Image Based Rendering Representations

CS 319 Advanced Topics in Computer Graphics John C. Hart

Accurate IBR

- Is there a "photograph" that gives us all the information we need to view a scene correctly from any viewpoint?
 - What dimension is the "image?"
 - How can we represent the "image?"
- Answers
 - Light Field
 - Lumigraph
 - Layered Depth Image

How Much Light is Really in a Scene?

- Light transported throughout scene along rays
 - Anchor
 - Any point in 3-D space
 - 3 coordinates
 - Direction
 - Any 3-D unit vector
 - 2 angles
 - Total of 5 dimensions
- Radiance remains constant along ray
 - Removes one dimension
 - Total of 4 dimensions

Representing All of the Light in a Scene

- View scene through a window
- All visible light from scene must have passed through window
- Window light is 4-D
 - 2 coordinates where ray intersects window pane
 - 2 angles for ray direction
- Use a double-paned window
 - 2 coordinates (u,v) where ray intersects first pane
 - 2 coordinates (*s*,*t*) where ray intersects second pane

Light Field v. Lumigraph

- Light Field Rendering
 - Levoy & Hanrahan, S96
- Lumigraph
 - Gortler et al., S96
- Consider (*u*,*v*) the image plane and (*s*,*t*) the viewpoint plane
- Remember depth of field?
- Photographs from a bunch of different viewpoints
- Reconstructed photographs of scene are 2-D slices of 4-D light field

Ray Tracing and Light Fields

- Rendering into a light field
 - Cast rays between all pairs of points in panes
 - Store resulting radiance at (u,v,s,t)
- Rendering from a light field
 - Cast rays through pixels into light field
 - Compute two ray-plane intersections to find (u,v,s,t)
 - Interpolate u,v and s,t to find radiance between samples
 - Plot radiance in pixel

Antialiasing and Light Fields

- Light field aliases
 - jagged edges
 - jumping between discretized images when animated
- Correct sampling uses depth of field from distribution ray tracing
- Circle of confusion equals distance between camera positions

Results

Image Based Rendering - Big Issues

- Representation
 - 3D Implicit
 - multi-frame mosaics and local linearisations
 - frame-frame transfer
 - light fields, etc.
 - 3D Explicit
 - meshes of polygons, splines, etc.
 - assemblies of primitives

- Recovery
- implicit
- specialised cameras
- software mosaicing
- sampling issues
- Explicit
- relations between views;
- between appearance and shape
- Both
- correspondence: manual vs automatic

Implicit example: Quicktime VR

- Construct a mosaic that can be queried to provide various camera views at various points
- Issues:
 - recovering the mosaics
 - specialised hardware
 - correlation based mosaicing
 - structuring the representation for fast rendering
 - geometry of views
 - incremental view relations

Figures from "QuickTime VR – An Image-Based Approach to Virtual Environment Navigation", Shenchang Eric Chen, SIGGRAPH 95

Figures from "QuickTime VR – An Image-Based Approach to Virtual Environment Navigation", Shenchang Eric Chen, SIGGRAPH 95

Figures from "QuickTime VR – An Image-Based Approach to Virtual Environment Navigation", Shenchang Eric Chen, SIGGRAPH 95

Image Warping

- Warping allows us to replace geometric detail with textures
 - Textures created from photographs
 - Mapped to coarse planar model
- Warping problems
 - Warping incorrect for non-planes
 - Depth warping creates "holes"
- Image warping alone not enough to correctly reconstruct arbitrary scene

Layered Depth Images

- Shade *et al.* S98
- Replace z-buffer with depth-sorted list of all objects intersected by the ray
 - Compare to Roth's CSG
 - Compare to Catmull's A-buffer
- Three-dimensional "solid" image
 - Compare (x,y,z) to (u,v,s,t)

Fast LDI Display

- Reconstruct new view of an LDI by warping each depth pixel individually
- Prevents holes from occlusion
- Location of depth pixel in new image
 - scale **depth** by depth pixel z value
 - add result to start
 - divide by homogeneous coordinate
- Location of start for next pixel found by adding a constant vector
- Need to also compute splat footprint
 - Area of screen onto which the LDI sample projects

$$\begin{bmatrix} x_{1}w \\ y_{1}w \\ z_{1}w \\ w \end{bmatrix} = M_{1}M_{0}^{-1} \begin{bmatrix} x_{0} \\ y_{0} \\ z_{0} \\ 1 \end{bmatrix}$$
$$= M_{1}M_{0}^{-1} \begin{bmatrix} x_{0} \\ y_{0} \\ 0 \\ 1 \end{bmatrix} + z_{0}M_{1}M_{0}^{-1} \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$
$$= \text{start} + 7 \text{ ydenth}$$

$$M_{1}M_{0}^{-1}\begin{bmatrix}x_{0}+1\\y_{0}\\0\\1\end{bmatrix}$$
$$=M_{1}M_{0}^{-1}\begin{bmatrix}x_{0}\\y_{0}\\0\\1\end{bmatrix}+M_{1}M_{0}^{-1}\begin{bmatrix}1\\0\\0\\0\\0\end{bmatrix}$$
$$= start + sincr$$