
Central issues in modelling

• Construct families of curves,
surfaces and volumes that
– can represent common objects

usefully;
– are easy to interact with;

interaction includes:
• manual modelling;
• fitting to measurements;

– support geometric
computations

• intersection
• collision

• Main topics:
– curves
– surfaces
– volumes
– deformation

• Simple curves
• Simple surfaces
• Continuity and splines
• Bezier surfaces and spline

surfaces
• Volume models
• Animation

Parametric vs Implicit

• A parametric curve is given as a
function of parameters
Examples:
– circle as (cos t, sin t)
– twisted cubic as (t, t*t, t*t*t)

• A parametric surface is given as
a function of parameters.
Examples:
– sphere as

(cos s cos t, sin s cos t, sin t)
• Advantage - easy to compute

normal, easy to render, easy to put
patches together.

• Disadvantage - ray tracing is hard

• An implicit curve is given by
the vanishing of some functions
– circle on the plane, x*x

+y*y-r*r=0
– twisted cubic in space,

x*y-z=0, x*z-y*y=0, x*x-y=0
• An implicit surface is given by

the vanishing of some functions
– sphere in space x*x+y*y

+z*z-r*r=0
– plane

a x+ b y + c z+d=0

Interpolation

• Construct a parametric curve
that passes through
(interpolates) a set of points.

• Lagrange interpolate:
– give parameter values

associated with each point
– use Lagrange polynomials

(one at the relevant point, zero
at all others) to construct curve

– curve is:

• degree is (#pts-1)
– e.g. line through two points
– quadratic through three.

• Functions phi are known as
“blending functions”

piφ i

l() t()
i∈points
∑

Hermite curves

• Hermite interpolate
– give parameter values and

derivatives associated with
each point

– curve passes through given
point and the given derivative
at that parameter value

– curve is:

• use Hermite polynomials to
construct curve
– one at some parameter value

and zero at others or
– derivative one at some

parameter value, and zero at
others

piφ i

h() t()
i∈points
∑ + viφ i

h d() t()
i∈points
∑

Extruded surfaces

• Geometrical model - Pasta machine
• Take curve and “extrude” surface

along vector
• Many human artifacts have this

form - rolled steel, etc.

(x(s, t), y(s, t), z(s,t)) = (xc (s), yc (s), zc (s)) + t(v0 ,v1,v2)

Vector

Curve

t varies along line
s varies along curve

Cones

• From every point on a curve,
construct a line segment through a
single fixed point in space - the
vertex

• Curve can be space or plane curve,
but shouldn’t pass through the
vertex

Vertex

Curve

t varies along line

s varies along curve

(x(s, t), y(s, t), z(s,t)) = (1− t)(xc (s), yc (s), zc (s))+ t(v0 ,v1 ,v2)

Surfaces of revolution - 1

• Plane curve + axis
• “spin” plane curve around axis to

get surface
• Choice of plane is arbitrary, choice

of axis affects surface
• In this case, curve is on x-z plane,

axis is z axis.

(x(s, t), y(s, t), z(s,t)) =

(xc (s) cos(t), xc (s)sin(t), zc (s))

Surfaces of revolution -2 z

yx

t varies around circle

s varies up curve

Many artifacts are SOR’s,
as they’re easy to make on
a lathe.

Controlling is quite easy -
concentrate on the cross
section.

Axis crossing cross-section
leads to ugly geometry.

Ruled surfaces -1

• Popular, because it’s easy to build a
curved surface out of straight
segments - eg pavilions, etc.

• Take two space curves, and join
corresponding points - same s -
with line segment.

• Even if space curves are lines, the
surface is usually curved.

(x(s, t), y(s, t), z(s,t)) =
(1− t)(x1(s), y1 (s), z1(s))+

t(x2 (s),y2 (s), z2 (s))

Ruled Surfaces - 2

c1(s)

c2(s)

s varies

t v
ar

ie
s

Normals

• Recall: normal is cross product of
tangent in t direction and s
direction.

• Cylinder: normal is cross-product
of curve tangent and direction
vector

• SOR: take curve normal and spin
round axis

Rendering

• Cylinders: small steps along curve,
straight segments along t generate
polygons; exact normal is known.

Rendering

• Cone: small steps in s generate
straight edges, join with vertex to
get triangles, normals known
exactly except at vertex.

Rendering

• SOR: small steps in s generate
strips, small steps in t along the
strip generate edges; join up to
form triangles. Normals known
exactly.

Rendering

• Ruled surface: steps in s generate
polygons, join opposite sides to
make triangles - otherwise “non
planar polygons” result. Normals
known exactly.

Bezier curves-1

• obtained by
iterated linear
interpolation

• process is
known as
DeCasteljau’s
algorithm

Bezier curves - II

• Blending functions are the
Bernstein polynomials

• e.g. two points

c t() = piBi
n t()

i=0

n

∑

Bi
n t() =

n
i



 

ti 1 − t()i

Bezier curves - III

• Bernstein polynomials have several important properties
– they sum to 1, hence curve lies within convex hull of control

points
– curve interpolates its endpoints
– curve’s tangent at start lies along the vector from p0 to p1
– tangent at end lies along vector from pn-1 to pn

Bezier curve tricks - I

• “Pull” a curve
toward a
control point
by doubling the
control point

Bezier curve tricks-II

• Close the curve by
making last point
and first point
coincident
– curve has

continuous
tangent if first
segment and last
segment are
collinear

Subdivision for Bezier curves

• Use De Casteljau (repeated
linear interpolation) to
identify points.

• Points as marked in figure
give two control polygons,
for two Bezier curves,
which lie on top of the
original.

• Repeated subdivision leads
to a polygon that lies very
close to the curve

• Limit of subdivision process
is a curve

de Casteljau
Algorithm
• Cascading lerps
p01 = (1-t) p0 + t p1

p12 = (1-t) p1 + t p2

p23 = (1-t) p2 + t p3

p012 = (1-t) p01 + t p12

p123 = (1-t) p12 + t p23

p0123 = (1-t) p012 + t p123

• Subdivides curve at p0123

– p0 p01 p012 p0123

– p0123 p123 p23 p3

• Repeated subdivision converges to
curve

coordinate
free!

p0

p1

p3

p2

p01

p12

p23

p012

p123p0123

t

1-t

Degree Elevation

• Used to add more control
over a curve

• Start with
Σ pi (ni) ti (1-t)n-i = Σ qi (ni+ 1) ti (1-t)n+1-i

• Now figure out the qi
(t+(1-t)) Σ pi (ni) ti (1-t)n-i

= Σ pi (ni) (ti (1-t)n+1-i + ti+1 (1-t)n-i)

• Compare coefficients
qi(ni+ 1) = pi(ni) + pi-1(ni-1)

qi = (i/(n+1))pi-1 + (n+1-i/(n+1))pi
• Repeated elevation converges to curve

p0=q

0

p1

p3=q

4

p2

q1

q2

q33/4

1/4

1/4

3/4

1/2
1/2

Interpolating Splines

• Key idea:
– high degree

interpolates
are badly
behaved->

– construct
curves out of
low degree
segments

Interpolating Splines - II

• n+1 points;
• write derivatives

X’
• Xi is spline for

interval between Pi
and Pi+1

Interpolating Splines - II

• bolt together a series of Hermite
curves with equivalent
derivatives.

• But where are the derivative
values to come from?
– Measurements
– Combination of points
– Continuity considerations

• Cardinal splines
– average points
– t is “tension”
– specify endpoint tangents

• or use difference between
first two, last two points

P' k =
1
2




1 − t() Pk+1 − Pk −1()

P' k+1 =
1
2



 1 − t() Pk +2 − Pk()

Tension

• t=0 gives derivatives as <-
• different values of tension give

longer/shorter tangents

Interpolating Splines

• Intervals:

– t values often called “knots”

• Spline form:

Continuity

• Require at
endpoints:
– endpoints

equal
– 1’st derivatives

equal
– 2’nd

derivatives
equal

• From endpoint and 1’st
derivative:

• So that

• Yielding:

• Second Derivative:

• Want:

• Yielding:

Missing equations

• Recurrence relations represent d(n-1) equations in d(n+1)
unknowns (d is dimension)

• We need to supply the derivative at the start and at the
finish (or two equivalent constraints)

• Options:
– second derivatives vanish at each end (natural spline)
– give slopes at the boundary

• vector from first to second, second last to last
• parabola through first three, last three points

– third derivative is the same at first, last knot

Parametric vs Geometric Continuity

• Parametric continuity:
– The curve and derivatives up

to k are continuous as a
function of parameter value

• Ck

– Useful for (for example)
animation

– e.g. the interpolating spline
from above

• Geometric continuity
– curve, derivatives up to k’th

are the same for equivalent
parameter values

– i.e. there exists a
reparametrisation that would
achieve parametric continuity

• Dk

– Useful, because we often don’t
require parametric continuity,

– e.g. take two Hermite curves,
both parametrised by [0, 1],
identify endpoints and
derivatives

More on Geometric Continuity

• Tangent direction is invariant to translation and
parametrisation - so we can use this to get G1 continuity.

• G2 - use curvature
– property of a curve that is invariant to rotation and translation, and

also reparametrisation
– (1/radius) for best fitting circle

• the circle whose 2nd derivative is the same as the curve’s
• (equivalent) a circle that intersects the curve in three points

arbitrarily close
– Formula

• (x’’ y’ - y’’ x’)/(x’2 + y’2)(3/2)

• dN/ds=kN for N the unit normal

Keep in mind

• Lagrange and Hermite
interpolates of the same degree
are the same families of curves
– they just have different control

structures
• The interpolating cubic spline is

equivalent to a bunch of
Hermite cubics, with a different
control structure
– we got the derivatives from the

second derivative constraint

• The line of reasoning for
interpolating cubic splines
works for higher degrees, too
– but we must either use more

derivatives, or supply more
information

– Cubic is the most important
case, because cubic splines
(rather roughly) look like
wooden splines

• We chose parameter values for
the interpolating curve
– different choices lead to

different curves

Spline blending functions

• “Switches” turn blending functions on and off
• E.g. a piecewise cubic spline obtained by attaching two

Hermite curves to one another
– In principle, there are 8 blending functions (4 points and 4

derivatives)
– Actually, two points and two derivatives are the same

• 6 blending functions
• these are piecewise cubic, easily sketched

– The properties of the blending functions are what’s important

• Now let’s consider splines that don’t interpolate, by
concentrating on the blending functions

B-splines - I

• We obtain a set of blending functions by a recursive
definition, with “switches” at the base of the recursion

• Curve:

• where d (called the “order”) is:

X t() = Pk Bk, d t()
k= 0

n

∑

2 ≤ d ≤ n +1

Bk ,1 t() =
1 tk ≤ t ≤ tk+1

0 otherwise




Bk ,d t() =
t − tk

tk+ d−1 − tk




 


 Bk ,d −1 t() +

tk+ d − t
tk+ d − tk+1




 


 Bk +1,d −1 t()

B-Spline Blending Functions

• Knots
– idea: parameter values where

curve segments meet, as in
Hermite example

• Blending functions

t0 ,t1,..., tn+ d()

where t0 ≤ t1 ≤ ... ≤ tn+d

These figures show
blending functions with
a uniform knot vector,
knots at 0, 1, 2, etc.
Note that N is the same as
our B

Closed B-Splines

• Periodically extend the control
points and the knots

• etc

Pn+1 = P0
tn+1 = t0

A B-spline curve, with knots at 0,1,... and order 5

Repeated knots

• Definition works for repeated
knots (if we are understanding
about 0/0)

• Repeated knot reduces
continuity. A B-spline blending
function has continuity Cd-2; if
the knot is repeated m times,
continuity is now Cd-m-1

• e.g. -> quadratic B-spline (i.e.
order 3) with a double knot

Most useful case

• select the first d and the last d
knots to be the same
– we then get the first and last

points lying on the curve
– also, the curve is tangent to the

first and last segment

• e.g. cubic case below
• Notice that a control point

influences at most d parameter
intervals - local control

k is our d - top curve has order 3, bottom order 4

Bezier curve is the heavy curve

B-Spline properties

• For a B-spline curve of order d
– if m knots coincide, the curve is Cd-m-1 at the corresponding point
– if d-1 points of the control polygon are collinear, then the curve is

tangent to the polygon
– if d points of the control polygon are collinear, then the curve and

the polygon have a common segment
– if d-1 points coincide, then the curve interpolates the common

point and the two adjacent sides of the polygon are tangent to the
curve

– each segment of the curve lies in the convex hull of the associated
d points

