Cameras
 D.A. Forsyth

Cameras

- First photograph due to Niepce
- First on record, 1822
- Key abstraction
- Pinhole camera

Pinhole camera

Freestanding room-sized camera obscura outside Hanes Art Center at the University of North Carolina at Chapel Hill. Picture taken by User:Seth llys on 23 April 2005 and released into the public domain.

A photo of the Camera Obscura in San Francisco. This Camera Obscura is located at the Cliff House on the Pacific ocean. Credit to Jacob Appelbaum of http://www.appelbaum.net.

Distant objects are smaller in a pinhole camera

Vanishing points

- Each set of parallel lines meets at a different point - The vanishing point for this direction
- Coplanar sets of parallel lines have a horizon
- The vanishing points lie on a line
- Good way to spot faked images

Parallel lines meet in a pinhole camera

Vanishing points

Horizons

Which ball is closer to the viewer?

Projection in Coordinates

- From the drawing, we have $\mathrm{X} / \mathrm{Z}=-\mathrm{x} / \mathrm{f}$
- Generally

Homogeneous coordinates

- Add an extra coordinate and use an equivalence relation
- for 2D
- three coordinates for point
- equivalence relation $\mathrm{k}^{*}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})$ is the same as $(\mathrm{X}, \mathrm{Y}, \mathrm{Z})$
- for 3D
- four coordinates for point
- equivalence relation $\mathrm{k} *(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{T})$ is the same as $(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{T})$
- Canonical representation
- by dividing by one coordinate (if it isn't zero).

Homogeneous coordinates

- Why?
- Possible to represent points "at infinity"
- Where parallel lines intersect (vanishing points)
- Where parallel planes intersect (horizons)
- Possible to write the action of a perspective camera as a matrix

A perspective camera as a matrix

- Turn previous expression into HC's
- HC's for 3D point are (X,Y,Z,T)
- HC's for point in image are (U,V,W)

$$
\left(\begin{array}{c}
U \\
V \\
W
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \frac{1}{f} & 0
\end{array}\right)\left(\begin{array}{c}
X \\
Y \\
Z \\
T
\end{array}\right)
$$

Weak perspective

- Issue
- perspective effects, but not over the scale of individual objects
- For example, texture elements in picture below
- collect points into a group at about the same depth, then divide each point by the depth of its group
- Adv: easy
- Disadv: wrong

Orthographic projection

- Perspective effects are often not significant
- eg
- pictures of people
- all objects at the same distance

Orthographic projection in HC's

- In conventional coordinates, we just drop z

$$
\left(\begin{array}{l}
U \\
V \\
W
\end{array}\right)=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
X \\
Y \\
Z \\
T
\end{array}\right)
$$

Pinhole Problems

Pinhole too big: brighter, but blurred

Pinhole right size: crisp, but dark

Lens Systems

- Collect light from a large range of directions

Lens distortion

Crucial points

- Cameras project 3D to 2D
- distort flat patches
- distortion can be represented by matrices in homogenous coordinates
- models:
- perspective camera
- orthographic camera
- Lenses
- make images brighter by focusing light
- can distort images

