Central 1ssues in modelling

Construct families of curves, e Main topics:
surfaces and volumes that _

can represent common objects —
usefully;

are easy to interact with;
interaction includes:

curves
surfaces
volumes

deformation

* Simple curves

e manual modelling;

e Simple surfaces

 fitting to measurements;

e Continuity and splines

support geometric
computations

* Bezier surfaces and spline

surfaces

* intersection

e  Volume models

e collision

e Animation




Parametric vs Implicit

A parametric curve is given as a
function of parameters
Examples:

— circle as (cos t, sin t)

— twisted cubic as (t, t*t, t*t*t)
A parametric surface is given as
a function of parameters.
Examples:

— sphere as
(cos s cos t, sin S cos t, sin t)

Advantage - easy to compute

normal, easy to render, easy to put
patches together.

Disadvantage - ray tracing is hard

An implicit curve is given by
the vanishing of some functions
— circle on the plane, X*X
+y*y-r¥*r=0
— twisted cubic in space,
x*y-z=0, x*z-y*y=0, x*x-y=0
An implicit surface is given by
the vanishing of some functions
— sphere in space x*x+y*y
+z*z-r*1=0
— plane
ax+by+cz+d=0




Interpolation

Construct a parametric curve e degree is (#pts-1)

that passes through — e.g. line through two points

(interpolates) a set of points. _ quadratic through three.

Lagrange interpolate:

Functions phi are known as
— give parameter values “blending functions”
associated with each point
— use Lagrange polynomials
(one at the relevant point, zero
at all others) to construct curve

Epi¢fl) (t)

I Epoints

— curve is:




Hermite interpolate

Hermite curves

e use Hermite polynomials to

— give parameter values and construct curve

derivatives associated with

each point

— curve passes through given
point and the given derivative

— one at some parameter value
and zero at others or

— derivative one at some
parameter value, and zero at

at that parameter value others

— curve is:

> p ")+ Y v )

i Epoints

iEpoints




Extruded surfaces

Geometrical model - Pasta machine

Take curve and “extrude” surface
along vector

Many human artifacts have this
form - rolled steel, etc.

\Vector

(x(s,1), y(5,1),2(8,1)) = (x.(5), ¥, (5),2.(8)) + (v, V1, V;)




Cones

From every point on a curve,
construct a line segment through a
single fixed point in space - the
vertex

Curve can be space or plane curve,

but shouldn’t pass through the
vertex

(x(s,1), y(s,1),2(5,0)) = (1 = 1)(x,.(5), ¥ (5),2. () + (v, V,,V,)




Surfaces of revolution - 1

Plane curve + axis (x(s,1), y(s,1),2(s,t)) =
“spin” plane curve around axis to

get surface (x,(s)cos(?),x,(s)sin(?),z,(s))
Choice of plane is arbitrary, choice
of axis affects surface

In this case, curve is on  x-z plane,
axis 1S z axis.




t varies around circle

2 Surfaces of revolution -2

Many artifacts are SOR’’s,
as they’re easy to make on
a lathe.

Controlling 1s quite easy -
concentrate on the cross
section.

AX1S crossing cross-section
leads to ugly geometry.

S varies up curve




Ruled surfaces -1

Popular, because it’s easy to build a

curved surface out of straight
segments - eg pavilions, etc.

Take two space curves, and join
corresponding points - same s -
with line segment.

Even if space curves are lines, the
surface is usually curved.

(x(s,2), y(s,1),2(s,1)) =
(I=)(x,(8),y, (5),z,(s))+
H(x,(5),Y,(5),2,(5))




c1(s)

Ruled Surfaces - 2




Normals

Recall: normal is cross product of

tangent in t direction and s
direction.

Cylinder: normal is cross-product
of curve tangent and direction
vector

SOR: take curve normal and spin
round axis




Rendering

Cylinders: small steps along curve,

straight segments along t generate
polygons; exact normal is known.




Rendering

Cone: small steps in s generate

straight edges, join with vertex to
get triangles, normals known

exactly except at vertex.




Rendering

SOR: small steps in s generate
strips, small steps in t along the
strip generate edges; join up to
form triangles. Normals known
exactly.




Rendering

Ruled surface: steps in s generate
polygons, join opposite sides to
make triangles - otherwise “non
planar polygons” result. Normals
known exactly.




Bezier curves-1

/A e obtained by
oy iterated linear
¢ interpolation
iy, ® process is
" known as
DeCasteljau’s
algorithm

(a) (b) (c)

(d) (e)




Bezier curves - 11

* Blending functions are the
Bernstein polynomials

(1) - gpiw

B0 =(’j)f(1-r>f

* e.g. two points




Bezier curves - 111

e Bernstein polynomials have several important properties

they sum to 1, hence curve lies within convex hull of control
points

curve interpolates its endpoints
curve’s tangent at start lies along the vector from p0 to pl

tangent at end lies along vector from pn-1 to pn




Bezier curve tricks - 1

“Pull” a curve

toward a
control point P,= P, P;
by doubling the  ——————————— @

control point




Bezier curve tricks-II

Close the curve by
making last point
and first point
coincident

— curve has
continuous
tangent if first
segment and last
segment are
collinear

P Po= Ps




Subdivision for Bezier curves

Use De Casteljau (repeated
linear interpolation) to
identify points.

Points as marked in figure
give two control polygons,
for two Bezier curves,
which lie on top of the
original.

Repeated subdivision leads
to a polygon that lies very
close to the curve

Limit of subdivision proces
1s a curve

b12 b2
by bo12 = "

b123

b23

b3

bo

Fig. 4.5. Decomposition of a Bézier curve into two
C? continuous curve segments (cf. Fig. 4.4).




de Casteljau
Algorithm

e (Cascading lerps
Py =(1-) pyt 1P,
pp={-)p, t1p,
Py =-0) p, T 1p;
Poi= -0 Py H 1P,
P ={-) Pyt 1Py;
Poias = (1-0) Poia T 1 P1s

- coordinate
 Subdivides curve at p,;,; free!
— Po Po1 Po12 Poi123
— Po123 P123 P23 P3

* Repeated subdivision converges to
curve




Degree Elevation  "i_ 12

P,

e Used to add more control 1/4

OVver a curve
 Start with

p, (") f(l-i=2q, (") ¢ (10
« Now figure out the q, P=q o
(F+(1-6)) 2 p, (%) £ (1t , A
= p, () (¢ (1-0y™ 4 671 (1-0)
e Compare coefficients
q(" D) =p) +pia(iy)
q; = (//(ntl))p,, + (nt1-i/(n+1))p,
« Repeated elevation converges to curve

3/4




Interpolating Splines

Fig 2.16a. Interpolation
by a polynomial of degree 4. |

 Key idea:
— high degree
interpolates

are badly
behaved->

— construct

Fig 2.16c. Interpolation
curves out of by a polynomial of degree 14.

low degree
segments




Interpolating Splines - 11

n+1 points; X
I

write derivatives /0/0 n

X’ PR SO el a_1

X. is spline for C/F:;/ Fl> F>i+1

interval between P, P 1
and P, , 0

Fig. 3.11. The spline segment X;.




Interpolating Splines - 11

bolt together a series of Hermite
curves with equivalent
derivatives.

But where are the derivative
values to come from?

— Measurements
— Combination of points

— Continuity considerations

e Cardinal splines
— average points
— tis “tension”
— specify endpoint tangents

e or use difference between
first two, last two points

Pk= (%)(1 - t)(Pk+1 _Bc—l)

P = (%)(1 _t)(B<+2 - Bc)




Tension

P o =0 gives derivatives as <-
Pi 1 e different values of tension give

longer/shorter tangents

@ ®p,.
Pi-1 b

t<0 t>0
(Looser Curve) (Tighter Curve)




Intervals:

Interpolating Splines

a=fg ki <Bhh< - <IN a<in=0
Ati = ti+1—t¢‘.

— t values often called “knots”

Spline form:

Xi(t) := Ai(t — t;)° + Bi(t — t;)* + Ci(t — t;) + D;,

t € [ti,tg.{.l], = 0(1)N—1,




Continuity

Require at
endpoints:

— endpoints
equal Xi(t) = Xi—1(t:) o1
— I’st derivatives X’;(tz) = X:-_l(t,,;) or
equal
g Xi(t:)=X;_,(t:) or
derivatives
equal

Xi(ti+1) = Xig1(tig1),
Xi(tix1) = Xiy1(tier),
X7 (tig1) = X1 (tigr)-




From endpoint and 1’st
derivative:

Xity=FPr=1, Xi(tiy1) = Pip1 = A; AL + B At + C;At; + D,
X;(ti) = P,: = €}, X:-(tﬂ_l) = ‘P"+1 = 3A,‘At% + 2B;At; + C;,

1

So that 1 .
A= TAE 2(P; — Pit1) 4+ Ati(P; + Piyy)l,
1
B; = (Ati)z [3(P5+1 Ry P%) s AtZ(QP; + F);'-I-l)]‘
Yielding:

( g~ S ) P (2 + 3w
P’(t_t) _z(t_t“')2+(t—ti))+P§+1((t_ti)3—(t_ti)z)

(At )2 At; (Ati)z At;




e Second Derivative:

i , 2(t 25 ti) 1 (t b ti) -
X, (t) =6P; ( (A%)3 - (Ati)z) +6P; 44 ("‘2 (At;)3 + (Ati)z)

+ 2P, (3 ((tA";g) ;ti) +2P3 (3((2;)?) : Altz-) '

X;’—1(ti) o X;,(ti)

e Want:

At Pi_ +2(Ati_q + At) P + At 1 Py
Att | At;

= Piiy— P,

—(Pi = Pi_1)




Missing equations

Recurrence relations represent d(n-1) equations in d(n+1)
unknowns (d is dimension)

We need to supply the derivative at the start and at the
finish (or two equivalent constraints)
Options:
— second derivatives vanish at each end (natural spline)
— give slopes at the boundary
e vector from first to second, second last to last
e parabola through first three, last three points
— third derivative is the same at first, last knot




Parametric vs Geometric Continuity

Parametric continuity:

— The curve and derivatives up

to k are continuous as a
function of parameter value

e (Ck
— Useful for (for example)
animation

— e.g. the interpolating spline
from above

Geometric continuity

curve, derivatives up to k’th
are the same for equivalent
parameter values

1.e. there exists a
reparametrisation that would
achieve parametric continuity

e Dk

Useful, because we often don’t
require parametric continuity,

e.g. take two Hermite curves,

both parametrised by [0, 1],
identify endpoints and

derivatives




More on Geometric Continuity

e Tangent direction 1s invariant to translation and
parametrisation - so we can use this to get G1 continuity.

e (G2 -use curvature

— property of a curve that 1s invariant to rotation and translation, and
also reparametrisation

— (1/radius) for best fitting circle
¢ the circle whose 2nd derivative is the same as the curve’s

* (equivalent) a circle that intersects the curve in three points
arbitrarily close

— Formula
PY (X’, y7 _ y79 X,)/(X,Q’ + y72)(3/2)
e dN/ds=kN for N the unit normal




Keep 1n mind

e Lagrange and Hermite e The line of reasoning for
interpolates of the same degree interpolating cubic splines
are the same families of curves works for higher degrees, too

— they just have different control — but we must either use more
structures derivatives, or supply more

e The interpolating cubic spline is information
equiva]ent to a bunch of — Cubic is the most important
Hermite cubics, with a different case, because cubic splines
Control structure (r ather roughly) look like

— we got the derivatives from the wooden splines

second derivative constraint * We chose parameter values for
the interpolating curve

— different choices lead to
different curves




Spline blending functions

“Switches” turn blending functions on and off

E.g. a piecewise cubic spline obtained by attaching two
Hermite curves to one another

— In principle, there are 8 blending functions (4 points and 4
derivatives)

— Actually, two points and two derivatives are the same
* 6 blending functions
* these are piecewise cubic, easily sketched
— The properties of the blending functions are what’s important

Now let’s consider splines that don’t interpolate, by
concentrating on the blending functions




B-splines - 1

We obtain a set of blending functions by a recursive
definition, with “switches” at the base of the recursion

Curve:

x(1)= Y BB, (1

where d (called the “order”) is:

2<d=n+1




B-Spline Blending Functions

e Knots

— 1dea: parameter values where
curve segments meet, as in
Hermite example

(t) oty seees )

where #, <t =<..<t

Blending functions

1 t=st=t

otherwise




o No N2
* o . -
00 10 20 30 40

These figures show
blending functions with

a uniform knot vector,
knots at 0, 1, 2, etc.

Note that N is the same as

Fig. 4.22c. The B-splines Ng1, No1.

|
1.0 -

N12 N22

our B 0.0

$0 i AR i I kO

Fig. 4.22d. The B-splines N12, No».




Fig. 4.22e. The B-splines No3, N13.

ﬂ

1.0 1




Closed B-Splines

e Periodically extend the control
points and the knots

R’l+1 = PO
L =1

* ¢fc




Fig. 4.26a.

Fig. 4.26b.

T o ¥ T
0.0 10 2.0 30 4.0

Fig. 4.26. B-splines with uniform and non-uniform knot vectors
for a closed B-spline curve.




Fig. 4.27a. A closed
B-spline curve
with k = 3,n = 3.

Fig. 4.27b. A closed
B-spline curve
with k = 4,n =6.




Fig. 4.27c. A closed B-spline curve with k = 3,n = 8.




d.

ds

A B-spline curve, with knots at 0,1,... and order 5




Repeated knots

Definition works for repeated
knots (if we are understanding !
about 0/0) s Ni3

Repeated knot reduces
continuity. A B-spline blending
function has continuity Cd-2; if
the knot is repeated m times,
continuity is now Cd-m-1

1
pa
o
w
\

_ . ) . . P , . : : , o
e.g. -> quadratic B-spline (i.e. 5 o 20 a6 40

order 3) with a double knot
Fig. 4.22g. A quadratic B-spline with a double knot.




Most useful case

e select the first d and the last d e.g. cubic case below

knots to be the same e Notice that a control point
— we then get the first and last influences at most d parameter
points lying on the curve intervals - local control
— also, the curve is tangent to the
first and last sef‘“;‘g

00 10 g0 VL e TR Vi

Fig. 4.24a. B-splines for an open B-spline curve
with uniform knot vector.




Fig. 4.25a. B-spline
curve with k=3, n = 5.

Fig. 4.25b. B-spline
curve with k=4, n = 7.

k 1s our d - top curve has order 3, bottom order 4




Fig. 4.24b. B-splines for an open B-spline curve
with non-uniform knot vector.




Fig. 4.25c. B-spline curve with k = 3,n = 9 and the Bézier curve
of degree 9 with the same control polygon.

Bezier curve 1s the heavy curve




B-Spline properties

e For a B-spline curve of order d

if m knots coincide, the curve is Cdm-1 at the corresponding point

if d-1 points of the control polygon are collinear, then the curve is
tangent to the polygon

if d points of the control polygon are collinear, then the curve and
the polygon have a common segment

if d-1 points coincide, then the curve interpolates the common
point and the two adjacent sides of the polygon are tangent to the
curve

each segment of the curve lies in the convex hull of the associated
d points




