Tracking

- Establish where an object is, other aspects of state, using time sequence
 - Biggest problem -- Data Association
- Key ideas
 - Tracking by detection
 - Tracking through flow
Track by detection (simple form)

• **Assume**
 • a very reliable detector (e.g. faces; back of heads)
 • detections that are well spaced in images (or have distinctive properties)
 • e.g. news anchors; heads in public

• **Link detects across time**
 • only one - easy
 • multiple - weighted bipartite matching
Matching

- Established problem
 - Use Hungarian algorithm
 - or nearest neighbours

![Diagram of matching process](image)
Point tracks reveal curious phenomena in public spaces

Yan+Forsyth, 04
Tracks

- Some detections might fail
- Build “tracks”
 - detect in each frame
 - link detects to tracks using matching algorithm
 - measurements with no track? create new track
 - tracks with no measurement? wait, then reap
 - (perhaps) join tracks over time with global considerations
- What happens if the objects move?
Matching

- Patch is at \(u, t \); moves to \(u+h, t+1 \); \(h \) is small
- Error is sum of squared differences

\[
E(h) = \sum_{u \in P_t} \left[I(u, t) - I(u + h, t + 1) \right]^2
\]

- This is minimized when

\[
\nabla_h E(h) = 0.
\]

- Substitute

\[
I(u + h, t + 1) \approx I(u, t) + h^T \nabla I
\]

- Get

\[
\left[\sum_{u \in P_t} (\nabla I)(\nabla I)^T \right] \ h = \sum_{u \in P_t} \left[I(u, t) - I(u, t + 1) \right] \nabla I
\]
Matching

- We can tell if the match is good by looking at
 \[\sum_{u \in P_t} (\nabla I)(\nabla I)^T \]
 which will be poorly conditioned if matching is poor
 - eg featureless region
 - eg flow region
Matching

- Match must work from i to $i+1$
 - Method is OK so far for this
 - what about 1 to 100?
- Second test; compare with first frame, by minimizing, testing

\[
E(\mathcal{M}, c) = \sum_{u \in P_1} [I(u, 1) - I(\mathcal{M}u + c, t)]^2.
\]
Image frame, from a sequence (Shi Tomasi 94)

Strongly textured points (Shi Tomasi 94)
Point patches in tracks (Shi Tomasi 94)
Dissimilarity (Shi Tomasi 94)
Simple reconstruction from multiple views

- Assume
 - fixed set of points, all can be seen in each view
 - orthographic cameras that rotate and translate
 - origin of world coordinates is at center of gravity of points
 - origin in each camera is at center of gravity of points in camera
 - points are tracked, so we know which is which in each view
- All these assumptions can be relaxed, with work
What does an orthographic camera do?

(X, Y, Z) in camera 1 coordinates
(U, V, W) in camera 2 coordinates
What does an orthographic camera do?

- Camera 2 is rotated and translated
 - with respect to camera 1
 - no translation - center of gravity assumption
- Hence
 \[
 \begin{pmatrix}
 U \\
 V \\
 W
 \end{pmatrix} = \mathcal{R}
 \begin{pmatrix}
 X \\
 Y \\
 Z
 \end{pmatrix}
 \]
What orthographic cameras do

- Model
 \[x_{im} = v_x^T X_{3D} \]
 \[y_{im} = v_y^T X_{3D} \]

- Constraints
 \[v_x^T v_y = 0 \]
 \[v_x^T v_x - v_y^T v_y = 0 \]
Multiple views

\[x_{i,j} = \mathbf{v}_{x,i}^T \mathbf{X}_j \]

\[y_{i,j} = \mathbf{v}_{y,i}^T \mathbf{X}_j \]

Point index is j

View index is i
Multiple views

\[
\begin{pmatrix}
 x_{1,1} & x_{1,2} & \ldots & x_{1,n} \\
 x_{2,1} & x_{2,2} & \ldots & x_{2,n} \\
 \vdots \\
 y_{m,1} & y_{m,2} & \ldots & y_{m,n} \\
 y_{1,1} & y_{1,2} & \ldots & y_{1,n} \\
 y_{2,1} & y_{2,2} & \ldots & y_{2,n} \\
 \vdots \\
 y_{m,1} & y_{m,2} & \ldots & y_{m,n}
\end{pmatrix}
= \begin{pmatrix}
 \mathbf{v}_{x,1}^T \\
 \mathbf{v}_{x,2}^T \\
 \vdots \\
 \mathbf{v}_{x,m}^T \\
 \mathbf{v}_{y,1}^T \\
 \mathbf{v}_{y,2}^T \\
 \vdots \\
 \mathbf{v}_{y,m}^T
\end{pmatrix}
\begin{pmatrix}
 \mathbf{X}_1 & \mathbf{X}_2 & \ldots & \mathbf{X}_n
\end{pmatrix}
\]

\[\mathcal{D} = \mathbf{V}\mathbf{X}\]

Data - observed!
Multiple views

• The data matrix has rank 3
 • so we can factor it into an mx3 factor and a 3xn factor
• Procedure
 • Build data matrix
 • Factor into point matrix, camera matrix
 • Use constraints to choose correct camera matrix
 • Output:
 • all points in 3D
 • all camera orientations in 3D
Setting up factorization

- We need to fill in a data matrix
- **Strategy**
 - find points in one frame
 - link each to corresponding point in next frame; etc.
- **Cues for linking**
 - patches
 - “look the same”
 - “don’t move much”
Efros et al, 03
What if the pixels get mixed up?

- Describe with histograms
- Match with procedure called “mean shift” (chapter)
When are large motions “easy”?

- When they’re “predictable”
 - e.g. ballistic motion
 - e.g. constant velocity

- Need a theory
Tracking - more formal view

- **Very general model:**
 - We assume there are moving objects, which have an underlying state X
 - There are observations Y, some of which are functions of this state
 - There is a clock
 - at each tick, the state changes
 - at each tick, we get a new observation

- **Examples**
 - object is ball, state is 3D position+velocity, observations are stereo pairs
 - object is person, state is body configuration, observations are frames, clock is in camera (30 fps)