
Central issues in modelling

• Construct families of curves, 
surfaces and volumes that
– can represent common objects 

usefully;
– are easy to interact with; 

interaction includes:
• manual modelling;
• fitting to measurements;

– support geometric 
computations

• intersection
• collision

• Main topics:
– curves
– surfaces
– volumes
– deformation

• Simple curves
• Simple surfaces
• Continuity and splines
• Bezier surfaces and spline 

surfaces
• Volume models
• Animation



Parametric vs Implicit

• A parametric curve is given as a 
function of parameters 
Examples:
– circle as  (cos t, sin t)
– twisted cubic as (t, t*t, t*t*t)

• A parametric surface is given as 
a function of parameters. 
Examples:
– sphere as                                 

(cos s cos t, sin s cos t, sin t)
• Advantage - easy to compute 

normal, easy to render, easy to put 
patches together.

• Disadvantage - ray tracing is hard

• An implicit curve is given by 
the vanishing of some functions
– circle on the plane,        x*x

+y*y-r*r=0
– twisted cubic in space,        

x*y-z=0, x*z-y*y=0, x*x-y=0
• An implicit surface is given by 

the vanishing of some functions
– sphere in space   x*x+y*y

+z*z-r*r=0
– plane                                         

a x+ b y + c z+d=0



Interpolation

• Construct a parametric curve 
that passes through 
(interpolates) a set of points.

• Lagrange interpolate:
– give parameter values 

associated with each point
– use Lagrange polynomials  

(one at the relevant point, zero 
at all others) to construct curve

– curve is:

• degree is (#pts-1)
– e.g. line through two points
– quadratic through three.

• Functions phi are known as 
“blending functions”
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Hermite curves

• Hermite interpolate
– give parameter values and 

derivatives associated with 
each point

– curve passes through given 
point and the given derivative 
at that parameter value

– curve is:

• use Hermite polynomials to 
construct curve
– one at some parameter value 

and zero at others or
– derivative one at some 

parameter value, and zero at 
others
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Extruded surfaces

• Geometrical model - Pasta machine
• Take curve and “extrude” surface 

along vector
• Many human artifacts have this 

form - rolled steel, etc.

(x(s, t), y(s, t), z(s,t)) = (xc (s), yc (s), zc (s)) + t(v0 ,v1,v2 )

Vector

Curve

t varies along line
s varies along curve



Cones

• From every point on a curve, 
construct a line segment through a 
single fixed point in space - the 
vertex

• Curve can be space or plane curve, 
but shouldn’t pass through the 
vertex

Vertex

Curve

t varies along line

s varies along curve

(x(s, t), y(s, t), z(s,t)) = (1− t)(xc (s), yc (s), zc (s))+ t(v0 ,v1 ,v2 )



Surfaces of revolution - 1

• Plane curve + axis
• “spin” plane curve around axis to 

get surface
• Choice of plane is arbitrary, choice 

of axis affects surface
• In this case, curve is on    x-z plane, 

axis is z axis.

(x(s, t), y(s, t), z(s,t)) =

(xc (s) cos(t), xc (s)sin(t), zc (s))



Surfaces of revolution -2 z

yx

t varies around circle

s varies up curve

Many artifacts are SOR’s,
as they’re easy to make on 
a lathe.

Controlling is quite easy -
concentrate on the cross
section.

Axis crossing cross-section
leads to ugly geometry.



Ruled surfaces -1

• Popular, because it’s easy to build a 
curved surface out of straight 
segments - eg pavilions, etc.

• Take two space curves, and join 
corresponding points - same s - 
with line segment.

• Even if space curves are lines, the 
surface is usually curved.

(x(s, t), y(s, t), z(s,t)) =
(1− t)(x1(s), y1 (s), z1(s))+

t(x2 (s),y2 (s), z2 (s))



Ruled Surfaces - 2

c1(s)

c2(s)

s varies

t v
ar

ie
s



Normals

• Recall:  normal is cross product of 
tangent in t direction and s 
direction.

• Cylinder: normal is cross-product 
of curve tangent and direction 
vector

• SOR: take curve normal and spin 
round axis



Rendering

• Cylinders: small steps along curve, 
straight segments along t generate 
polygons; exact normal is known.



Rendering

• Cone: small steps in s generate 
straight edges, join with vertex to 
get triangles, normals known 
exactly except at vertex.



Rendering

• SOR: small steps in s generate 
strips, small steps in t along the 
strip generate edges; join up to 
form triangles.  Normals known 
exactly.



Rendering

• Ruled surface: steps in s generate 
polygons, join opposite sides to 
make triangles - otherwise “non 
planar polygons” result. Normals 
known exactly.



Bezier curves-1

• obtained by 
iterated linear 
interpolation

• process is 
known as 
DeCasteljau’s 
algorithm



Bezier curves - II

• Blending functions are the 
Bernstein polynomials

• e.g. two points
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Bezier curves - III

• Bernstein polynomials have several important properties
– they sum to 1, hence curve lies within convex hull of control 

points
– curve interpolates its endpoints
– curve’s tangent at start lies along the vector from p0 to p1
– tangent at end lies along vector from pn-1 to pn



Bezier curve tricks - I

• “Pull” a curve 
toward a 
control point 
by doubling the 
control point



Bezier curve tricks-II

• Close the curve by 
making last point 
and first point 
coincident
– curve has 

continuous 
tangent if first 
segment and last 
segment are 
collinear



Subdivision for Bezier curves

• Use De Casteljau (repeated 
linear interpolation) to 
identify points.

• Points as marked in figure 
give two control polygons, 
for two Bezier curves, 
which lie on top of the 
original.

• Repeated subdivision leads 
to a polygon that lies very 
close to the curve

• Limit of subdivision process 
is a curve



de Casteljau 
Algorithm
• Cascading lerps
p01 = (1-t) p0 + t p1

p12 = (1-t) p1 + t p2

p23 = (1-t) p2 + t p3

p012 = (1-t) p01 + t p12

p123 = (1-t) p12 + t p23

p0123 = (1-t) p012 + t p123

• Subdivides curve at p0123

– p0 p01 p012 p0123

– p0123 p123 p23 p3

• Repeated subdivision converges to 
curve

coordinate
free!
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Degree Elevation

• Used to add more control
over a curve

• Start with
Σ pi (ni) ti (1-t)n-i = Σ qi (ni+ 1) ti (1-t)n+1-i

• Now figure out the qi
(t+(1-t)) Σ pi (ni) ti (1-t)n-i

= Σ pi (ni) (ti (1-t)n+1-i + ti+1 (1-t)n-i)

• Compare coefficients
qi(ni+ 1) = pi(ni) + pi-1(ni-1)

qi = (i/(n+1))pi-1 + (n+1-i/(n+1))pi
• Repeated elevation converges to curve
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Interpolating Splines

• Key idea:  
– high degree 

interpolates 
are badly 
behaved->

– construct 
curves out of 
low degree 
segments



Interpolating Splines - II

• n+1 points;
• write derivatives 

X’
• Xi is spline for 

interval between Pi 
and Pi+1



Interpolating Splines - II

• bolt together a series of Hermite 
curves with equivalent 
derivatives.

• But where are the derivative 
values to come from?
– Measurements
– Combination of points
– Continuity considerations

• Cardinal splines
– average points
– t is “tension”
– specify endpoint tangents

• or use difference between 
first two, last two points

P' k =
1
2
 
 
 
 
1 − t( ) Pk+1 − Pk −1( )

P' k+1 =
1
2
 
 
 
 1 − t( ) Pk +2 − Pk( )



Tension

• t=0 gives derivatives as <-
• different values of tension give 

longer/shorter tangents



Interpolating Splines

• Intervals:

– t values often called “knots”

• Spline form:



Continuity

• Require at 
endpoints:
– endpoints 

equal
– 1’st derivatives 

equal
– 2’nd 

derivatives 
equal



• From endpoint and 1’st 
derivative:

• So that

• Yielding:



• Second Derivative:

• Want:

• Yielding:



Missing equations

• Recurrence relations represent d(n-1) equations in d(n+1) 
unknowns (d is dimension)

• We need to supply the derivative at the start and at the 
finish (or two equivalent constraints)

• Options:
– second derivatives vanish at each end (natural spline)
– give slopes at the boundary 

• vector from first to second, second last to last
• parabola through first three, last three points

– third derivative is the same at first, last knot



Parametric vs Geometric Continuity

• Parametric continuity:
– The curve and derivatives up 

to k are continuous as a 
function of parameter value

• Ck

– Useful for (for example) 
animation

– e.g. the interpolating spline 
from above

• Geometric continuity
– curve, derivatives up to k’th 

are the same for equivalent 
parameter values

– i.e. there exists a 
reparametrisation that would 
achieve parametric continuity

• Dk

– Useful, because we often don’t 
require parametric continuity,

– e.g. take two Hermite curves, 
both parametrised by [0, 1], 
identify endpoints and 
derivatives



More on Geometric Continuity

• Tangent direction is invariant to translation and 
parametrisation - so we can use this to get G1 continuity.

• G2 - use curvature
– property of a curve that is invariant to rotation and translation, and 

also reparametrisation
– (1/radius) for best fitting circle 

• the circle whose 2nd derivative is the same as the curve’s
• (equivalent) a circle that intersects the curve in three points 

arbitrarily close
– Formula

• (x’’ y’ - y’’ x’)/(x’2 + y’2)(3/2)

• dN/ds=kN  for N the unit normal



Keep in mind

• Lagrange and Hermite 
interpolates of the same degree 
are the same families of curves 
– they just have different control 

structures
• The interpolating cubic spline is 

equivalent to a bunch of 
Hermite cubics, with a different 
control structure
– we got the derivatives from the 

second derivative constraint

• The line of reasoning for 
interpolating cubic splines 
works for higher degrees, too
– but we must either use more 

derivatives, or supply more 
information

– Cubic is the most important 
case, because cubic splines 
(rather roughly) look like 
wooden splines

• We chose parameter values for 
the interpolating curve
– different choices lead to 

different curves



Spline blending functions

• “Switches” turn blending functions on and off
• E.g.  a piecewise cubic spline obtained by attaching two 

Hermite curves to one another
– In principle, there are 8 blending functions (4 points and 4 

derivatives)
– Actually, two points and two derivatives are the same 

• 6 blending functions
• these are piecewise cubic, easily sketched

– The properties of the blending functions are what’s important

• Now let’s consider splines that don’t interpolate, by 
concentrating on the blending functions



B-splines - I

• We obtain a set of blending functions by a recursive 
definition, with “switches” at the base of the recursion

• Curve:

• where d (called the “order”) is:

X t( ) = Pk Bk, d t( )
k= 0

n

∑

2 ≤ d ≤ n +1



Bk ,1 t( ) =
1      tk ≤ t ≤ tk+1

0       otherwise
 
 
 

Bk ,d t( ) =
t − tk

tk+ d−1 − tk

 

 
  

 
 Bk ,d −1 t( ) +

tk+ d − t
tk+ d − tk+1

 

 
  

 
 Bk +1,d −1 t( )

B-Spline Blending Functions

• Knots
– idea: parameter values where 

curve segments meet, as in 
Hermite example

• Blending functions

t0 ,t1,..., tn+ d( )  

where  t0 ≤ t1 ≤ ... ≤ tn+d



These figures show
blending functions with
a uniform knot vector,
knots at 0, 1, 2, etc.
Note that N is the same as
our B





Closed B-Splines

• Periodically extend the control 
points and the knots

• etc

Pn+1 = P0
tn+1 = t0









A B-spline curve, with knots at 0,1,... and order 5



Repeated knots

• Definition works for repeated 
knots (if we are understanding 
about 0/0)

• Repeated knot reduces 
continuity.  A B-spline blending 
function has continuity Cd-2; if 
the knot is repeated m times, 
continuity is now Cd-m-1

• e.g. ->  quadratic B-spline (i.e. 
order 3) with a double knot



Most useful case

• select the first d and the last d 
knots to be the same
– we then get the first and last 

points lying on the curve
– also, the curve is tangent to the 

first and last segment

• e.g. cubic case below
• Notice that a control point 

influences at most d parameter 
intervals - local control



k is our d - top curve has order 3, bottom order 4





Bezier curve is the heavy curve



B-Spline properties

• For a B-spline curve of order d
– if m knots coincide, the curve is Cd-m-1 at the corresponding point
– if d-1 points of the control polygon are collinear, then the curve is 

tangent to the polygon
– if d points of the control polygon are collinear, then the curve and 

the polygon have a common segment
– if d-1 points coincide, then the curve interpolates the common 

point and the two adjacent sides of the polygon are tangent to the 
curve

– each segment of the curve lies in the convex hull of the associated 
d points


