Antialiasing

CS 319 Advanced Topics in Computer Graphics John C. Hart

Aliasing

- Aliasing occurs when signals are sampled too infrequently, giving the illusion of a lower frequency signal
- alias *noun* (c. 1605) an assumed or additional name

$f(t) = \sin 1.9\pi t$

- Plotted for $t \in [1,20]$
- Sampled at integer *t*
- Reconstructed signal appears to be

 $f(t) = \sin 0.1\pi t$

Zone Plate

 $f(x,y) = \sin(x^2 + y^2)$

- Gray-level plot above
 - Evaluated over $[-10,10]^2$
 - -1000×1000 samples (more than needed)
 - Frequency = $(x^2 + y^2)/2\pi$
 - About 30Hz (cycles per unit length) in the corners
- Poorly sampled version below
 - Only 100×100 samples
 - Moire patterns in higher frequency areas
 - Moire patterns resemble center of zone plate
 - Low frequency features replicated in under-sampled high frequency regions

0	0	0	0	0	0	0	0	o	0	0	0
0	0	0	0	o	o	0	0				
0	0	0	o	0	0	0	0	0	o	0	o
0	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	ò	0	0	0		~		
0	0	0	0	0	0	0	0	0	0	0	0
-1_J	'led ^r				~						
0				0				0	0		0
								o	0		0
0				0							
								0	0		0

Image Functions

- Analog image
 - 2-D region of varying color
 - Continuous
 - e.g. optical image
- Symbolic image
 - Any function of two real variables
 - Continuous
 - e.g. $\sin(x^2 + y^2)$, theoretical rendering
- Digital image
 - 2-D array of uniformly spaced color "pixel" values
 - Discrete
 - e.g. framebuffer

Photography

Graphics

Sampling and Reconstruction

1-D Fourier Transform

- Makes any signal *I*(*x*) out of sine waves
- Converts spatial domain into frequency domain
- Yields spectrum *F*(*u*) of frequencies *u*
 - u is actually complex
 - Only worried about amplitude: |u|
- DC term: F(0) = mean I(x)
- Symmetry: F(-u) = F(u)

Product and Convolution

- Product of two functions is just their product at each point
- Convolution is the sum of products of one function at a point and the other function at all other points
- E.g. Convolution of square wave with square wave yields triangle wave
- Convolution in spatial domain is product in frequency domain, and vice versa
 - f*g 🕅 FG
 - fg 🕅 F*G

(gh)(x) = g(x)h(x) $(g^*h)(x) = \int g(s)h(x-s)ds$

Sampling Functions

- Sampling takes measurements of a continuous function at discrete points
- Equivalent to product of continuous function and sampling function
- Uses a sampling function *s*(*x*)
- Sampling function is a collection of spikes
- Frequency of spikes corresponds to their resolution
- Frequency is inversely proportional to or the distance between spikes
- Fourier domain also spikes
- Distance between spikes is the frequency

Shannon's Sampling Theorem

- Sampling frequency needs to be at least twice the highest signal frequency
- Otherwise the first replica interferes with the original spectrum
- Sampling below this *Nyquist limit* leads to aliasing
- Conceptually, need one sample for each peak and another for each valley

Prefiltering

- Aliases occur at high frequencies
 - Sharp features, edges
 - Fences, stripes, checkerboards
- Prefiltering removes the high frequency components of an image before it is sampled
- Box filter (in frequency domain) is an ideal low pass filter
 - Preserves low frequencies
 - Zeros high frequencies
- Inverse Fourier transform of a box function is a sinc function

 $\operatorname{sinc}(x) = \sin(x)/x$

• Convolution with a sinc function removes high frequencies

2-D Fourier Transform

- Converts spatial image into frequency spectrum image
- Distance from origin corresponds to frequency
- Angle about origin corresponds to direction frequency occurs

diag. \	vert.	diag. /
freq.	freq.	freq.
hor. freq.	DC	hor. freq.
diag. /	vert.	diag. \
freq.	freq.	freq.

 $F(u,v) = \frac{1}{2\pi} \iint I(x,y) \exp(-j(ux+vy)) dxdy$ $I(x,y) = \frac{1}{2\pi} \iint F(u,v) \exp(-j(ux+vy)) dxdy$

Analytic Diamond

• Example: a Gaussian diamond function

$$I(x,y) = e^{-1} - e^{-|x| - |y|}$$

• Fourier transform of *I* yields

$$F(u,v) = -\frac{0.637}{(1+u^2)(1+v^2)}$$

- Spectrum has energy at infinitely high horizontal and vertical frequencies
- Limited bandwidth for diagonal frequencies
- Dashed line can be placed arbitrarily close to tip of diamond, yielding a signal with arbitrarily high frequencies

Sampled Diamond

- Sample every 0.1 units: Sampling frequency is 10 Hz (samples per unit length)
- Frequencies overlap with replicas of diamond's spectrum centered at 10Hz
- Aliasing causes blocking quantization artifacts
- Frequencies of staircase edge include ~10 Hz and ~20 Hz copies of diamond's analytical spectrum centered about the DC (0Hz) term

Diamond Edges

- Plot one if $I(x,y) \le 0$, otherwise zero
- Aliasing causes "jaggy" staircase edges
- Frequencies of staircase edge include ~10 Hz and ~20 Hz copies of diamond's analytical spectrum centered about the DC (0Hz) term

Antialiasing Strategies

- Pixel needs to represent average color over its entire area
- 1. Prefiltering
 - averages the image function so a single sample represents the average color
 - Limits bandwidth of image signal to avoid overlap
- 2. Supersampling
 - Supersampling averages together many samples over pixel area
 - Moves the spectral replicas farther apart in frequency domain to avoid overlap

Cone Tracing

- Amanatides SIGGRAPH 84
- Replace rays with cones
- Cone samples pixel area
- Intersect cone with objects
 - Analytic solution of cone-object intersection similar to ray-object intersection
 - Expensive

Images courtesy John Amanatides

Beam Tracing

- Heckbert & Hanrahan SIGGRAPH 84
- Replace rays with generalized pyramids
- Intersection with polygonal scenes
 - Plane-plane intersections easy, fast
 - Existing scan conversion antialiasing
- Can perform some recursive beam tracing
 - Scene transformed to new viewpoint
 - Result clipped to reflective polygon

Supersampling

- Trace at higher resolution, average results
- Adaptive supersampling
 - trace at higher resolution only where necessary
- Problems
 - Does not eliminate aliases (e.g. moire patterns)
 - Makes aliases higher-frequency
 - Due to uniformity of samples

Stochastic Sampling

- Eye is extremely sensitive to patterns
- Remove pattern from sampling
- Randomize sampling pattern
- Result: patterns -> noise
- Some noises better than others
- *Jitter*: Pick *n* random points in sample space
 - Easiest, but samples cluster
- *Uniform Jitter*: Subdivide sample space into *n* regions, and randomly sample in each region
 - Easier, but can still cluster
- *Poisson Disk*: Pick *n* random points, but not too close to each other
 - Samples can't cluster, but may run out of room

Adaptive Stochastic Sampling

- Proximity inversely proportional to variance
- How to generate patterns at various levels?
 - Cook: Jitter a quadtree
 - Dippe/Wold: Jitter a k-d tree
 - Dippe/Wold: Poisson disk on the fly too slow
 - Mitchell: Precompute levels fast but granular

Reconstruction

OpenGL Aliases

- Aliasing due to rasterization
- Opposite of ray casting
- New polygons-to-pixels strategies
- Prefiltering
 - Edge aliasing
 - Analytic Area Sampling
 - A-Buffer
 - Texture aliasing
 - MIP Mapping
 - Summed Area Tables
- Postfiltering
 - Accumulation Buffer

Analytic Area Sampling

- Ed Catmull, 1978
- Eliminates edge aliases
- Clip polygon to pixel boundary
- Sort fragments by depth
- Clip fragments against each other
- Scale color by visible area
- Sum scaled colors

A-Buffer

- Loren Carpenter, 1984
- Subdivides pixel into 4x4 bitmasks
- Clipping = logical operations on bitmasks
- Bitmasks used as index to lookup table

Texture Aliasing

- Image mapped onto polygon
- Occur when screen resolution differs from texture resolution
- Magnification aliasing
 - Screen resolution finer than texture resolution
 - Multiple pixels per texel
- Minification aliasing
 - Screen resolution coarser than texture resolution
 - Multiple texels per pixel

Magnification Filtering

- Nearest neighbor
 - Equivalent to spike filter

- Equivalent to box filter

Minification Filtering

- Multiple texels per pixel
- Potential for aliasing since texture signal bandwidth greater than framebuffer
- Box filtering requires averaging of texels
- Precomputation
 - MIP Mapping
 - Summed Area Tables

MIP Mapping

- Lance Williams, 1983
- Create a resolution pyramid of textures
 - Repeatedly subsample texture at half resolution
 - Until single pixel
 - Need extra storage space
- Accessing
 - Use texture resolution closest to screen resolution
 - Or interpolate between two closest resolutions

Summed Area Table

- Frank Crow, 1984
- Replaces texture map with summed-area texture map
 - $S(x,y) = \text{sum of texels} \le x,y$
 - Need double range (e.g. 16 bit)
- Creation
 - Incremental sweep using previous computations
 - S(x,y) = T(x,y) + S(x-1,y) + S(x,y-1) S(x-1,y-1)
- Accessing
 - $\sum T([x_1, x_2], [y_1, y_2]) = S(x_2, y_2) S(x_1, y_2) S(x_2, y_1) + S(x_1, y_1)$
 - Ave $T([x_1,x_2],[y_1,y_2])/((x_2-x_1)(y_2-y_1))$

Accumulation Buffer

- Increases OpenGL's resolution
- Render the scene 16 times
- Shear projection matrices
- Samples in different location in pixel
- Average result
- Jittered, but same jitter sampling pattern in each pixel

