

D.A. Forsyth

Cameras

- First photograph due to Niepce
- First on record, 1822
- Key abstraction
 - Pinhole camera

Pinhole camera

Freestanding room-sized <u>camera obscura</u> outside Hanes Art Center at the <u>University of North</u> <u>Carolina at Chapel Hill</u>. Picture taken by <u>User:Seth Ilys</u> on 23 April 2005 and released into the public domain.

A photo of the Camera Obscura in San Francisco. This Camera Obscura is located at the Cliff House on the Pacific ocean. Credit to Jacob Appelbaum of <u>http://www.appelbaum.net</u>.

Distant objects are smaller in a pinhole camera

Vanishing points

- Each set of parallel lines meets at a different point
 - The vanishing point for this direction
- Coplanar sets of parallel lines have a horizon
 - The vanishing points lie on a line
 - Good way to spot faked images

Railroad tracks "vanishing" into the distance Source own work 2006-05-23 Author

User:MikKBDFJKGeMalak

Parallel lines meet in a pinhole camera

Vanishing points

Horizons

Which ball is closer to the viewer?

Projection in Coordinates

- From the drawing, we have X/Z = -x/f
- Generally

Homogeneous coordinates

- Add an extra coordinate and use an equivalence relation
- for 2D
 - three coordinates for point
 - equivalence relation
 k*(X,Y,Z) is the same as (X,Y,Z)
- for 3D
 - four coordinates for point
 - equivalence relation
 k*(X,Y,Z,T) is the same as (X,Y,Z,T)
- Canonical representation
 - by dividing by one coordinate (if it isn't zero).

Homogeneous coordinates

• Why?

- Possible to represent points "at infinity"
- Where parallel lines intersect (vanishing points)
- Where parallel planes intersect (horizons)
- Possible to write the action of a perspective camera as a matrix

A perspective camera as a matrix

• Turn previous expression into HC's

- HC's for 3D point are (X,Y,Z,T)
- HC's for point in image are (U,V,W)

$$\begin{pmatrix} U \\ V \\ W \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{1}{f} & 0 \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \\ T \end{pmatrix}$$

Weak perspective

• Issue

- perspective effects, but not over the scale of individual objects
 - For example, texture elements in picture below
- collect points into a group at about the same depth, then divide each point by the depth of its group
- Adv: easy
- Disadv: wrong

Orthographic projection

- Perspective effects are often not significant
 - eg
 - pictures of people
 - all objects at the same distance

Orthographic projection in HC's

• In conventional coordinates, we just drop z

 $\left(\begin{array}{c} U\\V\\W\end{array}\right) = \left(\begin{array}{cccc} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 1\end{array}\right) \left(\begin{array}{c} X\\Y\\Z\\T\end{array}\right)$

Pinhole Problems

Pinhole too big: brighter, but blurred

2 mm

1 mm

LUZ

OPTICA

FOTOGRAFIA

0.55 mm

Pinhole too small: diffraction effects blur, dark

Pinhole right size: crisp, but dark

0.15 mm

0.07 mm

Lens Systems

• Collect light from a large range of directions

Lens distortion

No Distortion

Barrel Distortion

Pincushion Distortion

Corrected Barrel Distortion

Image from Martin Habbecke

Crucial points

• Cameras project 3D to 2D

- distort flat patches
- distortion can be represented by matrices in homogenous coordinates
- models:
 - perspective camera
 - orthographic camera
- Lenses
 - make images brighter by focusing light
 - can distort images