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Linear Filters

• Example: smoothing by averaging
• form the average of pixels in a neighbourhood

• Example: smoothing with a Gaussian
• form a weighted average of pixels in a neighbourhood

• Example:  finding a derivative
• form a weighted average of pixels in a neighbourhood



Smoothing by Averaging

Nij =
1
N

ΣuvOi+u,j+v

where u, v, is a window of N pixels in total centered at 0, 0



• A Gaussian gives a good 
model of a fuzzy blob

Smoothing with a Gaussian

• Notice “ringing” 
• apparently, a grid is 

superimposed

• Smoothing with an average 
actually doesn’t compare at 
all well with a defocussed 
lens
• what does a point of light 

produce?



Gaussian filter kernel
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We’re assuming the index can take negative values



Smoothing with a Gaussian

Nij =
�

uv

Oi−u,j−vKuv Notice the curious looking form



Finding derivatives

Nij =
1

∆x
(Ii+1,j − Iij)



• Each of these involves a weighted sum of image pixels
• The set of weights is the same 
• we represent these weights as an image, H
• H is usually called the kernel

• Operation is called convolution
• it’s associative

• Any linear shift-invariant operation can be represented by 
convolution
• linear:  G(k f)=k G(f)
• shift invariant:  G(Shift(f))=Shift(G(f))
• Examples: 
• smoothing, differentiation, camera with a reasonable, defocussed lens 

system

Convolution

Nij =
�

uv

HuvOi−u,j−v



Filters are templates

• At one point
• output of convolution is a (strange) dot-product

• Filtering the image involves a dot product at each point
•  Insight 
• filters look like the effects they are intended to find
• filters find effects they look like

Nij =
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HuvOi−u,j−v



Normalised correlation

• Think of filters of a dot product
• now measure the angle
• i.e normalised correlation output is filter output, divided by root sum of 

squares of values over which filter lies
• Tricks:
• ensure that filter has a zero response to a constant region 
• helps reduce response to irrelevant background

• subtract image average when computing the normalising constant
• absolute value deals with contrast reversal



normalised correlation
with non-zero mean filter



Positive responses
Zero mean image, -1:1 scale Zero mean image, -max:max scale





Finding hands

Figure from “Computer Vision for Interactive Computer Graphics,” W.Freeman et al, IEEE Computer 
Graphics and Applications, 1998



Noise

• Simplest noise model
• independent stationary additive Gaussian noise
• the noise value at each pixel is given by an independent draw from the 

same normal probability distribution

•  Issues
• allows values greater than maximum camera output or less than zero
• for small standard deviations, this isn’t too much of a problem

• independence may not be justified (e.g. damage to lens)
• may not be stationary (e.g. thermal gradients in the ccd)



sigma=1



sigma=4



sigma=
16



sigma=1



sigma=16



Smoothing reduces noise

• Generally expect pixels to “be like” their neighbours
• surfaces turn slowly
• relatively few reflectance changes

• Expect noise to be independent from pixel to pixel
• Implies that smoothing suppresses noise, for appropriate noise models

• Scale
• the parameter in the symmetric Gaussian
• as this parameter goes up, more pixels are involved in the average
• and the image gets more blurred
• and noise is more effectively suppressed
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Representing image changes: Edges

• Idea:
• points where image value change very sharply are important

• changes in surface reflectance
• shadow boundaries
• outlines

• Finding Edges:
• Estimate gradient magnitude using appropriate smoothing
• Mark points where gradient magnitude is

• Locally biggest and
• big



Smoothing and Differentiation

• Issue:  noise
• smooth before differentiation
• two convolutions to smooth, then differentiate?
• actually, no - we can use a derivative of Gaussian filter



1 pixel 3 pixels 7 pixels

Scale affects derivatives



Scale affects gradient magnitude



Marking the points



Non-maximum suppression



Predicting the next edge point



Remaining issues

• Check maximum value of gradient value is sufficiently large
• drop-outs?  

• use hysteresis



Notice

• Something nasty is happening at corners
• Scale affects contrast
• Edges aren’t bounding contours



The Laplacian of Gaussian

• Another way to detect an extremal first derivative is to 
look for a zero second derivative

• Appropriate 2D analogy is rotation invariant
• Laplacian

• Edges are zero crossings
• Bad idea to apply a Laplacian without smoothing
• smooth with Gaussian, apply Laplacian
• this is the same as filtering with a Laplacian of Gaussian filter
• Now mark the zero points where 
• there is a sufficiently large derivative, 
• and enough contrast



The Laplacian of Gaussian



Crucial points

• Filters are simple detectors
• they look like patterns they find

• Smoothing suppresses noise
• because pixels tend to agree

• Sharp changes are interesting
• because pixels tend to agree
• easy to find - edges


