolar lines $\boldsymbol{F}^{T} \boldsymbol{x}_{i}^{\prime}$):

$$
\sum_{i}\left(\boldsymbol{x}_{i}^{\prime T} \boldsymbol{F} \boldsymbol{x}_{i}\right)^{2}
$$

- Nonlinear approach: minimize sum of squared geometric distances

$$
\sum_{i}\left[\operatorname{dist}\left(\boldsymbol{x}_{i}^{\prime}, \boldsymbol{F} \boldsymbol{x}_{i}\right)^{2}+\operatorname{dist}\left(\boldsymbol{x}_{i}, \boldsymbol{F}^{T} \boldsymbol{x}_{i}^{\prime}\right)^{2}\right]
$$

Comparison of estimation algorithms

Seven-point algorithm

- Set up least squares system with seven pairs of matches and solve for null space (two vectors) using SVD
- Solve for polynomial equation to get coefficients of linear combination of null space vectors that satisfies $\operatorname{det}(\boldsymbol{F})=0$

From epipolar geometry to camera calibration

- Estimating the fundamental matrix is known as "weak calibration"
- If we know the calibration matrices of the two cameras, we can estimate the essential matrix: $E=K^{\prime T} F K$
- The essential matrix gives us the relative rotation and translation between the cameras, or their extrinsic parameters
- Alternatively, if the calibration matrices are known (or in practice, if good initial guesses of the intrinsics are available), the five-point algorithm can be used to estimate relative camera pose

The Fundamental Matrix Song

http://danielwedge.com/fmatrix/

