Multi-view stereo

Many slides adapted from S. Seitz, Y. Furukawa, N. Snavely
Multi-view stereo

- Goal: given several images of the same object or scene, compute a representation of its 3D shape

Source: C. Hernandez, N. Snavely
Multi-view stereo

• Goal: given several images of the same object or scene, compute a representation of its 3D shape
• “Images of the same object or scene”
 • Arbitrary number of images (from two to thousands)
 • Arbitrary camera positions (special rig, camera network or video)
 • Calibration may be known or unknown
Multi-view stereo

- Goal: given several images of the same object or scene, compute a representation of its 3D shape
- “Images of the same object or scene”
 - Arbitrary number of images (from two to thousands)
 - Arbitrary camera positions (special rig, camera network or video)
 - Calibration may be known or unknown
- “Representation of 3D shape”
 - Depth maps
 - Meshes
 - Point clouds
 - Patch clouds
 - Volumetric models
 -
Outline

- Applications and motivation
- Plane sweep stereo
- Depth map fusion
- Patch-based multi-view stereo (PMVS)
- Stereo from Internet photo collections
- Recent trends
Applications

Whistle in the Form of Female Figure 600 AD - 900 AD

Los Angeles County Museum of Art

Source: N. Snavely
Applications

Source: N. Snavely
Applications

Source: N. Snavely
Applications

• Enable inspection in hard to reach areas with drone photos and 3D reconstruction
• Create 3D model from images
• Provide tools to inspect on images and map interactions to 3D

Source: D. Hoiem
Multi-view stereo: Basic idea

Source: Y. Furukawa
Why MVS?

• Different points on the object’s surface will be more clearly visible in some subset of cameras
 • Could have high-res closeups of some regions
 • Some surfaces are foreshortened from certain views
 • Some points may be occluded entirely in certain views

Source: N. Snavely
Cameras 4 and 5 can more clearly see point p

Source: N. Snavely
Cameras 3 and 4 can more clearly see point q

Source: N. Snavely
Camera 5 can’t see point r
Camera 1 can't see point s

Source: N. Snavely
Why MVS?

• Different points on the object’s surface will be more clearly visible in some subset of cameras
 • Could have high-res closeups of some regions
 • Some surfaces are foreshortened from certain views
 • Some points may be occluded entirely in certain views
• More measurements per point can reduce error

Source: N. Snavely
More measurements reduce triangulation error
More measurements reduce triangulation error

Source: N. Snavely
Outline

• Applications and motivation
• Plane sweep stereo
• Depth map fusion
Plane sweep stereo

- Sweep plane across a range of depths w.r.t. a reference camera
- For each depth, project each input image onto that plane (homography) and compare the resulting stack of images

R. Collins, A space-sweep approach to true multi-image matching, CVPR 1996
Plane sweep stereo

- Sweep plane across a range of depths w.r.t. a reference camera
- For each depth, project each input image onto that plane (homography) and compare the resulting stack of images

R. Collins, A space-sweep approach to true multi-image matching, CVPR 1996
Plane sweep stereo: Key idea

Image 1

Reference image

Image 2

Sweeping plane

Scene surface
Plane sweep stereo: Key idea

Image 1

Reference image

Image 2
Does this always work?
Plane sweep stereo: Fast implementation

• For each depth plane
 • Compute homographies projecting each image onto that depth plane
 • For each pixel in the composite image stack, compute the variance
• For each pixel, select the depth that gives the lowest variance

Merging depth maps

- Given a group of images, compute a depth map using each view as a reference
- Merge multiple depth maps into a volume or a mesh (see, e.g., Curless and Levoy, 1996)
Volumetric fusion, I

Depths from cameras read into a voxel space yield likely labels for SOME voxels (blue – empty; pink – occupied)

Q: what about other voxels?

Figure 3.21: An example of how 3D MRF cost function should be set from a single depthmap.

Furukawa + Hernandez, 15, Multi-View Stereo: A tutorial
Volumetric fusion, II

Other voxels:

- ideally, agree with original estimates
- agree with neighbors

This yields a cost function that can be minimized (rather like in stereo above)

Figure 3.21: An example of how 3D MRF cost function should be set from a single depthmap.
Figure 3.23: One of the earliest volume fusion techniques based on the volumetric graph-cuts by Vogiatzis, Torr and Cipolla [191]. (Figure courtesy of Vogiatzis et al.)
Fast depth map fusion using height maps

- Start with a cluster of registered views (from SFM on Internet photo collections)

J.-M. Frahm et al., Building Rome on a Cloudless Day, ECCV 2010
D. Gallup et al. 3D Reconstruction using an n-Layer Heightmap. DAGM 2010
Fast depth map fusion using height maps

- Obtain a (noisy) depth map for every view using plane sweeping stereo with normalized cross-correlation

J.-M. Frahm et al., Building Rome on a Cloudless Day, ECCV 2010
D. Gallup et al. 3D Reconstruction using an n-Layer Heightmap. DAGM 2010
Fast depth map fusion using height maps

- Enforces vertical facades
- One continuous surface, no holes
- Fast to compute, low memory complexity

J.-M. Frahm et al., *Building Rome on a Cloudless Day*, ECCV 2010
D. Gallup et al. *3D Reconstruction using an n-Layer Heightmap*. DAGM 2010
Fast depth map fusion using height maps

YouTube Video

J.-M. Frahm et al., Building Rome on a Cloudless Day, ECCV 2010
Outline

- Applications and motivation
- Plane sweep stereo
- Depth map fusion
- Patch-based multi-view stereo (PMVS)
- Stereo from Internet photo collections
Patch-based multi-view stereo (PMVS)

1. Detect keypoints
2. Triangulate a sparse set of initial matches
3. Iteratively expand matches to nearby locations
4. Use visibility constraints to filter out false matches
5. Perform surface reconstruction

PMVS software
Patch-based multi-view stereo (PMVS)

Y. Furukawa and J. Ponce, Accurate, Dense, and Robust Multi-View Stereopsis, CVPR 2007. PMVS software
Stereo from community photo collections

- Need *structure from motion* to recover unknown camera parameters
- Need *view selection* to find good groups of images on which to run dense stereo
Local view selection

M. Goesele et al., Multi-View Stereo for Community Photo Collections, ICCV 2007
Local view selection

M. Goesele et al., Multi-View Stereo for Community Photo Collections, ICCV 2007
Local view selection

M. Goesele et al., Multi-View Stereo for Community Photo Collections, ICCV 2007
Local view selection

Notre Dame de Paris

653 images
313 photographers

M. Goesele et al., Multi-View Stereo for Community Photo Collections, ICCV 2007
Local view selection

M. Goesele et al., Multi-View Stereo for Community Photo Collections, ICCV 2007
Local view selection

Model merged from 72 depth maps

Model from 56 depth maps with laser scan overlaid (90% of points within 0.25% of ground truth)

M. Goesele et al., Multi-View Stereo for Community Photo Collections, ICCV 2007
Towards Internet-scale multi-view stereo

Y. Furukawa, B. Curless, S. Seitz and R. Szeliski, Towards Internet-scale Multi-view Stereo, CVPR 2010
Towards Internet-scale multi-view stereo

YouTube video, CMVS software

Y. Furukawa, B. Curless, S. Seitz and R. Szeliski, Towards Internet-scale Multi-view Stereo, CVPR 2010
The Visual Turing Test for scene reconstruction

Fig. 6. Reference image with filtered depths and normals for crowd-sourced images.

[Results video](https://www.youtube.com/watch?v=example_video_id)
Outline

• Applications and motivation
• Plane sweep stereo
• Patch-based multi-view stereo (PMVS)
• Stereo from Internet photo collections
• Recent trends
Ongoing research directions

- **Challenging lighting conditions**
- **Indoor modeling**
- **Ground/aerial**
- **Dynamic reconstruction**
Deep learning for MVS

Y. Yao et al. *MVSNet: Depth Inference for Unstructured Multi-view Stereo*. ECCV 2018
Deep learning for MVS

Y. Yao et al. *MVSNet: Depth Inference for Unstructured Multi-view Stereo*. ECCV 2018
Deep learning for improving SFM

P. Lindenberger et al. Pixel-Perfect Structure-from-Motion with Featuremetric Refinement. ICCV 2021