Recognition: Past, present, future?

| Benozzo Gozzoli, Journey
of the Magi, c. 1459
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Recall: Origins of computer vision

Pattern Classification
and Scene Analysis

Richard O.Duda and
Peter E. Hart

Hough, 1959 Roberts, 1963 Rosenfeld, 1969 Duda & Hart, 1972



https://dspace.mit.edu/handle/1721.1/11589
https://inspirehep.net/literature/919922

History of recognition: Geometric alignment
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Grimson & Lozano-Perez (1984)

Ayache & Faugeras (1986) Huttenlocher & Ullman (1987)



History of recognition: Hierarchies of parts

Human
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Figures from Marr’s Vision (1982)



http://s-f-walker.org.uk/pubsebooks/epubs/Marr%5d_Vision_A_Computational_Investigation.pdf

History of recognition: Deformable templates
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L(EV)A for hair. (Density at a point is proportional
to probability that hair is present at that loca-
tion.)

Original picture. Noisy picture (sensed scene) as used in experiment.

M. Fischler and R. Elschlager, The representation and matching of pictorial structures,
IEEE Trans. on Computers, 1973



http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.118.7951&rep=rep1&type=pdf

Hlstory of recognition: Appearance-based models

M. Turk and A. Pentland, Face recognition using
eigenfaces, CVPR 1991
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H. Murase and S. Nayar, Visual learning and recognition
of 3-d objects from appearance, IJCV 1995



https://sites.cs.ucsb.edu/~mturk/Papers/mturk-CVPR91.pdf
http://murase.m.is.nagoya-u.ac.jp/~murase/pdf/704-pdf.pdf

History of recognition: Features and classifiers
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Schneiderman & Kanade (1998) Viola & Jones (2001)



History of recognition: Deformable templates

Pictorial structures revisited Discriminatively trained deformable part-based models
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Felzenszwalb & Huttenlocher (2000) Felzenszwalb et al. (2008)



History of recognition: Constellation models

Motorbike shape model T e emwl - -t
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Weber, Welling & Perona (2000), Fergus, Perona & Zisserman (2003)



History of recognition: Bags of keypoints
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Csurka et al. (2004), Willamowski et al. (2005), Grauman & Darrell (2005), Sivic et al. (2003, 2005)



Spatial pyramids

* Orderless pooling of local features over a coarse grid

(I |

level O level 1 level 2

Lazebnik, Schmid & Ponce (CVPR 2006)




Spatial pyramids

 (Caltech101 classification results:

Weak features (16) Strong features (200)

Level || Single-level = Pyramid | Single-level = Pyramid
0 15.5 £0.9 41.2 +1.2

1 314 +1.2 328 +1.3 | 559+0.9 57.0+£0.8

2 472 +1.1 493414 | 63.6 0.9 64.6 0.8

3 522 +0.8 540=+1.1 | 60.3+0.9 64.6£0.7




History of recognition: Neural networks

Perceptrons Back-propagation Neocognitron
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Krizhevsky et al. (2012)

LeCun et al. (1998)



Outline

 Brief history of recognition

 Different “dimensions” of recognition
« What type of content?
« What type of output?
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Recognition: What type of content?

Object instance recognition Object category recognition

» Beyond still images: video, RGBD data, point clouds, multimodal data...



Recognition: What type of output?

Image classification Object detection

person, sheep, dog

* And beyond: depth/3D structure prediction, image description, etc.



Recognition: What type of output?

Classification: labels

Regression: continuous values

Dense prediction: an output at every image location
Structured prediction: combinatorial structures
Natural language

Etc.
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Figure source


http://www.image-net.org/challenges/LSVRC/
https://web.eecs.umich.edu/~justincj/slides/eecs498/WI2022/598_WI2022_lecture01.pdf

Regression

Date prediction Location prediction

Vittayakorn et al. (2017)

Image colorization

Zhang et al. (2016) Wang et al. (2017)



https://arxiv.org/pdf/1705.04838.pdf
http://www.tamaraberg.com/papers/sirion_wacv2017.pdf
https://richzhang.github.io/colorization/
https://arxiv.org/pdf/1712.00175.pdf

Dense and structured prediction

Bounding box prediction,
dense prediction

Keypoint prediction

K. He, G. Gkioxari, P. Dollar, and R. Girshick, Mask R-CNN, ICCV 2017


https://research.fb.com/wp-content/uploads/2017/08/maskrcnn.pdf

Natural language prediction

Image captioning Visual question answering

‘man in black shirt is playing

“construction worker in orange
guitar.”

safety vest is working on road."

“two young girls are playing with
lego toy."

What color are her eyes?

How many slices of pizza are there?
What is the mustache made of? Is this a vegetarian pizza?

>C‘V>/
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"black and white dog jumps over
bar!

"girl in pink dress is jumping in "young girl in pink shirt is
air"

swinging on swing."

Is this person expecting company? Does it appear to be iny?
What is just under the tree?

Does this person have 20/20 vision?

A. Karpathy, L. Fei-Fei. Deep Visual-Semantic Alignments for S. Antol et al. VQA: Visual question answering. ICCV 2015
Generating Image Descriptions. CVPR 2015



https://cs.stanford.edu/people/karpathy/deepimagesent/
https://openaccess.thecvf.com/content_iccv_2015/papers/Antol_VQA_Visual_Question_ICCV_2015_paper.pdf

Announcements and reminders

* Quiz 4 will be out 9AM this Thursday, December 1, through
9AM next Monday, December 5

« Assignment 5 is due next Tuesday, December 6
* Final project reports are due Monday, December 12
- Extra credit project presentations next week on Zoom



Last time: Overview of recognition

 Brief history of recognition

 Different “dimensions” of recognition
« What type of content?
« What type of output?
« What type of supervision?

 Trends
« Saturation of supervised learning
* Transformers
* Vision-language models
* “Universal” recognition systems
« Text-to-image generation
* From vision to action



Recognition: What type of supervision?

Semi-supervised:
labels for a small portion
of training data

Weakly supervised:

Unsupervised: noisy labels, labels not
no labels exactly for the task of
interest

Self-supervised:
same as unsupervised?

Supervised:
clean, complete
training labels
for the task of
interest



Unsupervised learning

* Clustering

Discover groups of “similar” data points

cute rabbit bunny animal cheerleader football girls  bird birds nature wildlife nature macro flower
baby adorable pet basketball girls dance animal booby eagle closeup green insect
funny animals
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hawk flight

university sports college bravo red yellow

music concert rock live  city urban manhattan new home design office house  portrait face self girl
festival band scientists  building downtown night interior kitchen fashion woman eyes smile
dance drum architecture buildings work room child portraits

i 18
DAFL

abandoned decay old underwater fish diving autumn trees tree snow winter ice cold
urban rust industrial scuba coral sea park fall leaves nature trees mountains

forest fog mist white mountain
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. Y. Gong, Q. Ke, M. Isard, and S. Lazebnik. A Multi-View
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ﬁqu‘“”n Embedding Space for Modeling Internet Images, Tags, and Their

98 EHE BEER% | Semantics. IJCV 2014

factory jail rusty ocean reef dive



http://slazebni.cs.illinois.edu/publications/yunchao_cca13.pdf

Unsupervised learning

Dimensionality reduction, manifold learning

* Discover a lower-dimensional surface on which the data lives
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D. Kingma and M. Welling, Auto-Encoding Variational Bayes, ICLR 2014


https://arxiv.org/pdf/1312.6114.pdf

Unsupervised learning

« Learning the data distribution

« Density estimation: Find a function that approximates the probability
density of the data (i.e., value of the function is high for “typical”

points and low for “atypical” points)
« An extremely hard problem for high-dimensional data...




Unsupervised learning

« Learning the data distribution

« Learning to sample: Produce samples from a data distribution that
mimics the training set

Generative adversarial networks (GANSs)

lan Goodfellow ’
y @goodfellow_ian

4.5 years of GAN progress on face generation.
arxiv.org/abs/1406.2661 arxiv.org/abs/1511.06434
arxiv.org/abs/1606.07536 arxiv.org/abs/1710.10196
arxiv.org/abs/1812.04948
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6:40 PM - Jan 14, 2019 ©)


https://arxiv.org/abs/1511.06434

Unsupervised learning

Learning the data distribution

» Learning to sample: Produce samples from a data distribution that
mimics the training set

Denoising diffusion probabilistic models (DDPMs)
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https://hojonathanho.github.io/diffusion/

Self-supervised or predictive learning

« Use part of the data to predict other parts of the data

« Example: Image colorization

R. Zhang et al., Colorful Image Colorization, ECCV 2016


http://richzhang.github.io/colorization/

Self-supervised or predictive learning

« Use part of the data to predict other parts of the data
« Example: Future prediction

visual foresight

unlabeled video
experience

Prediction 1

Prediction 2

J. Walker et al. An Uncertain Future: Forecasting from C. Finn and S. Levine. Deep Visual Foresight for Planning
Static Images Using Variational Autoencoders. ECCV 2016 Robot Motion. ICRA 2017. YouTube video



https://arxiv.org/pdf/1610.00696.pdf
https://www.youtube.com/watch?v=6k7GHG4IUCY
http://arxiv.org/pdf/1606.07873.pdf

Self-supervised or predictive learning

« Use part of the data to predict other parts of the data
« Example: Grasp prediction

L. Pinto and A. Gupta. Supersizing self-supervision: Learning to grasp from 50K tries and 700 robot hours. ICRA 2016

YouTube video



https://arxiv.org/pdf/1509.06825.pdf
https://www.youtube.com/watch?v=oSqHc0nLkm8

Beyond batch offline learning

» Reinforcement learning

» Active learning
 Lifelong learning



Reinforcement learning

« Learn from (possibly sparse) rewards in a sequential
environment

Playing video games

DQN

Input

Image convolutions

Hidden layers

Game controller action values

Output

Video

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, |. Antonoglou, D. Wierstra, M. Riedmiller,
Human-level control through deep reinforcement learning, Nature 2015



https://youtu.be/cjpEIotvwFY
http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf

Reinforcement learning

« Learn from (possibly sparse) rewards in a sequential

environment
Sensorimotor learning

Fig. 1: Our method learns visuomotor policies that directly
use camera image observations (left) to set motor torques on
a PR2 robot (right). Video

S. Levine, C. Finn, T. Darrell and P. Abbeel, End-to-End Training of Deep Visuomotor Policies, JMLR 2016



https://sites.google.com/site/visuomotorpolicy/
http://arxiv.org/abs/1504.00702

Active learning

* The learning algorithm can choose its own training examples,
or ask a “teacher” for an answer on selected inputs

Annotators
Current . 7
»| category ssue request:
models “Get a full
segmentation on

image #31.”

Partially and weakly
labeled data

Unlabeled data Labeled data

S. Vijayanarasimhan and K. Grauman. Cost-Sensitive Active Visual Category Learning. IJCV 2010



http://vision.cs.utexas.edu/projects/others/ijcv-preprint.pdf

Lifelong or continual learning

/

Figure 1: Wanderlust: Imagine an embodied agent is walking on the street. It may observe new classes and old classes
simultaneously. The agent needs to learn fast given only a few samples (red) and recognize the subsequent instances of the
class once a label has been provided (green). In this work, we introduce a new online continual object detection benchmark
through the eyes of a graduate student to continuously learn emerging tasks in changing environments.

J. Wang et al. Wanderlust: Online Continual Object Detection in the Real World. ICCV 2021



https://oakdata.github.io/
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Outgrowing ImageNet
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Figure source


http://www.image-net.org/challenges/LSVRC/
https://web.eecs.umich.edu/~justincj/slides/eecs498/WI2022/598_WI2022_lecture01.pdf

Outgrowing ImageNet
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Figure 1: When presented with a model’s pre-
diction and the original ImageNet label, hu-
man annotators now prefer model predictions
on average (Section 4). Nevertheless, there
remains considerable progress to be made be-

fore fully capturing human preferences. “Prog rammer”’
K. Yang, K. Qinami, L. Fei-Fei, J. Deng, O. Russakovsky, Towards Fairer
L. Beyer et al. Are we done with ImageNet? arXiv 2020 Datasets: Filtering and Balancing the Distribution of the People Subtree in the

ImageNet Hierarchy, FAccT 2020



https://arxiv.org/pdf/2006.07159.pdf
http://image-net.org/filtering-and-balancing/

Transformers

Output
Probabilities

Add & Norm
Feed
Forward
Add & Norm
[ Add & Norm | :
OO Multi-Head
Feed Attention
Forward T 7 Nx
N
N Add & Norm
~>{ Add & Norm Viaskod
Multi-Head Multi-Head
Attention Attention
it _t
—— J U —
Positional D Positional
Encoding & Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

A. Vaswani et al., Attention is all you need, NeurlPS 2017

Image source


http://jalammar.github.io/illustrated-transformer/
https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

Transformers
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A. Vaswani et al., Attention is all you need, NeurlPS 2017

Image source


http://jalammar.github.io/illustrated-transformer/
https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

Transformers for everything: Detection transformer

backbone

I
set of image features::
]

encoder-
decoder

transformer

set of image features
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N. Carion et al. End-to-end object detection with transformers. ECCV 2020



https://arxiv.org/pdf/2005.12872.pdf

Vision transformer (ViT) — Google

« Split an image into patches, feed linearly projected patches into

standard transformer encoder
«  With patches of 14x14 pixels, you need 16x16=256 patches to represent 224x224 images
» Self-supervised task: masked prediction (similar to BERT)

Vision Transformer Encoder

Class

|
|
Bird MLP
]é‘;]rl | Head \ :
:
Transformer Encoder ] :
|
y iti ! -
stz 6 O OO0 | |[(EE
|
|
|
|
|
1

* Extra learnabl
xtra learhabic [ Linear Projection of Flattened Patches ]

[class] embedding
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e
Patches

A. Dosovitskiy et al. An image is worth 16x16 words: Transformers for image recognition at scale. ICLR 2021



https://arxiv.org/pdf/2010.11929.pdf

Vision transformer (ViT)

90
—_ Figure 3: Transfer to ImageNet. @ While
S - large ViT models perform worse than BiT
> o] ResNets (shaded area) when pre-trained on
S 85 ’ small datasets, they shine when pre-trained on
3 larger datasets. Similarly, larger ViT variants
é 4 1 overtake smaller ones as the dataset grows.
— 80 -
(@F 1
o
=
|5} 1 : .
Z 57 B'.T VfT'L/?’z BiT: Big Transfer (ResNet)
oh ViT-B/32 ViT-L/16 ViT: Vision Transformer (Base/Large/Huge,
g | ViT-B/16 ViT-H/14 patch size of 14x14, 16x16, or 32x32)

70 4

ImageNet ImageNet-21k JFT-300M Internal Google dataset (not public)

Pre-training dataset

A. Dosovitskiy et al. An image is worth 16x16 words: Transformers for image recognition at scale. ICLR 2021



https://arxiv.org/pdf/1912.11370.pdf
https://ai.googleblog.com/2017/07/revisiting-unreasonable-effectiveness.html
https://arxiv.org/pdf/2010.11929.pdf

Masked autoencoders

e

n
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input

encoder

—>
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Figure 1. Our MAE architecture. During pre-training, a large
random subset of image patches (e.g., 75%) is masked out. The
encoder is applied to the small subset of visible patches. Mask
tokens are introduced after the encoder, and the full set of en-
coded patches and mask tokens is processed by a small decoder
that reconstructs the original image in pixels. After pre-training,
the decoder is discarded and the encoder is applied to uncorrupted
images to produce representations for recognition tasks.

K. He et al. Masked autoencoders are scalable vision learners. CVPR 2022
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Masked autoencoders

Figure 2. Example results on ImageNet validation images. For each triplet, we show the masked image (left), our MAE reconstruction
(middle), and the ground-truth (right). The masking ratio is 80%, leaving only 39 out of 196 patches. More examples are in the appendix.
tAs no loss is computed on visible patches, the model output on visible patches is qualitatively worse. One can simply overlay the output with the visible
patches to improve visual quality. We intentionally opt not to do this, so we can more comprehensively demonstrate the method’s behavior.

K. He et al. Masked autoencoders are scalable vision learners. CVPR 2022
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Masked autoencoders
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ated by fine-tuning in ImageNet-1K (224 size). We compare with
the original ViT results [16] trained in IN1K or JFT300M.

K. He et al. Masked autoencoders are scalable vision learners. CVPR 2022
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Convolutional networks or transformers?
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T. Xiao et al. Early convolutions help transformers see better. NeurlPS 2021
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Beyond transformers?
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Figure 1: MLP-Mixer consists of per-patch linear embeddings, Mixer layers, and a classifier head.
Mizxer layers contain one token-mixing MLP and one channel-mixing MLP, each consisting of two
fully-connected layers and a GELU nonlinearity. Other components include: skip-connections,
dropout, and layer norm on the channels.

|. Tolstikhin et al. MLP-Mixer: An all-MLP Architecture for Vision. NeurlPS 2021
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Beyond transformers?
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W. Yu et al. MetaFormer is Actually What You Need for Vision. CVPR 2022
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Giant vision-language models: CLIP

(1) Contrastive pre-training

Text
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to the correct image and vice versa

A. Radford et al., Learning Transferable Visual Models From Natural Language Supervision, ICML 2021
https://openai.com/blog/clip/
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Giant vision-language models: CLIP
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A. Radford et al., Learning Transferable Visual Models From Natural Language Supervision, ICML 2021

https://openai.com/bloag/clip/
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CLIP: Details

* Image encoders
ResNet-50 with self-attention layer on top of global average pooling
Vision transformer (ViT)

« Language encoder: GPT-style transformer with 63M
parameters

« Dataset: 400M image-text pairs from the Web



CLIP: Results
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Figure 12. CLIP’s features are more robust to task shift when compared to models pre-trained on ImageNet. For both dataset
splits, the transfer scores of linear probes trained on the representations of CLIP models are higher than other models with similar
ImageNet performance. This suggests that the representations of models trained on ImageNet are somewhat overfit to their task.



“Universal” recognition systems: DeepMind GATO

S. Reed et al. A generalist agent. TMLR 2022



https://openreview.net/pdf?id=1ikK0kHjvj

“Universal” recognition systems: DeepMind GATO

I'm going to London

Images, proprioception
and continuous actions

Atari images
and discrete actions

0.1 0.1
By B
0 ‘e

Batched input

Images and
questions

Q: What's in the picture?
Mg Ie’8 A CUEe Cat
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“Universal” recognition systems: UnifiedlO
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J. Lu et al. A unified model for vision, language, and multi-modal tasks. arXiv 2022

https://unified-io.allenai.org/
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DALL-E: Text-to-image generation using transformers
* Train an encoder similar to VQ-VAE to compress images to 32x32 grids
of discrete tokens (each assuming 8192 values)

» Concatenate with text strings, learn a joint sequential transformer model
that can be used to generate image based on text prompt

(a) a tapir made of accordion. (b) an illustration of a baby (c) a neon sign that reads

a tapir with the texture of an hedgehog in a christmas “backprop”. a neon sign that

accordion. sweater walking a dog reads “backprop”. backprop
neon sign

A. Ramesh et al., Zero-Shot Text-to-lmage Generation, ICML 2021
https://openai.com/blog/dall-e/



https://arxiv.org/pdf/2102.12092.pdf
https://openai.com/blog/dall-e/

DALL-E: Image encoding

« Train convolutional encoder and decoder to compress images to 32x32
grids of discrete tokens (each assuming 8192 values)

LZ UKANME PALISSERIE

Figure 1. Comparison of original images (top) and reconstructions
from the discrete VAE (bottom). The encoder downsamples the
spatial resolution by a factor of 8. While details (e.g., the texture of
the cat’s fur, the writing on the storefront, and the thin lines in the
illustration) are sometimes lost or distorted, the main features of the
image are still typically recognizable. We use a large vocabulary
size of 8192 to mitigate the loss of information.




DALL-E: Transformer architecture and training

» Concatenate up to 256 text tokens with 32x32=1024 image tokens,
learn a transformer model with 64 layers and 12B parameters

» Dataset: 250M image-text pairs from the Internet (similar scale to
JFT-300M, apparently different from data used to train CLIP)

* Transformer model details
« Decoder-only architecture
* 64 self-attention layers,
* 62 attention heads,

sparse attention patterns L. E.
*  Mixed-precision training,

(a) Row attention mask. (b) Column attention mask. (c) Column attention mask with (d) Convolutional attention mask.

distributed optimization transposed image states.

Figure 11. Illustration of the three types of attention masks for a hypothetical version of our transformer with a maximum text length of
6 tokens and image length of 16 tokens (i.e., corresponding to a 4 x 4 grid). Mask (a) corresponds to row attention in which each image
token attends to the previous 5 image tokens in raster order. The extent is chosen to be 5, so that the last token being attended to is the one
in the same column of the previous row. To obtain better GPU utilization, we transpose the row and column dimensions of the image
states when applying column attention, so that we can use mask (c) instead of mask (b). Mask (d) corresponds to a causal convolutional
attention pattern with wraparound behavior (similar to the row attention) and a 3 x 3 kernel. Our model uses a mask corresponding to
an 11 x 11 kernel.




DALL-E: Generating images given text

* Re-rank samples using CLIP

a bathroom with a truck stopped at

. acrowd of people  awoman and a man a man riding a . < a man sitting on a a car covered in
?sg;gl;’: &':32:': standing on top of standing next to a ct;%‘i)nseltn;rsﬁaa bike down a street w::rénégr:mg{;on bench nextto a various empty
a beach. bush bench. bathtub. past a young man. barriers are up slug. toothpaste tubes.

best of 8 best of 64 best of 512

best of 1

Figure 6. Effect of increasing the number of images for the contrastive reranking procedure on MS-COCO captions.



DALL-E 2: Text-to-image generation using diffusion models

an espresso machine that makes coffee from human souls, artstation

A. Ramesh et al. Hierarchical text-conditional image generation with CLIP latents. 2022



https://cdn.openai.com/papers/dall-e-2.pdf

DALL-E 2

Figure 19: Random samples from unCLIP for prompt “A close up of a handpalm with leaves growing from
it.”



DALL-E 2

Figure 18: Random samples from unCLIP for prompt “Vibrant portrait painting of Salvador Dali with a

robotic half face”



DALL-E 2
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Figure 2: A high-level overview of unCLIP. Above the dotted line, we depict the CLIP training process,
through which we learn a joint representation space for text and images. Below the dotted line, we depict our
text-to-image generation process: a CLIP text embedding is first fed to an autoregressive or diffusion prior
to produce an image embedding, and then this embedding is used to condition a diffusion decoder which
produces a final image. Note that the CLIP model is frozen during training of the prior and decoder.



DALL-E 2

Figure 3: Variations of an input image by encoding with CLIP and then decoding with a diffusion model. The
variations preserve both semantic information like presence of a clock in the painting and the overlapping
strokes in the logo, as well as stylistic elements like the surrealism in the painting and the color gradients in
the logo, while varying the non-essential details.



Diffusion models
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Figure 2: The directed graphical model considered in this work.

Unconditional CIFAR10 sample generation
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J. Ho et al. Denoising diffusion probabilistic models. NeurlPS 2020

Blog introduction: https://lilianweng.qgithub.io/posts/2021-07-11-diffusion-models/
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DALL-E 2 limitations
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Figure 15: Reconstructions from the decoder for difficult binding problems. We find that the reconstructions
mix up objects and attributes. In the first two examples, the model mixes up the color of two objects. In the
rightmost example, the model does not reliably reconstruct the relative size of two objects.



DreamFusion: Diffusion models + NeRFs

B. Poole, A. Jain, J. Barron, B. Mildenhall. DreamFusion: Text-to-3D using 2D Diffusion. arXiv 2022



https://dreamfusion3d.github.io/

DreamFusion: Diffusion models + NeRFs
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B. Poole, A. Jain, J. Barron, B. Mildenhall. DreamFusion: Text-to-3D using 2D Diffusion. arXiv 2022
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From vision to action



From vision to action

Figure 1: Our robot can traverse a variety of challenging terrain in indoor and outdoor environments, urban and
natural settings during day and night using a single front-facing depth camera. The robot can traverse curbs,
stairs and moderately rocky terrain. Despite being much smaller than other commonly used legged robots, it is
able to climb stairs and curbs of a similar height. Videos at https://vision-locomotion.github.io

A. Agarwal, A. Kumar, J. Malik, and D. Pathak. Legged Locomotion in Challenging Terrains
using Egocentric Vision. CoRL 2022
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From vision to action
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Figure 3: We train our locomotion policy in two phases to avoid rendering depth for too many samples. In
phase 1, we use RL to train a policy 7' that has access to scandots that are cheap to compute. In phase 2, we
use 7 to provide ground truth actions which another policy 72 is trained to imitate. This student has access to
depth map from the front camera. We consider two architectures (1) a monolithic one which is a GRU trained to
output joint angles with raw observations as input (2) a decoupled architecture trained using RMA [3] that is
trained to estimate vision and proprioception latents that condition a base feedforward walking policy.



