Classifiers and Detection

D.A. Forsyth
Classifiers

- Take a measurement x, predict a bit (yes/no; 1/-1; 1/0; etc)
Detection with a classifier

- **Search**
 - all windows
 - at relevant scales
- **Prepare features**
- **Classify**

- **Issues**
 - how to get only one response
 - speed
 - accuracy
Detection with a classifier
Non-maximum suppression

- Compute “strength of response”
 - SVM value
 - LR value
- threshold
 - small values are not faces
- find largest value (over location, scale)
 - suppress nearby values
 - repeat
Classifiers

- Take a measurement x, predict a bit (yes/no; 1/-1; 1/0; etc)
- Strategies:
 - non-parametric
 - nearest neighbor
 - probabilistic
 - histogram
 - logistic regression
 - decision boundary
 - SVM
Basic ideas in classifiers

- **Loss**
 - errors have a cost, and different types of error have different costs
 - this means each classifier has an associated risk
 - **Total risk**

 \[R(s) = P \{1 \rightarrow 2 | \text{using } s\} \cdot L(1 \rightarrow 2) + P \{2 \rightarrow 1 | \text{using } s\} \cdot L(2 \rightarrow 1) \]

- **Bayes risk**
 - smallest possible value of risk, over all classification strategies
Nearest neighbor classification

- **Examples**
 - \((x_i, y_i)\)
 - here \(y\) is yes/no or -1/1 or 1/0 or...
 - training set

- **Strategy**
 - to label new example (test example)
 - find closest training example
 - report its label

- **Advantage**
 - in limit of very large number of training examples, risk is \(2*\text{bayes risk}\)

- **Issue**
 - how do we find closest example?
 - what distance should we use?
k-nearest neighbors

• **Strategy**
 • to classify test example
 • find k-nearest neighbors of test point
 • vote (it’s a good idea to have k odd)

• **Issues**
 • how do we find nearest neighbors?
 • what distance should we use?
Nearest neighbors

- Exact nearest neighbor in large dataset
 - linear search is very good
 - very hard to do better (surprising fact)
- Approximate nearest neighbor is easier
 - methods typically give probabilistic guarantees
 - good enough for our purposes
 - methods
 - locality sensitive hashing
 - k-d tree with best bin first
Locality sensitive hashing (LSH)

• Build a set of hash tables
• Insert each training data at its hash key
• ANN
 • compute key for test point
 • recover all points in each hash table at that key
 • linear search for distance in these points
 • take the nearest
Hash functions

- Random splits
 - for each bit in the key, choose random w, b
 - bit is: \(\text{sign}(w \times x + b) \)
LSH - issues

- **Parameters**
 - How many hash tables?
 - How many bits in key?

- **Issues**
 - quite good when data is spread out
 - can be weak when it is clumpy
 - too many points in some buckets, too few in others
kd-trees (outline)

- Build a kd-tree, splitting on median
- Walk the tree
 - find leaf in which query point lies
 - backtrack, pruning branches that are further away than best point so far
kd-Trees

- Standard construction fails in high dimensions
 - too much backtracking
- Good approximate nearest neighbor, if we
 - probe only a fixed number of leaves
 - use best bin first heuristic
- Very good for clumpy data
Approximate nearest neighbors

- In practice
 - fastest method depends on dataset
 - parameters depend on dataset
 - search methods, parameters using dataset
 - FLANN (http://www.cs.ubc.ca/~mariusm/index.php/FLANN/FLANN)
 - can do this search
Basic ideas in classifiers

• **Loss**
 • errors have a cost, and different types of error have different costs
 • this means each classifier has an associated risk
 • **Total risk**

\[
R(s) = Pr\{1 \rightarrow 2|\text{using } s\}L(1 \rightarrow 2) + Pr\{2 \rightarrow 1|\text{using } s\}L(2 \rightarrow 1)
\]

• **Expected loss of classifying a point gives**

 1 if \[p(1|x)L(1 \rightarrow 2) > p(2|x)L(2 \rightarrow 1) \]

 2 if \[p(1|x)L(1 \rightarrow 2) < p(2|x)L(2 \rightarrow 1) \]
Histogram based classifiers

• Represent class-conditional densities with histogram
• Advantage:
 • estimates become quite good
 • (with enough data!)
• Disadvantage:
 • Histogram becomes big with high dimension
 • but maybe we can assume feature independence?
Finding skin

- Skin has a very small range of (intensity independent) colours, and little texture
 - Compute an intensity-independent colour measure, check if colour is in this range, check if there is little texture (median filter)
 - See this as a classifier - we can set up the tests by hand, or learn them.
Histogram classifier for skin

\[
\frac{P(rgb \mid skin)}{P(rgb \mid \neg skin)} \geq \Theta
\]

Figure from Jones+Rehg, 2002
Curse of dimension - I

- This won’t work for many features
 - try R, G, B, and some texture features
 - too many histogram buckets
Naive Bayes

- Previously, we detected with a likelihood ratio test

\[
\frac{P(\text{features} | \text{event})}{P(\text{features} | \text{not event})} > \text{threshold}
\]

- Now assume that features are conditionally independent given event

\[
P(f_0, f_1, f_2, \ldots, f_n | \text{event}) = P(f_0 | \text{event})P(f_1 | \text{event})P(f_2 | \text{event}) \ldots P(f_n | \text{event})
\]
Naive Bayes

- (not necessarily perjorative)
- Histogram doesn’t work when there are too many features
 - the curse of dimension, first version
 - assume they’re independent conditioned on the class, cross fingers
 - reduction in degrees of freedom
 - very effective for face finders
 - relations may not be all that important
 - very effective for high dimensional problems
 - bias vs. variance
Logistic Regression

- Build a parametric model of the posterior,
 - \(p(\text{class} | \text{information}) \)
- For a 2-class problem, assume that
 - \(\log(P(1|\text{data}) - \log(P(0|\text{data})) = \text{linear expression in data} \)
- Training
 - maximum likelihood on examples
 - problem is convex
- Classifier boundary
 - linear
Decision boundaries

• The boundary matters
 • but the details of the probability model may not

• Seek a boundary directly
 • when we do so, many or most examples are irrelevant

• Support vector machine
Support Vector Machines, easy case

- Classify with $\text{sign}(w \cdot x + b)$

- Linearly separable data means
 $$y_i (w \cdot x_i + b) > 0$$

- Choice of hyperplane means
 $$y_i (w \cdot x_i + b) \geq 1$$

- Hence distance
 $$\text{dist}(x_k, \text{hyperplane}) + \text{dist}(x_i, \text{hyperplane}) = \left(\frac{w}{|w|} \cdot x_k + \frac{b}{|w|} \right) - \left(\frac{w}{|w|} \cdot x_1 + \frac{b}{|w|} \right)$$
 $$= \frac{w}{|w|} \cdot (x_1 - x_2) = \frac{2}{|w|}$$
Support Vector Machines, separable case

\[
\text{minimize} \quad \frac{1}{2} \mathbf{w} \cdot \mathbf{w}
\]

subject to \quad y_i (\mathbf{w} \cdot \mathbf{x}_i + b) \geq 1

By being clever about what \(x \) means, I can have much more interesting boundaries.
Data not linearly separable

Constraint violations
Data not linearly separable

Objective function becomes

$$\frac{||w||^2}{2} + C \left(\sum_i \xi_i \right)$$

Constraints become

$$x_i \cdot w + b \geq +1 - \xi_i \quad \text{for } y_i = +1$$
$$x_i \cdot w + b \leq -1 + \xi_i \quad \text{for } y_i = -1$$
$$\xi_i \geq 0 \ \forall i.$$
SVM’s

- Optimization problem is rather special
 - never ever use general purpose software for this
 - very well studied
- Methods available on the web
 - SVMlite
 - LibSVM
 - Pegasos
 - many others
- There are automatic feature constructions as well
Pedestrian detection with SVM

- **Features:**
 - HOG features in window

- **Classifier:**
 - Linear SVM

- **Training:**
 - pedestrian examples from INRIA
 - negative examples all over the place
SVM pedestrian detector

\[f_w(x) = w \cdot \Phi(x) \]
Pedestrian detectors: performance

False positives per window

fraction of detections that overlaps ground truth

![Graph showing false positives per window and recall-precision curves for different descriptors on INRIA static person database.](image)
Multiclass classification

• Many strategies
 • Easy with k-nearest neighbors
 • 1-vs-all
 • for each class, construct a two class classifier comparing it to all other classes
 • take the class with best output
 • if output is greater than some value
 • Multiclass logistic regression
 • \(\log(P(\text{ilfeatures})) - \log(P(\text{klfeatures})) = \text{(linear expression)} \)
 • many more parameters
 • harder to train with maximum likelihood
 • still convex
Detection with a classifier

- **Search**
 - all windows
 - at relevant scales
- **Prepare features**
- **Classify**

- **Issues**
 - how to get only one response
 - speed
 - accuracy
Non-maximum suppression

- Compute “strength of response”
 - SVM value
 - LR value
- threshold
 - small values are not faces
- find largest value (over location, scale)
 - suppress nearby values
 - repeat
There are methods to reject some windows early
 • using simple tests

Key to good performance seems to be
 • very large numbers of examples
 • and clever methods to train with huge numbers of negatives
 • careful feature engineering
Near State of Art

- Regular annual competition for best performing detectors
 - on a variety of categories
 - multiple competitors
- Typical results above from Deva Ramanan’s slides ’08
Crucial points

- Can detect some objects by
 - sliding window across image
 - computing features
 - presenting to classifier
- Works best for objects that are fairly rigid
 - pedestrians, faces, cars
- Classifier can be probabilistic or not
 - SVM is always first to try