Tracking

- Establish where an object is, other aspects of state, using time sequence
 - Biggest problem -- Data Association
- Key ideas
 - Tracking by detection
 - Tracking through flow

Track by detection (simple form)

• Assume

- a very reliable detector (e.g. faces; back of heads)
- detections that are well spaced in images (or have distinctive properties)
 - e.g. news anchors; heads in public

• Link detects across time

- only one easy
- multiple weighted bipartite matching

• Established problem

- Use Hungarian algorithm
- or nearest neighbours

Weighted bipartite matching

Point tracks reveal curious phenomena in public spaces

Yan+Forsyth, 04

- Some detections might fail
- Build "tracks"
 - detect in each frame
 - link detects to tracks using matching algorithm
 - measurements with no track? create new track
 - tracks with no measurement? wait, then reap
 - (perhaps) join tracks over time with global considerations
- What happens if the objects move?

- Patch is at u, t; moves to u+h, t+1; h is small
- Error is sum of squared differences

$$E(\boldsymbol{h}) = \sum_{\boldsymbol{u} \in \mathcal{P}_t} \left[I(\boldsymbol{u},t) - I(\boldsymbol{u}+\boldsymbol{h},t+1) \right]^2$$

• This is minimized when

$$\nabla_h E(h) = 0.$$

• substitute $I(u+h,t+1) \approx I(u,t) + h^T \nabla I$

• get

$$\sum_{\boldsymbol{u}\in\mathcal{P}_t} (\nabla I)(\nabla I)^T \Bigg] \boldsymbol{h} = \sum_{\boldsymbol{u}\in\mathcal{P}_t} [I(\boldsymbol{u},t) - I(\boldsymbol{u},t+1)] \nabla I$$

• We can tell if the match is good by looking at

$$\left[\sum_{u \in \mathcal{P}_{t}} (\nabla I) (\nabla I)^{T}\right]$$

- which will be poorly conditioned if matching is poor
 - eg featureless region
 - eg flow region

• Match must work from i to i+1

- Method is OK so far for this
- what about 1 to 100?

• Second test; compare with first frame, by minimizing, testing

$$E(M, c) = \sum_{u \in P_1} [I(u, 1) - I(Mu + c, t)]^2.$$

Image frame, from a sequence (Shi Tomasi 94)

Strongly textured points (Shi Tomasi 94)

Point patches in tracks (Shi Tomasi 94)

Dissimilarity (Shi Tomasi 94)

Simple reconstruction from multiple views

• Assume

- fixed set of points, all can be seen in each view
- orthographic cameras that rotate and translate
- origin of world coordinates is at center of gravity of points
 - origin in each camera is at center of gravity of points in camera
- points are tracked, so we know which is which in each view
- All these assumptions can be relaxed, with work

What does an orthographic camera do?

What does an orthographic camera do?

- Camera 2 is rotated and translated
 - with respect to camera 1
 - no translation center of gravity assumption
- Hence

$$\left(\begin{array}{c} U\\V\\W\end{array}\right) = \mathcal{R}\left(\begin{array}{c} X\\Y\\Z\end{array}\right)$$

What orthographic cameras do

- Model $x_{im} = \mathbf{v}_x^T \mathbf{X}_{3D}$ $y_{im} = \mathbf{v}_y^T \mathbf{X}_{3D}$
- constraints

$$\mathbf{v}_x^T \mathbf{v}_y = 0$$
$$\mathbf{v}_x^T \mathbf{v}_x - \mathbf{v}_y^T \mathbf{v}_y = 0$$

Multiple views

$$x_{i,j} = \mathbf{v}_{x,i}^T \mathbf{X}_j$$

 $y_{i,j} = \mathbf{v}_{y,i}^T \mathbf{X}_j$
Point index is j

View index is i

Multiple views

$$\begin{pmatrix} x_{1,1} & x_{1,2} & \dots & x_{1,n} \\ x_{2,1} & x_{2,2} & \dots & x_{2,n} \\ \dots & & & & \\ y_{m,1} & y_{m,2} & \dots & y_{m,n} \\ y_{1,1} & y_{1,2} & \dots & y_{1,n} \\ y_{2,1} & y_{2,2} & \dots & y_{2,n} \\ \dots & & & & \\ y_{m,1} & y_{m,2} & \dots & y_{m,n} \end{pmatrix} = \begin{pmatrix} \mathbf{v}_{x,1}^T \\ \mathbf{v}_{x,2}^T \\ \dots \\ \mathbf{v}_{y,1}^T \\ \mathbf{v}_{y,2}^T \\ \dots \\ \mathbf{v}_{y,m}^T \end{pmatrix} \left(\begin{array}{cccc} \mathbf{X}_1 & \mathbf{X}_2 & \dots & \mathbf{X}_n \end{array} \right)$$

$$\mathcal{D} = \mathcal{V}\mathcal{X}$$

Data - observed!

Multiple views

- The data matrix has rank 3
 - so we can factor it into an mx3 factor and a 3xn factor
- Procedure
 - Build data matrix
 - Factor into point matrix, camera matrix
 - Use constraints to choose correct camera matrix
 - Output:
 - all points in 3D
 - all camera orientations in 3D

Setting up factorization

• We need to fill in a data matrix

- Strategy
 - find points in one frame
 - link each to corresponding point in next frame; etc.

• Cues for linking

- patches
 - "look the same"
 - "don't move much"

Efros et al, 03

Efros et al, 03

Efros et al, 03

What if the pixels get mixed up?

- Describe with histograms
- Match with procedure called "mean shift" (chapter)

When are large motions "easy"?

• When they're "predictable"

- e.g. ballistic motion
- e.g. constant velocity

• Need a theory

Tracking - more formal view

• Very general model:

- We assume there are moving objects, which have an underlying state X
- There are observations Y, some of which are functions of this state
- There is a clock
 - at each tick, the state changes
 - at each tick, we get a new observation
- Examples
 - object is ball, state is 3D position+velocity, observations are stereo pairs
 - object is person, state is body configuration, observations are frames, clock is in camera (30 fps)