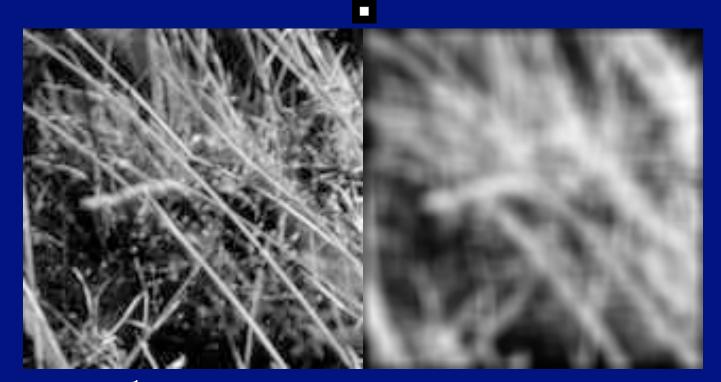
Edges, Orientation, HOG and SIFT

D.A. Forsyth

Linear Filters

- Example: smoothing by averaging
 - form the average of pixels in a neighbourhood
- Example: smoothing with a Gaussian
 - form a weighted average of pixels in a neighbourhood
- Example: finding a derivative
 - form a weighted average of pixels in a neighbourhood

Smoothing by Averaging

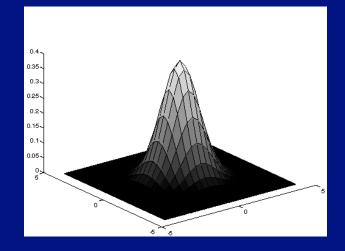


$$N_{ij} = \frac{1}{N} \Sigma_{uv} O_{i+u,j+v}$$

where u, v, is a window of N pixels in total centered at 0, 0

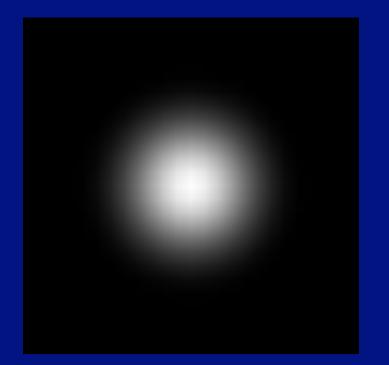
Smoothing with a Gaussian

- Notice "ringing"
 - apparently, a grid is superimposed
- Smoothing with an average actually doesn't compare at all well with a defocussed lens
 - what does a point of light produce?



• A Gaussian gives a good model of a fuzzy blob

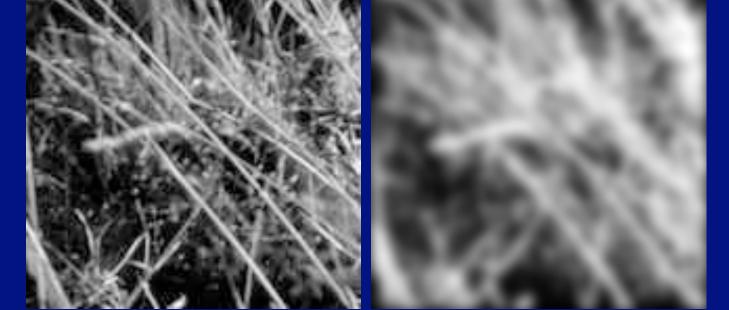
Gaussian filter kernel



$$K_{uv} = \left(\frac{1}{2\pi\sigma^2}\right) \exp\left(\frac{-\left[u^2 + v^2\right]}{2\sigma^2}\right)$$

We're assuming the index can take negative values

Smoothing with a Gaussian



 $N_{ij} = \sum O_{i-u,j-v} K_{uv}$

Notice the curious looking form

uv

Finding derivatives

$$N_{ij} = \frac{1}{\Delta x} (I_{i+1,j} - I_{ij})$$

Convolution

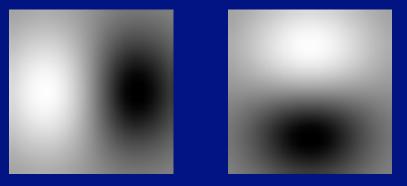
- Each of these involves a weighted sum of image pixels
- The set of weights is the same
 - we represent these weights as an image, H
 - H is usually called the kernel
- Operation is called convolution
 - it's associative
- Any linear shift-invariant operation can be represented by convolution
 - linear: G(k f)=k G(f)
 - shift invariant: G(Shift(f))=Shift(G(f))
 - Examples:
 - smoothing, differentiation, camera with a reasonable, defocussed lens system

$$N_{ij} = \sum H_{uv} O_{i-u,j-v}$$

Filters are templates

 $N_{ij} = \sum H_{uv} \overline{O_{i-u,j-v}}$ uv

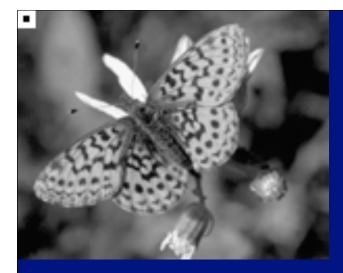
- At one point
 - output of convolution is a (strange) dot-product
- Filtering the image involves a dot product at each point
- Insight
 - filters look like the effects they are intended to find
 - filters find effects they look like



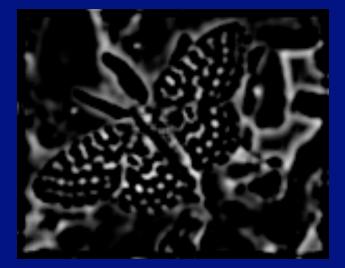
Normalised correlation

• Think of filters of a dot product

- now measure the angle
- i.e normalised correlation output is filter output, divided by root sum of squares of values over which filter lies
- Tricks:
 - ensure that filter has a zero response to a constant region
 - helps reduce response to irrelevant background
 - subtract image average when computing the normalising constant
 - absolute value deals with contrast reversal



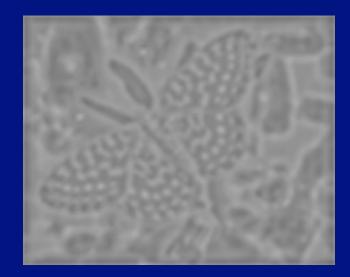
normalised correlation with non-zero mean filter

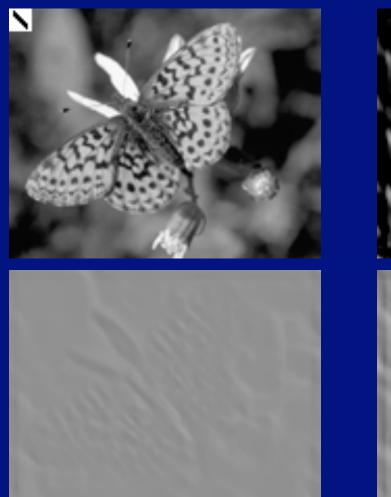


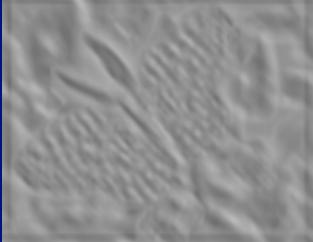
Positive responses

Zero mean image, -1:1 scale

Zero mean image, -max:max scale







Finding hands

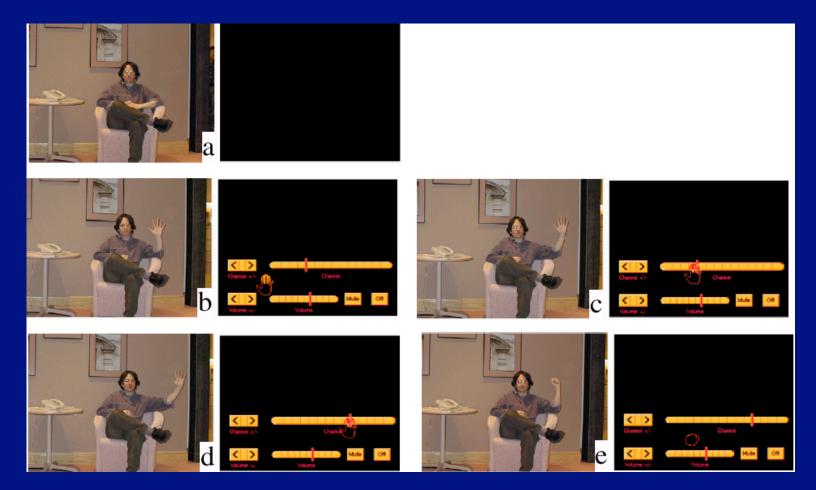


Figure from "Computer Vision for Interactive Computer Graphics," W.Freeman et al, IEEE Computer Graphics and Applications, 1998

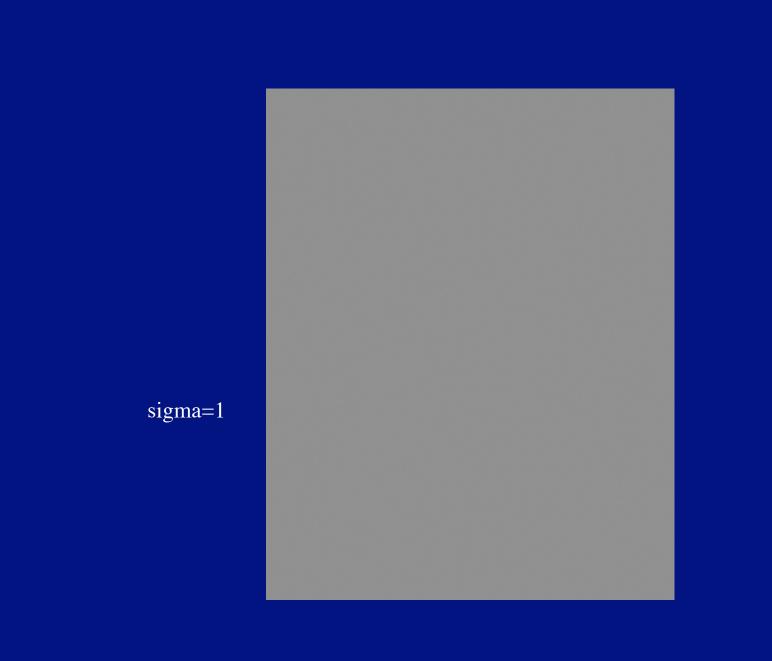
Noise

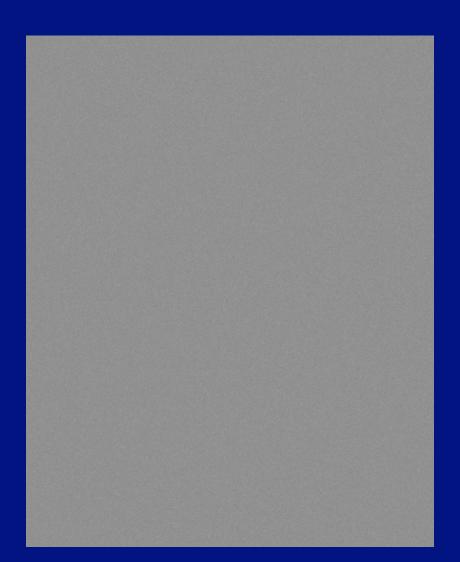
• Simplest noise model

- independent stationary additive Gaussian noise
- the noise value at each pixel is given by an independent draw from the same normal probability distribution

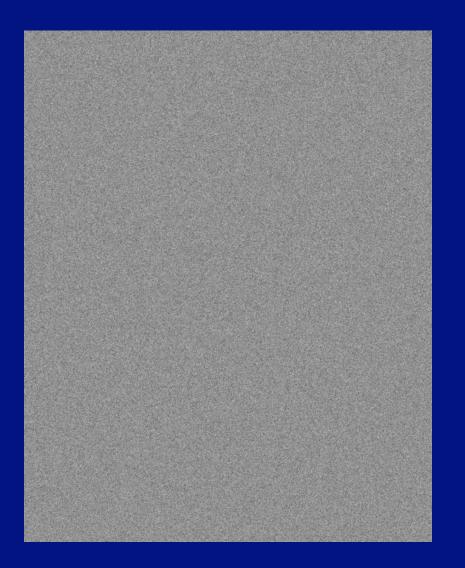
• Issues

- allows values greater than maximum camera output or less than zero
 - for small standard deviations, this isn't too much of a problem
- independence may not be justified (e.g. damage to lens)
- may not be stationary (e.g. thermal gradients in the ccd)



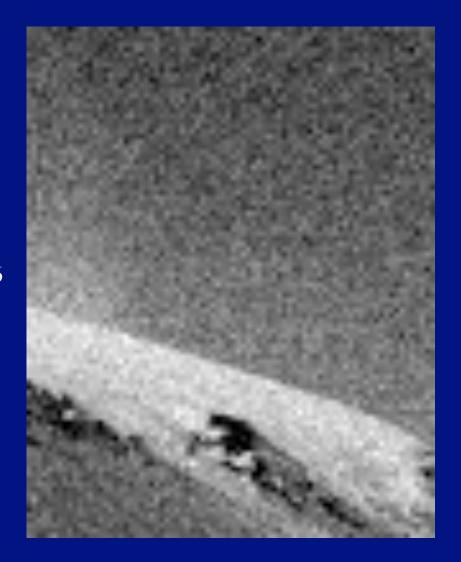


sigma=4



sigma= 16

sigma=1

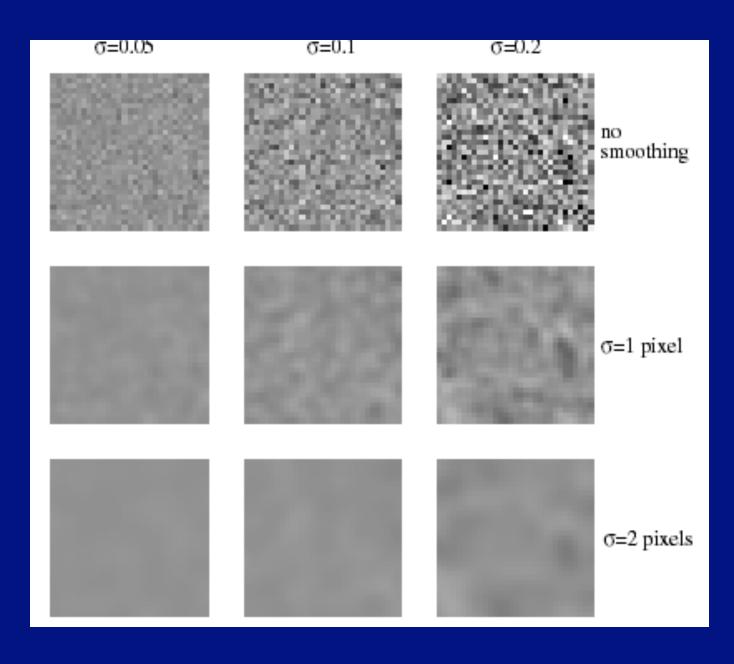


sigma=16

Smoothing reduces noise

- Generally expect pixels to "be like" their neighbours
 - surfaces turn slowly
 - relatively few reflectance changes
- Expect noise to be independent from pixel to pixel
 - Implies that smoothing suppresses noise, for appropriate noise models
- Scale
 - the parameter in the symmetric Gaussian
 - as this parameter goes up, more pixels are involved in the average
 - and the image gets more blurred
 - and noise is more effectively suppressed

$$K_{uv} = \left(\frac{1}{2\pi\sigma^2}\right) \exp\left(\frac{-\left[u^2 + v^2\right]}{2\sigma^2}\right)$$



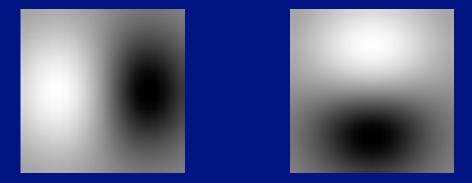
Representing image changes: Edges

- Idea:
 - points where image value change very sharply are important
 - changes in surface reflectance
 - shadow boundaries
 - outlines
- Finding Edges:
 - Estimate gradient magnitude using appropriate smoothing
 - Mark points where gradient magnitude is
 - Locally biggest and
 - big

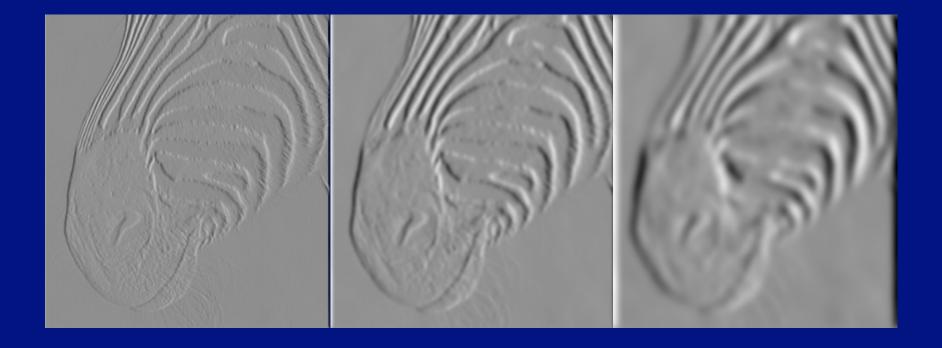
Smoothing and Differentiation

• Issue: noise

- smooth before differentiation
- two convolutions to smooth, then differentiate?
- actually, no we can use a derivative of Gaussian filter



Scale affects derivatives



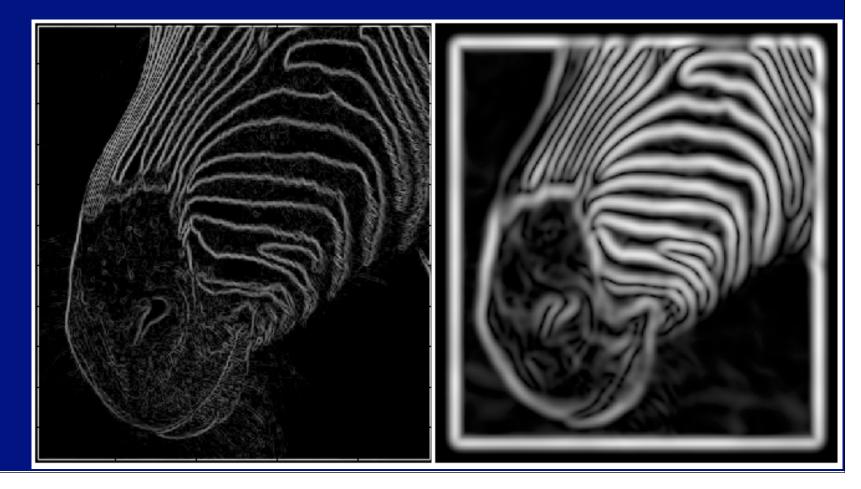
1 pixel

3 pixels

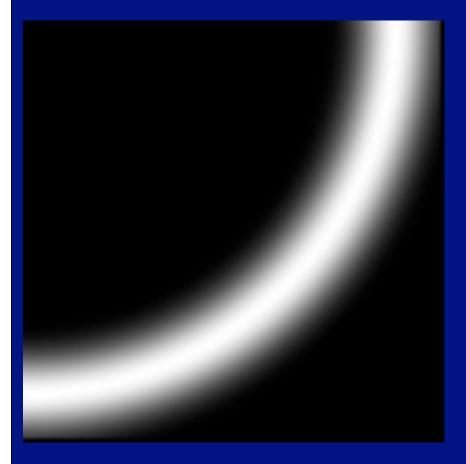
7 pixels

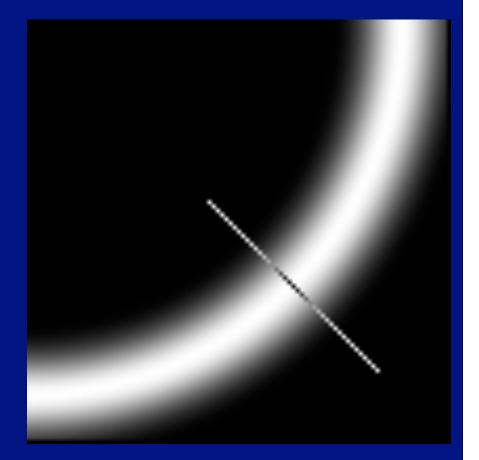


Scale affects gradient magnitude

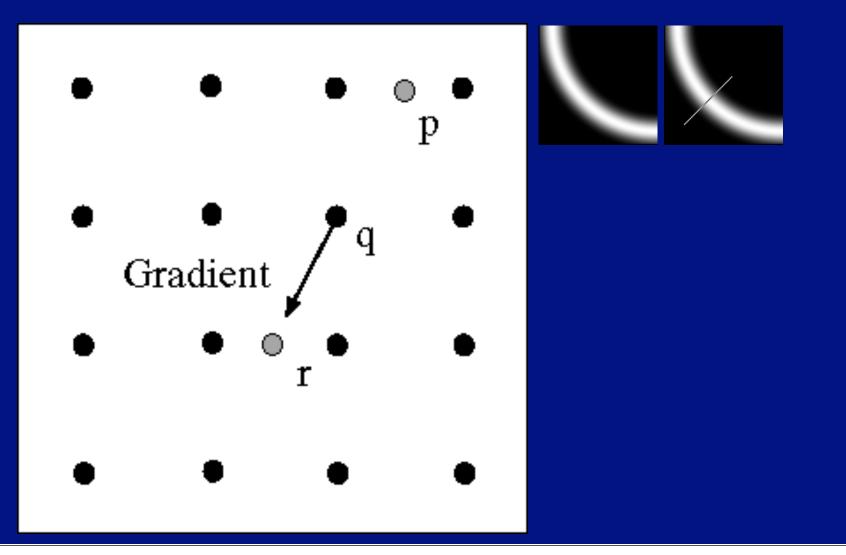


Marking the points

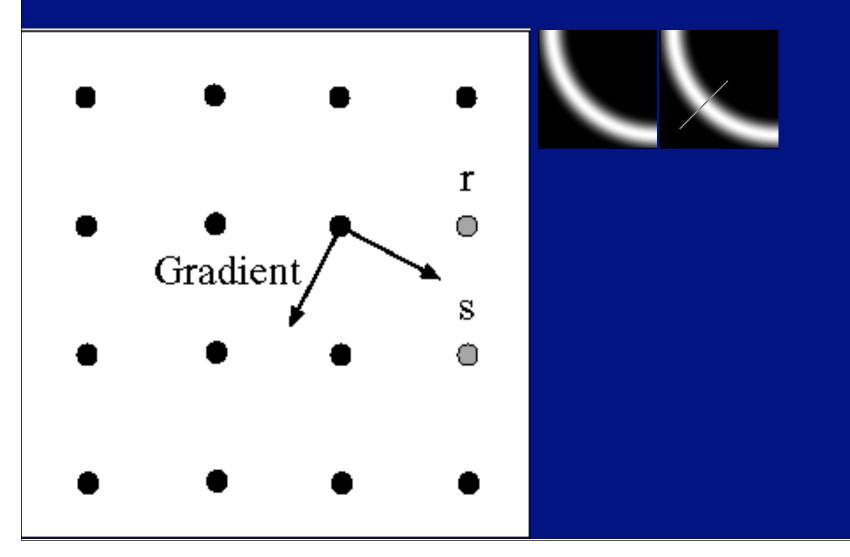




Non-maximum suppression



Predicting the next edge point



Remaining issues

- Check maximum value of gradient value is sufficiently large
 - drop-outs?
 - use hysteresis

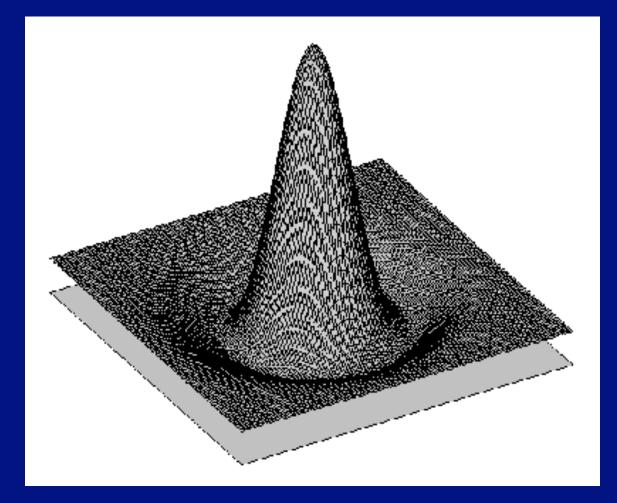
Notice

- Something nasty is happening at corners
- Scale affects contrast
- Edges aren't bounding contours

The Laplacian of Gaussian

- Another way to detect an extremal first derivative is to look for a zero second derivative
- Appropriate 2D analogy is rotation invariant
 - Laplacian
- Edges are zero crossings
 - Bad idea to apply a Laplacian without smoothing
 - smooth with Gaussian, apply Laplacian
 - this is the same as filtering with a Laplacian of Gaussian filter
 - Now mark the zero points where
 - there is a sufficiently large derivative,
 - and enough contrast

The Laplacian of Gaussian



Crucial points

- Filters are simple detectors
 - they look like patterns they find
- Smoothing suppresses noise
 - because pixels tend to agree
- Sharp changes are interesting
 - because pixels tend to agree
 - easy to find edges