
Image Based Rendering
Representations

CS 319
Advanced Topics in Computer Graphics

John C. Hart

Accurate IBR

• Is there a “photograph” that gives us
all the information we need to view a
scene correctly from any viewpoint?
– What dimension is the “image?”
– How can we represent the “image?”

• Answers
– Light Field
– Lumigraph
– Layered Depth Image

How Much Light
is Really in a Scene?
• Light transported throughout scene

along rays
– Anchor

• Any point in 3-D space
• 3 coordinates

– Direction
• Any 3-D unit vector
• 2 angles

– Total of 5 dimensions
• Radiance remains constant along ray

– Removes one dimension
– Total of 4 dimensions

L1 L2

dA1 dA2

dω1dω2

radiance
constant

here

Representing All of
the Light in a Scene
• View scene through a window
• All visible light from scene must have

passed through window
• Window light is 4-D

– 2 coordinates where ray intersects
window pane

– 2 angles for ray direction
• Use a double-paned window

– 2 coordinates (u,v) where ray
intersects first pane

– 2 coordinates (s,t) where ray
intersects second pane

s

t

u

v

Light Field v.
Lumigraph
• Light Field Rendering

– Levoy & Hanrahan, S96
• Lumigraph

– Gortler et al., S96
• Consider (u,v) the image plane and

(s,t) the viewpoint plane
• Remember depth of field?
• Photographs from a bunch of different

viewpoints
• Reconstructed photographs of scene

are 2-D slices of 4-D light field

Ren Ng’s camera

Ray Tracing and
Light Fields
• Rendering into a light field

– Cast rays between all pairs of
points in panes

– Store resulting radiance at (u,v,s,t)
• Rendering from a light field

– Cast rays through pixels into light
field

– Compute two ray-plane
intersections to find (u,v,s,t)

– Interpolate u,v and s,t to find
radiance between samples

– Plot radiance in pixel

Antialiasing and
Light Fields
• Light field aliases

– jagged edges
– jumping between discretized

images when animated
• Correct sampling uses depth of field

from distribution ray tracing
• Circle of confusion equals distance

between camera positions

pixel
filter

aperature
filter

ray
filter

Results

Image Based Rendering - Big Issues

• Representation
– 3D Implicit

• multi-frame mosaics and
local linearisations

• frame-frame transfer
• light fields, etc.

– 3D Explicit
• meshes of polygons,

splines, etc.
• assemblies of primitives

• Recovery
– implicit
• specialised cameras
• software mosaicing
• sampling issues
– Explicit
• relations between views;
• between appearance and shape
– Both
• correspondence: manual vs automatic

Implicit example: Quicktime VR

• Construct a mosaic that can be
queried to provide various
camera views at various points

• Issues:
– recovering the mosaics

• specialised hardware
• correlation based

mosaicing
– structuring the representation

for fast rendering
– geometry of views
– incremental view relations

Figures from “QuickTime VR – An Image-Based Approach to
Virtual Environment Navigation”, Shenchang Eric Chen, SIGGRAPH 95

 Figures from “QuickTime VR – An Image-Based Approach to
Virtual Environment Navigation”, Shenchang Eric Chen, SIGGRAPH 95

 Figures from “QuickTime VR – An Image-Based Approach to
Virtual Environment Navigation”, Shenchang Eric Chen, SIGGRAPH 95

Image Warping

• Warping allows us to replace
geometric detail with textures
– Textures created from photographs
– Mapped to coarse planar model

• Warping problems
– Warping incorrect for non-planes
– Depth warping creates “holes”

• Image warping alone not enough to
correctly reconstruct arbitrary scene

yuck
!

Layered Depth Images

• Shade et al. S98
• Replace z-buffer with depth-sorted list

of all objects intersected by the ray
– Compare to Roth’s CSG
– Compare to Catmull’s A-buffer

• Three-dimensional “solid” image
– Compare (x,y,z) to (u,v,s,t)

A
B

 ∅

B

A,B

∅

Fast LDI Display

• Reconstruct new view of an LDI by
warping each depth pixel individually

• Prevents holes from occlusion
• Location of depth pixel in new image

– scale depth by depth pixel z value
– add result to start
– divide by homogeneous coordinate

• Location of start for next pixel found
by adding a constant vector

• Need to also compute splat footprint
– Area of screen onto which the LDI

sample projects

