Motion synthesis

- **Goals:**
 - generate human motions that “look human” and “do what you want”
 - Synthesis
 - with control; with interaction
 - Evaluation
 - what “looks human?”

- **Features**
 - Motion composes across the body and across time
 - so the number of available motions is huge
 - Multiple constraints on the appearance of motion
 - physics;
 - motor control system;
 - internal motion goals;
 - nearby objects;
Key problems

• What makes a motion look human?
 • can we tell good motions from bad?

• How do we describe human activities?
 • with what vocabulary? at what time scales?

• How do nearby objects affect our description
 • interactions and context
Motion synthesis difficulties

- People are good at spotting poor motion
 - and it sometimes matters
- Motions can be very fast and very detailed
 - high accelerations, contacts create major issues
- Authoring is mysterious
 - how does one specify constraints on activity usefully?
- Complexity
 - interactions with objects, etc. create a need for families of motion
 - motion composes in nasty ways
 - motions should interact with objects, users, etc.
- Control
 - character should be manageable
 - have some capability to cope on its own
Motion synthesis, cont

- Motion composes across the body and across time
 - so the number of available motions is huge
- Multiple constraints on the appearance of motion
 - physics;
 - motor control system;
 - internal motion goals;
 - nearby objects;
Motion synthesis

- **Methods**
 - By animator
 - By kinematic control
 - profound difficulties with ambiguity
 - By combining observations
 - old tradition of move trees; also (Kovar et al 02, Lee et al 02, Arikan+Forsyth 02, Arikan et al 03, Gleicher et al 03)
 - By physical models
 - old tradition; (Witkin+Kass, 88; Witkin+Popovic 99; Funge et al 88; Fang+Pollard 03, 04)
 - By biomechanical models
 - old tradition; Liu+Popovic 02; Abe et al 04; Wu+Popovic 03; Liu+Popovic 02)
 - By statistical models
 - old tradition (e.g. Ramsey+Silverman 97); Li et al 02; Safanova et al 04; Mataric et al 99; Mataric 00; Jenkins+Mataric 04;
Variational and Physical Methods

Example 5:
3D Walking

4338 Automatic Constraints (joint angles, footplants)
Data-driven motion synthesis

- Analogies
 - Text synthesis (Shannon)

 “It means that in speaking with you, I am aware of how I think this is one of those questions that exposes a contradiction in our cultural cognitive disconnect the concept of authenticity exposes is, I believe, that we have inner and outer selves, and that the inner self is our real self. I personally find those ideas more misleading than helpful.”

- Texture synthesis (Efros+Leung ‘99; many others since)
Motion graph

• Take measured frames of motion as nodes
 • from motion capture, given us by our friends
• Directed edge from frame to any that could succeed it
 • decide by dynamical similarity criterion
 • see also (Kovar et al 02; Lee et al 02)
• A path is a motion
• Search with constraints
 • root position+orientation
 • length of motion
 • occupy a frame at specified time
 • limb close to a point

Motion Graph:
Nodes = Frames
Edges = Transition
A path = A motion
Search in a motion graph

- Local
 - Kovar et al 02
- With some horizon
 - Lee et al 02; Ikemoto, Arikan+Forsyth 05
- Whole path
 - Arikan+Forsyth 02; Arikan et al 03

Motion Graph:
Nodes = Frames
Edges = Transition
A path = A motion
Local Search methods

- Choose the next edge (Kovar, Gleicher, Pighin 02)
 - ensure that one can’t get stuck locally
 - but can’t guarantee a goal is available on longer scale
Original Motion
On-line control of motion synthesis

Agent travels along *motion graph*. When he reaches a decision point, he must choose which branch to take so he can best meet his objectives.
Value of state s obtained by comparing to a set of example states, encoded using following weighted terms:

- Local geometry
- Visible enemies
- Distance to next waypoint on global path plan
Reinforcement learning

Sample control parameters (w) for a random state (s)

- w_1 → Fix for the motion graph → Generate motion → Reward 1
- w_2 → Fix for the motion graph → Generate motion → Reward 2
- w_{3000} → Fix for the motion graph → Generate motion → Reward 3000

Fix control parameters for state s to be the w that yielded maximum reward

Ikemoto+Arikan+Forsyth 05
Characteristic properties of motion

- **Characteristic features**
 - most demands are radically underconstrained
 - motion is simultaneously
 - hugely ambiguous
 - “low entropy”

- Suggests using “summaries”
Limitations

- Can’t synthesize motions one hasn’t seen
 - but see later
- Long term structure of motion is strange
 - running backwards, etc.
- No on-the-fly control of motion or interaction
 - but see later
- Require more detailed control of “type” of motion
 - can deal with this
Synthesis with off-line control

- Annotate motions
 - using a classifier and on-line learning
 - efficient human-in-the loop training
- Produce a sequence that meets annotation demands
 - a form of dynamic programming
Annotation - desirable features

- Composability
 - run and wave;
- Comprehensive but not canonical vocabulary
 - because we don’t know a canonical vocabulary
- Speed and efficiency
 - because we don’t know a canonical vocab.

- Can do this with one classifier per vocabulary item
 - use an SVM applied to joint angles
 - form of on-line learning with human in the loop
 - works startlingly well (in practice 13 bits)
Synthesis by dynamic programming

Walk | P | P | P | P | P
Run | ● | ● | ● | ● |
Jump | ● | ● | ● | ● |
Wave | P | P | O | O |
Carry| ● | ● | ● | ● |

Motion demand

All frames in the database

Arikan+Forsyth+O’Brien 03
Dynamic programming practicalities

- **Scale**
 - Too many frames to synthesize
 - Too many frames in motion graph
- **Obtain good summary path, refine**
 - Form long blocks of motion, cluster
 - DP on stratified sample
 - split blocks on “best” path
 - find similar subblocks
 - DP on this lot
 - etc. to 1-frame blocks

Arikan+Forsyth+O’Brien 03
Still open

- Local control of synthesis
 - Long term structure of motion is strange
 - running backwards, etc.
 - essential for interaction

- Departing from data?
 - Can’t synthesize motions one hasn’t seen
 - essential for interaction
Transplantation

- MOTIONS CLEARLY HAVE A COMPOSITIONAL CHARACTER
 - WHY NOT CUT LIMBS OFF SOME MOTIONS AND ATTACH TO OTHERS?
 - WE GET SOME BAD MOTIONS
 - BUILD A CLASSIFIER TO TELL GOOD FROM BAD
 - AVOID FOOT SLIDE BY LEAVING LOWER BODY ALONE

Ikemoto+Forsyth 04
Loop {
 Randomly pick a synthesis rule

 \(e^{-\frac{d_{ij}}{(2\sigma_d^2)}} \)

 Djikstra's to find a path

 If successful, output candidate motions
}

Kovar, Gleicher, Pighin 2002

Ikemoto+Forsyth 04
22, 645

Generate

477, 362

Check

340, 596

labelled “human”

Classifier’s total error rate 13%
false positive rate 12%

But what does this mean in practice?

Ikemoto+Forsyth 04
Evaluate

Unreal Tournament 2004

• Position
• Velocity
• Rotation
• Running/Falling

+ 40 hand-generated streams

Ikemoto+Forsyth 04

Motion demands

Original motion graph

Synthesizer

Motion A_i

Synthesizer

Motion B_i

Enriched graph

Proxy
Is the enriched graph better?
Pushes and shoves

• **Natural interaction --- push, pull, hit, shoot, etc**
 • apply an impulse of given strength, direction
 • reaction time precludes much CNS involvement
 • Physics should be important
• **Can’t serve impulse with observed data**
 • too much data required unless you can guarantee limited impulses
• **Strategy**
 • deform each of many data items to serve given impulse
 • blend each to motion sequence
 • build regression model of motion quality to choose which to use
How good are the motions?

\[
P(\text{Human Good} \mid \text{Oracle Bad})
\]

\[
P(\text{Human Good} \mid \text{Oracle Good})
\]

\[
P(\text{Human Good} \mid \text{Motion Capture})
\]
Building Oracles

• Classifier (Ikemoto+Forsyth 04)
• Regression (Arikan+Forsyth 05)
• Ensemble of HMM’s (Ren et al 05)
• Nearest Neighbour (Ikemoto et al, in review)
Slow Motion