Edges, Orientation,
2[0]C and SIFT
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Iinear Filters

¢ Example: smoothing by averaging
¢ form the average of pixels in a neighbourhood

¢ Example: smoothing with a Gaussian
¢ form a weighted average of pixels in a neighbourhood

e Example: finding a derivative
¢ form a weighted average of pixels in a neighbourhood




Smoothing by Averaging

1
Nij — Nzqu’H—u,j—H}

where u, v, is a window of N pixels in total centered at 0, O




Smoothing with a Gaussian

e Notice “ringing”
® apparently, a grid is
superimposed

¢ Smoothing with an average
actually doesn’t compare at
all well with a defocussed
lens

* what does a point of light A Gaussian gives a good
produce? model of a fuzzy blob




Gaussian filter kernel
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We’re assuming the index can take negative values




Smoothing with a Gaussian




Finding derivatives




Convolution

Each of these involves a weighted sum of image pixels

The set of weights is the same
* we represent these weights as an image, H
e H is usually called the kernel

Operation is called convolution
® it’s associative
Any linear shift-invariant operation can be represented by
convolution
¢ Jlinear: G(k )=k G(f)
¢ shift invariant: G(Shift(f))=Shift(G(1))
e Examples:
* smoothing, differentiation, camera with a reasonable, defocussed lens

system
N'L'j — E Huvoi—u,j—v
uv




Filters are templates

Nij — Z Hquz’—u,j—v

e At one point

* output of convolution is a (strange) dot-product
e Filtering the image involves a dot product at each point
* Insight

o filters look like the effects they are intended to find
¢ filters find effects they look like




Normalised correlation

¢ Think of filters of a dot product
* now measure the
* i.e normalised correlation output is filter output, divided by root sum of
squares of values over which filter lies
® Tricks:
* ensure that filter has a zero response to a constant region
* helps reduce response to irrelevant background

* subtract image average when computing the normalising constant
® absolute value deals with contrast reversal




normalised correlation
with non-zero mean filter




Positive responses

Zero mean image, -1:1 scale Zero mean image, -max:max scale







Finding hands

Figure from “Computer Vision for Interactive Computer Graphics,” W.Freeman et al, IEEE Computer
Graphics and Applications, 1998




o Simplest noise model
* independent stationary additive Gaussian noise
¢ the noise value at each pixel is given by an independent draw from the

same normal probability distribution

o Issues
¢ allows values greater than maximum camera output or less than zero
¢ for small standard deviations, this isn’t too much of a problem
* independence may not be justified (e.g. damage to lens)
* may not be stationary (e.g. thermal gradients in the ccd)



















Smoothing reduces noise

¢ Generally expect pixels to “be like” their neighbours

surfaces turn slowly
relatively few reflectance changes

¢ EXxpect noise to be independent from pixel to pixel

Implies that smoothing suppresses noise, for appropriate noise models

e Scale

the parameter in the symmetric Gaussian
as this parameter goes up, more pixels are involved in the average

and the image gets more blurred
and noise is more effectively suppressed
1 — [u? + v?]
exp 52
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Representing image changes: Edges

o Jdea:

points where image value change very sharply are important
* changes in surface reflectance

e shadow boundaries

e outlines

* Finding Edges:

Estimate gradient magnitude using appropriate smoothing
Mark points where gradient magnitude is

e Locally biggest and

* big




Smoothing and Differentiation

e Jssue: noise
¢ smooth before differentiation
* two convolutions to smooth, then differentiate?
e actually, no - we can use a derivative of Gaussian filter




Scale affects derivatives

3 pixels 7 pixels




Scale affects gradient magnitude




Marking the points




Non-maximum suppression




Predicting the next edge point




Remaining issues

e Check maximum value of gradient value is sufficiently large
e drop-outs?

e use hysteresis




Notice

e Something nasty is happening at corners
e Scale affects contrast
e Edges aren’t bounding contours




The Laplacian of Gaussian

* Another way to detect an extremal first derivative is to
look for a zero second derivative

o Appropriate 2D analogy 1s rotation invariant
e [aplacian

o Edges are zero crossings
¢ Bad idea to apply a Laplacian without smoothing
* smooth with Gaussian, apply Laplacian
¢ this is the same as filtering with a Laplacian of Gaussian filter
* Now mark the zero points where
¢ there is a sufficiently large derivative,
* and enough contrast




The Laplacian of Gaussian




Crucial points

¢ Filters are simple detectors
¢ they look like patterns they find

* Smoothing suppresses noise
* Dbecause pixels tend to agree

¢ Sharp changes are interesting
* Dbecause pixels tend to agree
® casy to find - edges




