
Structure from motion

Outline: Structure from motion
• Problem definition and ambiguities
• Affine structure from motion

• Factorization
• Projective structure from motion

• Bundle adjustment
• Modern structure from motion pipeline

Structure from motion

Camera 3Camera 1

Camera 2
?

?
?𝑲1, 𝑹1, 𝒕1

𝑲2, 𝑹2, 𝒕2

𝑲3, 𝑹3, 𝒕3

?

Recall: Calibration

Camera 3Camera 1

Camera 2

• Given a set of known 3D points seen by a camera, compute the camera parameters

?
?

?𝑲1, 𝑹1, 𝒕1

𝑲2, 𝑹2, 𝒕2

𝑲3, 𝑹3, 𝒕3

Triangulation
• Given projections of a 3D point in two or more images (with known

camera matrices), find the coordinates of the point

Triangulation
• Given projections of a 3D point in two or more images (with known

camera matrices), find the coordinates of the point

𝑿?

Triangulation
• Given projections of a 3D point in two or more images (with known

camera matrices), find the coordinates of the point

𝑶1 𝑶2

𝒙1
𝒙2

𝑿?

Triangulation
• We want to intersect the two visual rays corresponding to
𝒙1 and 𝒙2, but because of noise and numerical errors, they don’t meet
exactly

𝑶1 𝑶2

𝒙1
𝒙2

𝑿?

𝑶1 𝑶2

𝒙1
𝒙2

𝑿?

<latexit sha1_base64="hWVcTjzqBUZ6ZNrhZcIxcJWxeWs=">AAACH3icbVDLSgNBEJz1GeMr6tHLYBA8hV3R6DHoRW8RjAayS5id9CZDZh/O9AbDun/ixV/x4kER8ebfOHkcNFrQUFPVzXSXn0ih0ba/rLn5hcWl5cJKcXVtfWOztLV9o+NUcWjwWMaq6TMNUkTQQIESmokCFvoSbv3++ci/HYDSIo6ucZiAF7JuJALBGRqpXapmrh/Q+7ztuHCXioErIcBW5nIm6WVOH+jYt3NXiW4PvcmzmbdLZbtij0H/EmdKymSKerv06XZinoYQIZdM65ZjJ+hlTKHgEvKim2pIGO+zLrQMjVgI2svG9+V03ygdGsTKVIR0rP6cyFio9TD0TWfIsKdnvZH4n9dKMTj1MhElKULEJx8FqaQY01FYtCMUcJRDQxhXwuxKeY8pxtFEWjQhOLMn/yU3hxWnWjm+OirXzqZxFMgu2SMHxCEnpEYuSJ00CCeP5Jm8kjfryXqx3q2PSeucNZ3ZIb9gfX0DeHCinQ==</latexit>

x1 ⌘ [I|0]X
<latexit sha1_base64="r+JvII0k99nyYnnRkTFB3aDy4cA=">AAACH3icbVDJSgNBEO2JW4xb1KOXxiB4CjNBo8egF49RjAYyQ+jp1CSNPYvdNcEwzp948Ve8eFBEvPk3dpaD24OC1+9V0VXPT6TQaNufVmFufmFxqbhcWlldW98ob25d6ThVHFo8lrFq+0yDFBG0UKCEdqKAhb6Ea//mdOxfD0FpEUeXOErAC1k/EoHgDI3ULdcz1w/oXd6tuXCbiqErIcBO5nIm6UVO7+nEx9xVoj9Ab/ps591yxa7aE9C/xJmRCpmh2S1/uL2YpyFEyCXTuuPYCXoZUyi4hLzkphoSxm9YHzqGRiwE7WWT+3K6Z5QeDWJlKkI6Ub9PZCzUehT6pjNkONC/vbH4n9dJMTj2MhElKULEpx8FqaQY03FYtCcUcJQjQxhXwuxK+YApxtFEWjIhOL9P/kuualWnXj08P6g0TmZxFMkO2SX7xCFHpEHOSJO0CCcP5Im8kFfr0Xq23qz3aWvBms1skx+wPr8A8/+i6w==</latexit>

x2 ⌘ [R|t]X

Ignored camera
intrinsics cause
cameras are known!

<latexit sha1_base64="ANPG2FmlTq1XW4XBj553xdkbAGE=">AAAB83icbVBNS8NAEJ3Ur1q/oh69LBbBU0n8vghFLx4r2DbQhrDZbtqlm03Y3Ygl9G948aCIV/+MN/+N2zYHbX0w8Hhvhpl5YcqZ0o7zbZWWlldW18rrlY3Nre0de3evpZJMEtokCU+kF2JFORO0qZnm1EslxXHIaTsc3k789iOViiXiQY9S6se4L1jECNZG6nqBe42eAhd5wWlgV52aMwVaJG5BqlCgEdhf3V5CspgKTThWquM6qfZzLDUjnI4r3UzRFJMh7tOOoQLHVPn59OYxOjJKD0WJNCU0mqq/J3IcKzWKQ9MZYz1Q895E/M/rZDq68nMm0kxTQWaLoowjnaBJAKjHJCWajwzBRDJzKyIDLDHRJqaKCcGdf3mRtE5q7kXt/P6sWr8p4ijDARzCMbhwCXW4gwY0gUAKz/AKb1ZmvVjv1sestWQVM/vwB9bnD+zmkFM=</latexit>

X1 = x1X3

<latexit sha1_base64="hWVcTjzqBUZ6ZNrhZcIxcJWxeWs=">AAACH3icbVDLSgNBEJz1GeMr6tHLYBA8hV3R6DHoRW8RjAayS5id9CZDZh/O9AbDun/ixV/x4kER8ebfOHkcNFrQUFPVzXSXn0ih0ba/rLn5hcWl5cJKcXVtfWOztLV9o+NUcWjwWMaq6TMNUkTQQIESmokCFvoSbv3++ci/HYDSIo6ucZiAF7JuJALBGRqpXapmrh/Q+7ztuHCXioErIcBW5nIm6WVOH+jYt3NXiW4PvcmzmbdLZbtij0H/EmdKymSKerv06XZinoYQIZdM65ZjJ+hlTKHgEvKim2pIGO+zLrQMjVgI2svG9+V03ygdGsTKVIR0rP6cyFio9TD0TWfIsKdnvZH4n9dKMTj1MhElKULEJx8FqaQY01FYtCMUcJRDQxhXwuxKeY8pxtFEWjQhOLMn/yU3hxWnWjm+OirXzqZxFMgu2SMHxCEnpEYuSJ00CCeP5Jm8kjfryXqx3q2PSeucNZ3ZIb9gfX0DeHCinQ==</latexit>

x1 ⌘ [I|0]X
<latexit sha1_base64="r+JvII0k99nyYnnRkTFB3aDy4cA=">AAACH3icbVDJSgNBEO2JW4xb1KOXxiB4CjNBo8egF49RjAYyQ+jp1CSNPYvdNcEwzp948Ve8eFBEvPk3dpaD24OC1+9V0VXPT6TQaNufVmFufmFxqbhcWlldW98ob25d6ThVHFo8lrFq+0yDFBG0UKCEdqKAhb6Ea//mdOxfD0FpEUeXOErAC1k/EoHgDI3ULdcz1w/oXd6tuXCbiqErIcBO5nIm6UVO7+nEx9xVoj9Ab/ps591yxa7aE9C/xJmRCpmh2S1/uL2YpyFEyCXTuuPYCXoZUyi4hLzkphoSxm9YHzqGRiwE7WWT+3K6Z5QeDWJlKkI6Ub9PZCzUehT6pjNkONC/vbH4n9dJMTj2MhElKULEpx8FqaQY03FYtCcUcJQjQxhXwuxK+YApxtFEWjIhOL9P/kuualWnXj08P6g0TmZxFMkO2SX7xCFHpEHOSJO0CCcP5Im8kFfr0Xq23qz3aWvBms1skx+wPr8A8/+i6w==</latexit>

x2 ⌘ [R|t]X

<latexit sha1_base64="uLN6ufI5AtA4OF+JcsyFHZhOkMg=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0nq50UoevFYwbaBNoTNdtMu3WzC7kYIoX/DiwdFvPpnvPlv3LY5aOuDgcd7M8zMCxLOlLbtb6u0srq2vlHerGxt7+zuVfcPOipOJaFtEvNYugFWlDNB25ppTt1EUhwFnHaD8d3U7z5RqVgsHnWWUC/CQ8FCRrA2Ut/1Gzco8x3k+md+tWbX7RnQMnEKUoMCLb/61R/EJI2o0IRjpXqOnWgvx1Izwumk0k8VTTAZ4yHtGSpwRJWXz26eoBOjDFAYS1NCo5n6eyLHkVJZFJjOCOuRWvSm4n9eL9XhtZczkaSaCjJfFKYc6RhNA0ADJinRPDMEE8nMrYiMsMREm5gqJgRn8eVl0mnUncv6xcN5rXlbxFGGIziGU3DgCppwDy1oA4EEnuEV3qzUerHerY95a8kqZg7hD6zPH+/9kFU=</latexit>

X2 = y1X3

Affine coordinates of image point Remember camera is known,
And substitute

<latexit sha1_base64="hWVcTjzqBUZ6ZNrhZcIxcJWxeWs=">AAACH3icbVDLSgNBEJz1GeMr6tHLYBA8hV3R6DHoRW8RjAayS5id9CZDZh/O9AbDun/ixV/x4kER8ebfOHkcNFrQUFPVzXSXn0ih0ba/rLn5hcWl5cJKcXVtfWOztLV9o+NUcWjwWMaq6TMNUkTQQIESmokCFvoSbv3++ci/HYDSIo6ucZiAF7JuJALBGRqpXapmrh/Q+7ztuHCXioErIcBW5nIm6WVOH+jYt3NXiW4PvcmzmbdLZbtij0H/EmdKymSKerv06XZinoYQIZdM65ZjJ+hlTKHgEvKim2pIGO+zLrQMjVgI2svG9+V03ygdGsTKVIR0rP6cyFio9TD0TWfIsKdnvZH4n9dKMTj1MhElKULEJx8FqaQY01FYtCMUcJRDQxhXwuxKeY8pxtFEWjQhOLMn/yU3hxWnWjm+OirXzqZxFMgu2SMHxCEnpEYuSJ00CCeP5Jm8kjfryXqx3q2PSeucNZ3ZIb9gfX0DeHCinQ==</latexit>

x1 ⌘ [I|0]X
<latexit sha1_base64="r+JvII0k99nyYnnRkTFB3aDy4cA=">AAACH3icbVDJSgNBEO2JW4xb1KOXxiB4CjNBo8egF49RjAYyQ+jp1CSNPYvdNcEwzp948Ve8eFBEvPk3dpaD24OC1+9V0VXPT6TQaNufVmFufmFxqbhcWlldW98ob25d6ThVHFo8lrFq+0yDFBG0UKCEdqKAhb6Ea//mdOxfD0FpEUeXOErAC1k/EoHgDI3ULdcz1w/oXd6tuXCbiqErIcBO5nIm6UVO7+nEx9xVoj9Ab/ps591yxa7aE9C/xJmRCpmh2S1/uL2YpyFEyCXTuuPYCXoZUyi4hLzkphoSxm9YHzqGRiwE7WWT+3K6Z5QeDWJlKkI6Ub9PZCzUehT6pjNkONC/vbH4n9dJMTj2MhElKULEpx8FqaQY03FYtCcUcJQjQxhXwuxK+YApxtFEWjIhOL9P/kuualWnXj08P6g0TmZxFMkO2SX7xCFHpEHOSJO0CCcP5Im8kFfr0Xq23qz3aWvBms1skx+wPr8A8/+i6w==</latexit>

x2 ⌘ [R|t]X

<latexit sha1_base64="G58di/zRX/ONkH80YvFaAB6qc08=">AAACUHicbZFLaxsxFIXvOG3juq9puuxG1BQKBTPyNGk3hZBuunShfoBthEbW2CKaB9KdEDPMT8zGu/yObLpoaTW2S2O7F8R899wjJJ2Jcq0sBsGt1zh68PDRcfNx68nTZ89f+C9PBjYrjJB9kenMjCJupVap7KNCLUe5kTyJtBxGl1/q+fBKGquy9DsuczlN+DxVsRIcncT8+TXrfp7EhovSsJLSilwzSkYsfF+33Yos77VhtUaCjFa1PfxnJ7Uh3PXXbY3Iwor57aATrIscAt1CG7bVY/5qMstEkcgUhebWjmmQ47TkBpXQsmpNCitzLi75XI4dpjyRdlquA6nIW6fMSJwZt1Ika/X+jpIn1i6TyDkTjgu7P6vF/83GBcafpqVK8wJlKjYHxYUmmJE6XTJTRgrUSwdcGOXuSsSCu3TR/YOWC4HuP/kQBt0OPeucfvvQPr/YxtGE1/AG3gGFj3AOX6EHfRBwA3fwE355K++H97vhbax/v/AKdqrR+gMi7a8i</latexit>

x2 =
r11x1X3 + r12y1X3 + r13X3 + t1
r31x1X3 + r32y1X3 + r32X3 + t3

<latexit sha1_base64="v+EvqEpVGt2mBLr90Ggu0JykJJY=">AAACUHicbZFLSyQxFIVv9fhsXz3j0k2wEQShqYevzYCMG5cKtjZ0NyGVTrXB1IPkllgU9RNn425+x2xcKJpqW3xeCPXdc09IcirMlDTouv+cxo+Z2bn5hcXm0vLK6lrr568Lk+aaiy5PVap7ITNCyUR0UaISvUwLFodKXIbXx/X88kZoI9PkHItMDGM2TmQkOUMr0da4oP7vQaQZLzUtfa8it9QjPRrs1K1fkeJdG1QTJEj9qrYHb3ZSG4KP/rqtEWlQ0Vbb7biTIl/Bm0IbpnVKW3eDUcrzWCTIFTOm77kZDkumUXIlquYgNyJj/JqNRd9iwmJhhuUkkIpsWWVEolTblSCZqO93lCw2pohD64wZXpnPs1r8btbPMTocljLJchQJfzkoyhXBlNTpkpHUgqMqLDCupb0r4VfMpov2HzRtCN7nJ3+FC7/j7Xf2znbbR3+mcSzABmzCNnhwAEdwAqfQBQ5/4T88wKNz59w7Tw3nxfr6hXX4UI3mMyv1ryc=</latexit>

y2 =
r21x1X3 + r22y1X3 + r23X3 + t2
r31x1X3 + r32y1X3 + r32X3 + t3

Triangulation – Straightforward Approaches
• Above gives two possible points, average them
• Choose least squares X_3
• Find shortest segment connecting the two viewing rays and let 𝑿 be the

midpoint of that segment

𝑶1 𝑶2

𝒙1
𝒙2

𝑿

Triangulation: Nonlinear approach
• Find 𝑿 that minimizes

proj(𝑷!𝑿) − 𝒙! "
" + proj(𝑷"𝑿) − 𝒙" "

"

𝑿?

𝑷1𝑿

𝑷2𝑿

𝑶1 𝑶2

𝒙1
𝒙2

Minimize reprojection error

Structure from motion: Problem formulation
• Given: 𝑚	images of 𝑛 fixed 3D points such that (ignoring visibility)

𝒙𝑖𝑗	 ≅ 	𝑷𝑖	𝑿𝑗	, 𝑖	 = 	1, …	 , 𝑚, 	 𝑗	 = 	1, …	 , 𝑛	

• Problem: estimate 𝑚 projection matrices 𝑷𝑖 and 𝑛 3D points 𝑿𝑗 from the
𝑚𝑛 correspondences 𝒙𝑖𝑗

𝒙1𝑗

𝒙2𝑗
𝒙3𝑗

𝑿𝑗

𝑷1

𝑷2
𝑷3

Is SFM always uniquely solvable?

Source: N. Snavely

Necker cube

http://en.wikipedia.org/wiki/Necker_cube

Source: N. Snavely

Is SFM always uniquely solvable?
• Could actually happen in affine structure from motion:

Structure from motion ambiguity
• If we scale the entire scene by some factor 𝑘 and, at the same

time, scale the camera matrices by the factor of 1/𝑘, the
projections of the scene points remain exactly the same:

𝒙 ≅ 𝑷𝑿 =
1
𝑘𝑷 (𝑘𝑿)

• Without a reference measurement, it is impossible to recover
the absolute scale of the scene!

• In general, if we transform the scene using a transformation 𝑸
and apply the inverse transformation to the camera matrices,
then the image observations do not change:

𝒙 ≅ 𝑷𝑿 = 𝑷𝑸!" (𝑸𝑿)

Projective ambiguity
• With no constraints on the camera calibration matrices or on

the scene, we can reconstruct up to a projective ambiguity:

𝒙 ≅ 𝑷𝑿 = 𝑷𝑸;< 𝑸𝑿
𝑸 is a general full-rank 4×4 matrix

Projective ambiguity

Affine ambiguity
• If we impose parallelism constraints, we can get a

reconstruction up to an affine ambiguity:

Affine

𝒙 ≅ 𝑷𝑿 = 𝑷𝑸=;𝟏 𝑸=𝑿

𝑸= =
𝑨 𝒕
𝟎? 1

3×3
full-rank
matrix

3×1
translation

vector

Affine ambiguity

Similarity ambiguity
• A reconstruction that obeys orthogonality constraints on

camera parameters and/or scene

𝒙 ≅ 𝑷𝑿 = 𝑷𝑸@;𝟏 𝑸@𝑿

𝑸@ =
𝑠𝑹 𝒕
𝟎? 1

3×3
rotation
matrix

3×1
translation

vector

Similarity ambiguity

Outline: Structure from motion
• Problem definition and ambiguities
• Affine structure from motion

• Factorization

Affine structure from motion
• Let’s start with affine or weak perspective cameras

center at
infinity

Recall: Orthographic projection

Image World

Just drop the 𝑧 coordinate!

𝑥
𝑦
1

=
1 0 0 0
0 1 0 0
0 0 0 1

𝑥
𝑦
𝑧
1

General affine projection
• A general affine projection is a 3D-to-2D linear mapping plus

translation:

• In non-homogeneous coordinates:

𝑥
𝑦 =

𝑎!! 𝑎!" 𝑎!#
𝑎"! 𝑎"" 𝑎"#

𝑋
𝑌
𝑍

+
𝑡!
𝑡"

= 𝑨𝑿 + 𝒕

𝒙

𝑿𝒂1
𝒂2

Projection of
world origin

𝒂!, 𝒂": rows of projection matrix

𝑷 =
𝑎!! 𝑎!" 𝑎!# 𝑡!
𝑎"! 𝑎"" 𝑎"# 𝑡"
0 0 0 1

= 𝑨 𝒕
𝟎$ 1

Affine structure from motion
• Given: 𝑚 images of 𝑛 fixed 3D points such that

 𝒙𝑖𝑗	 = 	𝑨𝑖	𝑿𝑗	 + 𝒕𝑖	, 	 𝑖	 = 	1, …	 , 𝑚, 𝑗	 = 	1, …	 , 𝑛

• Problem: use the 𝑚𝑛 correspondences 𝒙𝑖𝑗 to estimate 𝑚 projection
matrices 𝑨𝑖 and translation vectors 𝒕𝑖, and 𝑛 points 𝑿𝑗

• The reconstruction is defined up to an arbitrary affine transformation 𝑸
(12 degrees of freedom):

𝑨 𝒕
0$ 1 → 𝑨 𝒕

0$ 1 𝑸%!, 𝑿&
1

→ 𝑸 𝑿&
1

• How many knowns and unknowns for 𝑚 images and 𝑛 points?
• 2𝑚𝑛 knowns and 8𝑚	 + 	3𝑛	unknowns
• To be able to solve this problem, we must have 2𝑚𝑛	 ≥ 	8𝑚 + 3𝑛 − 12

(affine ambiguity takes away 12 dof)
• E.g., for two views, we need four point correspondences

Affine structure from motion
• First, center the data by subtracting the centroid of the image

points in each view:

= 𝑨'𝑿& + 𝒕' −
1
𝑛
S
()!

*

𝑨'𝑿(+ 𝒕'

T𝒙'& = 𝒙'& −
1
𝑛
S
()!

*

𝒙'(

= 𝑨' 𝑿& −
1
𝑛
S
()!

*

𝑿(

= 𝑨'U𝑿&

Affine structure from motion
• After centering, each normalized 2D point 2𝒙#$	is related to the

3D point by

2𝒙#$ = 𝑨#5𝑿$

• We can get rid of the need to center the 3D data (and the
translation ambiguity) by defining the origin of the world
coordinate system as the centroid of the 3D points

Affine structure from motion
• Let’s create a 2𝑚	×	𝑛	data (measurement) matrix:

𝑫 =

/𝒙<< /𝒙<V ⋯ /𝒙<W
/𝒙V< /𝒙VV ⋯ /𝒙VW
⋮ ⋮ ⋱ ⋮

/𝒙X< /𝒙XV ⋯ /𝒙XW

=

𝑨<
𝑨"
⋮
𝑨+

𝑿< 𝑿V ⋯ 𝑿W

points (𝑛)

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: A factorization method.
IJCV, 9(2):137-154, November 1992.

cameras
(2	𝑚)

/𝒙Z[= 𝑨Z𝑿[

http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape%20and%20motion%20from%20image%20streams%20under%20orthography.pdf

Affine structure from motion
• Let’s create a 2𝑚	×	𝑛	data (measurement) matrix:

𝑫 =

/𝒙<< /𝒙<V ⋯ /𝒙<W
/𝒙V< /𝒙VV ⋯ /𝒙VW
⋮ ⋮ ⋱ ⋮

/𝒙X< /𝒙XV ⋯ /𝒙XW

=

𝑨<
𝑨V
⋮
𝑨X

𝑿< 𝑿V ⋯ 𝑿W

• What must be the rank of the measurement matrix 𝑫 = 𝑴𝑺?

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: A factorization method.
IJCV, 9(2):137-154, November 1992.

cameras
(2	𝑚	×	3)

points (3	×	𝑛)
𝑴

𝑺

http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape%20and%20motion%20from%20image%20streams%20under%20orthography.pdf

Factorizing the measurement matrix
• We want:

𝑫 𝑴 𝑺×=2𝑚

𝑛 3

Factorizing the measurement matrix
• Perform SVD of 𝑫:

×= ×𝑫
2𝑚×𝑛

𝑼
2𝑚×𝑛

𝚺
𝑛×𝑛

𝑽!
𝑛×𝑛

Factorizing the measurement matrix
• Keep top 3 singular values:

×= ×𝑫
2𝑚×𝑛

𝑽"!
3×𝑛

𝑼"
2𝑚×3

𝚺"
3×3

• What to do about 𝚺#?

• One solution: 𝑴 = 𝑼#𝚺#
!
" , 𝑺 = 𝚺#

!
"𝑽#$

• This is the closest approximation of 𝑫
with a rank-3 matrix in terms of
Frobenius norm

Factorizing the measurement matrix
• One possible solution:

×=𝑫
2𝑚×𝑛

𝑺
3×𝑛

𝑴
2𝑚×3

𝑴 = 𝑼%𝚺%
"
&	

𝑺 = 𝚺%
,
-𝑽%'

• Are there other solutions?

Factorizing the measurement matrix
• Other possible solutions:

×=𝑫
2𝑚×𝑛

𝑺
3×𝑛

𝑴
2𝑚×3

× ×𝑸
3×3

𝑸#𝟏
3×3

We can estimate 𝑸 to give the camera
matrices in 𝑴 desirable properties, like
orthographic projection

Eliminating the affine ambiguity
• So far, we have obtained one solution:

𝑫 =

𝑨"
𝑨&
⋮
𝑨(

𝑿" 𝑿& ⋯ 𝑿)

• We want:

𝑫 =

𝑨"𝑸
𝑨&𝑸
⋮

𝑨(𝑸
𝑸!𝟏𝑿" 𝑸!𝟏𝑿& ⋯ 𝑸!𝟏𝑿)

such that each camera matrix 𝑨#𝑸 represents orthographic
projection, i.e., has orthonormal axes (rows)

2𝑚×3

3×𝑛

Eliminating the affine ambiguity
• Let 𝒂! and 𝒂" be the rows of a 2×3 orthographic projection matrix. Then

• This translates into 3𝑚 constraints on the 9 entries of 𝑸:
𝑨'𝑸 𝑨'𝑸 $ = 𝑨' 𝑸𝑸$ 𝑨'$ = 𝐈"×", 𝑖 = 1, … ,𝑚

• Are the constraints linear?
• First, solve for 𝑳	 = 𝑸𝑸$

• Recover 𝑸 from 𝑳 by Cholesky decomposition
• Update 𝑴 to 𝑴𝑸, 𝑺 to 𝑸%𝟏𝑺

𝒙

𝑿𝒂1

𝒂2

𝒂1 · 𝒂2	 = 0
𝒂! " = 𝒂" " = 1

Reconstruction results

C. Tomasi and T. Kanade, Shape and motion from image streams under orthography:
A factorization method, IJCV 1992

https://people.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape%20and%20motion%20from%20image%20streams%20under%20orthography.pdf
https://people.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape%20and%20motion%20from%20image%20streams%20under%20orthography.pdf

Dealing with missing data
• So far, we have assumed that all points are visible in all views
• In reality, the measurement matrix typically looks something

like this:

• Possible solution: decompose matrix into dense sub-blocks,
factorize each sub-block, and fuse the results
• Unfortunately, finding dense maximal sub-blocks of the matrix is

NP-complete (equivalent to finding maximal cliques in a graph)

cameras

points

Dealing with missing data
• Incremental bilinear refinement:

Perform factorization
on a dense sub-block

Solve for a new 3D
point visible by at
least two known
cameras –
triangulation

Solve for a new
camera that sees at
least three known 3D
points – calibration

F. Rothganger et al. Segmenting, Modeling, and Matching Video Clips Containing Multiple Moving Objects. PAMI 2007.

http://www-cvr.ai.uiuc.edu/ponce_grp/publication/paper/pami06.pdf

Outline: Structure from motion
• Problem definition and ambiguities
• Affine structure from motion

• Factorization
• Projective structure from motion

Projective structure from motion
• Given: 𝑚	images of 𝑛 fixed 3D points such that (ignoring visibility):

𝒙𝑖𝑗 ≅ 𝑷𝑖	𝑿𝑗	, 𝑖	 = 	1,…	,𝑚, 	 𝑗	 = 	1,…	, 𝑛	

• Problem: estimate 𝑚 projection matrices 𝑷𝑖 and 𝑛 3D points 𝑿𝑗 from
the 𝑚𝑛 correspondences 𝒙𝑖𝑗

𝒙1𝑗

𝒙2𝑗
𝒙3𝑗

𝑿𝑗

𝑷1

𝑷2
𝑷3

Projective structure from motion
• Given: 𝑚	images of 𝑛 fixed 3D points such that (ignoring visibility):

𝒙𝑖𝑗 ≅ 𝑷𝑖	𝑿𝑗	, 𝑖	 = 	1,…	,𝑚, 	 𝑗	 = 	1,…	, 𝑛	

• Problem: estimate 𝑚 projection matrices 𝑷𝑖 and 𝑛 3D points 𝑿𝑗 from
the 𝑚𝑛 correspondences 𝒙𝑖𝑗

• With no calibration info, cameras and points can only be recovered
up to a 4×4 projective transformation 𝑸:

𝑿	 → 	𝑸𝑿,𝑷	 → 	𝑷𝑸!𝟏

• We can solve for structure and motion when 2𝑚𝑛 ≥ 11𝑚 + 3𝑛	 − 15
• For two cameras, at least 7 points are needed

Projective SFM: Two-camera case
1. Estimate fundamental matrix 𝑭 between the two views
2. Set first camera matrix to [𝑰	|	𝟎]
3. Then the second camera matrix is given by [𝑨	|	𝒕] where 𝒕 is

the epipole (𝑭𝑇𝒕 = 𝟎) and 𝑨 = −[𝒕
×
]𝑭

• In practice, SFM pipelines use guesses of intrinsic
parameters and the five-point algorithm

F&P sec. 8.3.2

https://pdfs.semanticscholar.org/c288/7c83751d2c36c63139e68d46516ba3038909.pdf

Incremental structure from motion

ca
m

er
as

points

• Initialize motion from two images using
fundamental matrix

• Initialize structure by triangulation
• For each additional view:

• Determine projection matrix of new camera
using all the known 3D points that are visible
in its image – calibration

Incremental structure from motion

ca
m

er
as

points

• Initialize motion from two images using
fundamental matrix

• Initialize structure by triangulation
• For each additional view:

• Determine projection matrix of new camera
using all the known 3D points that are visible
in its image – calibration

• Refine and extend structure: compute new 3D
points, re-optimize existing points that are also
seen by this camera – triangulation

Incremental structure from motion

ca
m

er
as

points

• Initialize motion from two images using
fundamental matrix

• Initialize structure by triangulation
• For each additional view:

• Determine projection matrix of new camera
using all the known 3D points that are visible
in its image – calibration

• Refine and extend structure: compute new 3D
points, re-optimize existing points that are also
seen by this camera – triangulation

• Refine structure and motion: bundle
adjustment

Bundle adjustment
• Non-linear method for refining structure and motion
• Minimize reprojection error (with lots of bells and whistles):

R
#+"

(

R
$+"

)

𝑤#$𝑑 𝒙#$ − proj 𝑷#𝑿$
&

𝒙1𝑗

𝒙2𝑗

𝒙3𝑗

𝑿𝑗

𝑷1

𝑷2

𝑷3

𝑷1𝑿𝑗

𝑷2𝑿𝑗
𝑷3𝑿𝑗

visibility flag: is
point 𝑗 visible in

view 𝑖?

B. Triggs et al. Bundle adjustment – A modern synthesis. International Workshop on Vision Algorithms, 1999

https://hal.inria.fr/inria-00548290/document

Outline: Structure from motion
• Problem definition and ambiguities
• Affine structure from motion

• Factorization
• Projective structure from motion

• Incremental reconstruction, bundle adjustment
• Modern structure from motion pipeline

Representative SFM pipeline

N. Snavely, S. Seitz, and R. Szeliski. Photo tourism: Exploring photo collections in 3D. SIGGRAPH 2006
http://phototour.cs.washington.edu/

http://phototour.cs.washington.edu/
http://phototour.cs.washington.edu/

Feature detection

Detect SIFT features

Source: N. Snavely

Feature detection

Detect SIFT features

Source: N. Snavely

Other popular feature types: SURF, ORB, BRISK, …

https://en.wikipedia.org/wiki/Speeded_up_robust_features
https://en.wikipedia.org/wiki/Oriented_FAST_and_rotated_BRIEF
http://www.margaritachli.com/papers/ICCV2011paper.pdf

Feature matching

Match features between each pair of images

Source: N. Snavely

Feature matching

Use RANSAC to estimate fundamental matrix between
each pair

Source: N. Snavely

Feature matching

Use RANSAC to estimate fundamental matrix between
each pair

Image source

https://www.cc.gatech.edu/~hays/compvision/proj3/

Feature matching

Use RANSAC to estimate fundamental matrix between
each pair

Source: N. Snavely

Image connectivity graph

(graph layout produced using the Graphviz toolkit: http://www.graphviz.org/)

Source: N. Snavely

http://www.graphviz.org/

Incremental SFM
• Pick a pair of images with lots of inliers (and preferably, good

EXIF data)
• Initialize intrinsic parameters (focal length, principal point) from EXIF
• Estimate extrinsic parameters (𝑹 and 𝒕) using five-point algorithm
• Use triangulation to initialize model points

• While remaining images exist
• Find an image with many feature matches with images in the model
• Run RANSAC on feature matches to register new image to model
• Triangulate new points
• Perform bundle adjustment to re-optimize everything
• Optionally, align with GPS from EXIF data or ground control points

https://pdfs.semanticscholar.org/c288/7c83751d2c36c63139e68d46516ba3038909.pdf

The devil is in the details
• Handling degenerate configurations (e.g., homographies)
• Filtering out incorrect matches
• Dealing with repetitions and symmetries

Repetitive structures cause catastrophic failures

https://demuc.de/tutorials/cvpr2017/sparse-modeling.pdf

https://demuc.de/tutorials/cvpr2017/sparse-modeling.pdf

Repetitive structures cause catastrophic failures

R. Kataria et al. Improving Structure from Motion with Reliable Resectioning. 3DV 2020

https://rajbirkataria.com/assets/ImprovingStructurefromMotionwithReliableResectioning.pdf

Repetitive structures cause catastrophic failures

R. Kataria et al. Improving Structure from Motion with Reliable Resectioning. 3DV 2020

https://rajbirkataria.com/assets/ImprovingStructurefromMotionwithReliableResectioning.pdf

The devil is in the details
• Handling degenerate configurations (e.g., homographies)
• Filtering out incorrect matches
• Dealing with repetitions and symmetries
• Reducing error accumulation and closing loops

Reducing error accumulation and closing loops

A. Holynski et al. Reducing Drift in Structure From Motion Using Extended Features. arXiv 2020

https://arxiv.org/pdf/2008.12295.pdf

Reducing error accumulation and closing loops

A. Holynski et al. Reducing Drift in Structure From Motion Using Extended Features. arXiv 2020

https://arxiv.org/pdf/2008.12295.pdf

The devil is in the details
• Handling degenerate configurations (e.g., homographies)
• Filtering out incorrect matches
• Dealing with repetitions and symmetries
• Reducing error accumulation and closing loops
• Making the whole thing efficient!

• See, e.g., Towards Linear-Time Incremental Structure from Motion

http://ccwu.me/vsfm/vsfm.pdf

SFM software
• Bundler
• OpenSfM
• OpenMVG
• VisualSFM
• COLMAP
• See also Wikipedia’s list of toolboxes

http://www.cs.cornell.edu/~snavely/bundler/
https://github.com/mapillary/OpenSfM
https://github.com/openMVG/openMVG
http://ccwu.me/vsfm/
https://colmap.github.io/
https://en.wikipedia.org/wiki/Structure_from_motion%23Structure_from_motion_software_toolboxes

