Physically based animation

- **General idea**
 - take physical models, make assumptions, solve
 - render solution

- **Influential areas**
 - we’ve seen
 - particles,
 - collision+ballistic
 - Others
 - fluids (includes gasses)
Example: Suspended particle explosion

- There is hot gas, moving under forces generated by
 - burning
 - momentum
 - changes in pressure
 - viscosity
 - etc.
- In the gas, there are particles that
 - move
 - heat and cool
- Render by rendering the particles

Feldman, O’Brien, Arikan, 03
Incompressible, inviscid moving fluids

• Important
 • compressible, viscous fluids are hard to model
 • compressible flow doesn’t happen at low mach numbers
 • compression is important in explosions, but very hard to model
 • and most undesirable in hollywood style explosions
 • “dry water”
Dry water

- Euler equations
 - Mass is conserved
 - Change of momentum is due to
 - change of pressure
 - external forces
Solving dry water

- Set up a grid
 - values of u, P at grid vertices

- Get intermediate velocity field
 - by taking a small time step, ignoring pressure effects
 - we will choose a pressure field to correct this to be an incompressible flow

- Correct the intermediate velocity field
Modified dry water

• For an explosion, we must have some fluid expansion
 • at points of detonation
 • we do not want to allow the fluid to expand everywhere,
 • or couple this to the fluid’s dynamics
 • pressure waves

• So the pressure update step changes

\[
\nabla u = \phi
\]

\[
\nabla^2 P = \frac{1}{\delta t} \left(\nabla \cdot u^* - \phi \right)
\]
Particles in the fluid

- Move
- Heat
Particle fluid interactions

- Drag on particle
 - force in opposite direction applied to fluid
 - low mass - no drag

- Thermal exchange
 - heat transfer to a particle from fluid
 - transfer goes both ways
 - T - fluid temperature field

\[
dH/dt = \alpha h r^2 (T - Y)
\]
Particle behaviour

- Particles burn
 - Simplified combustion
 - combustion is independent of oxygen
 - independent of temperature
 - products do not depend on temperature
- Model
 - Particle ignites when its temperature exceeds a fixed threshold
 - fixed amount of fuel
 - dies when its mass is zero
- Products
 - Heat
 - Gas
Products of combustion

- Heat
- Gas
- Soot
 - this builds up to a threshold - then a soot particle is released.
Advection
Further phenomena

• Smoke
 • simulate the fluid flow
 • smoke is distributed (rather than particles)
 • Temperature and density are constant at an element
 • i.e. are advected
• Buoyancy
 • heavy smoke sinks, hot gas rises

Fedkiw, Stam, Jensen 01
Vortices and vorticity confinement

- Smoke tends to produce vortices
 - hard to get fine vortices with a coarse grid
 - vortices tend to die out too fast with simple integrators
 - this is called damping
 - strategy
 - estimate where vortices are being suppressed
 - insert a “paddle wheel” force
Rendering Smoke

- Phenomena
 - in/out scattering
 - extinction
- Strategy
 - photon map
 - march along rays
Examinable material

• Rendering
 • ray tracing in all its forms
 • sampling and aliasing
 • shading models
 • including general radiometry
 • diffuse interreflections and finite element methods
 • random integration
 • for area light sources
 • for final gathering
 • for path tracing
 • photon maps
 • texture synthesis
 • procedural shading
 • procedural texturing
Examinable material

- **Curves and surfaces**
 - Bezier, de Casteljau
 - B-splines, de Boor
 - tensor products
 - subdivision

- **Animation**
 - particle systems and Forward Euler
 - ballistic motion and collisions
 - ideas, rather than exact formulation of dynamics
 - collision
 - Human motion
 - motion graphs
 - incompressible fluids (without viscosity)