# Tracking

- Establish where an object is, other aspects of state, using time sequence
  - Biggest problem -- Data Association
- Key ideas
  - Tracking by detection
  - Tracking through flow

## Track by detection (simple form)

#### • Assume

- a very reliable detector (e.g. faces; back of heads)
- detections that are well spaced in images (or have distinctive properties)
  - e.g. news anchors; heads in public

#### • Link detects across time

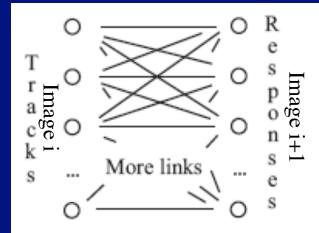
- only one easy
- multiple weighted bipartite matching



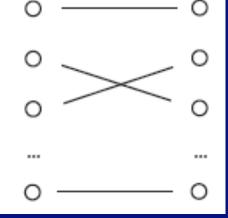


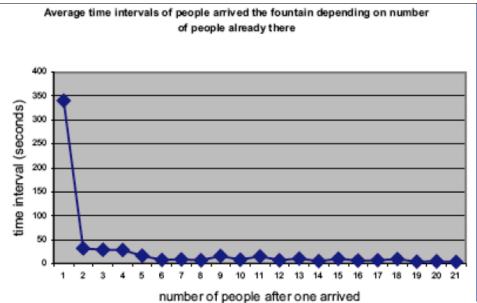
#### • Established problem

- Use Hungarian algorithm
- or nearest neighbours



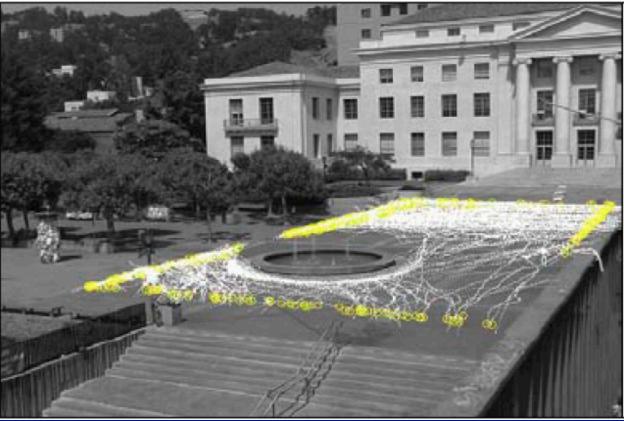
Weighted bipartite matching

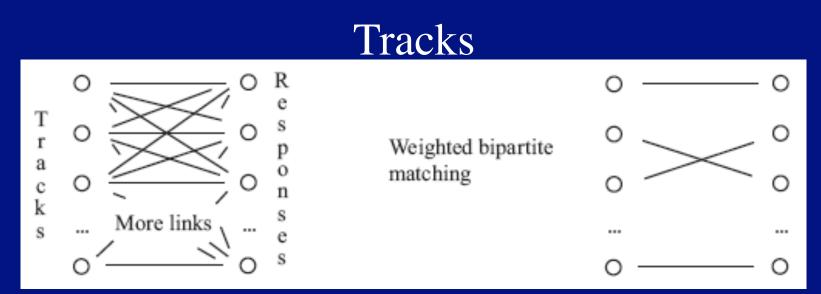




# Point tracks reveal curious phenomena in public spaces

#### Yan+Forsyth, 04





- Some detections might fail
- Build "tracks"
  - detect in each frame
  - link detects to tracks using matching algorithm
    - measurements with no track? create new track
    - tracks with no measurement? wait, then reap
  - (perhaps) join tracks over time with global considerations
- What happens if the objects move?

- Patch is at u, t; moves to u+h, t+1; h is small
- Error is sum of squared differences

$$E(\boldsymbol{h}) = \sum_{\boldsymbol{u} \in \mathcal{P}_t} \left[ I(\boldsymbol{u},t) - I(\boldsymbol{u}+\boldsymbol{h},t+1) \right]^2$$

• This is minimized when

$$\nabla_h E(h) = 0.$$

• substitute  $I(u+h,t+1) \approx I(u,t) + h^T \nabla I$ 

• get

$$\sum_{\boldsymbol{u}\in\mathcal{P}_t} (\nabla I)(\nabla I)^T \Bigg] \boldsymbol{h} = \sum_{\boldsymbol{u}\in\mathcal{P}_t} [I(\boldsymbol{u},t) - I(\boldsymbol{u},t+1)] \nabla I$$

• We can tell if the match is good by looking at

$$\left[\sum_{u \in \mathcal{P}_{t}} (\nabla I) (\nabla I)^{T}\right]$$

- which will be poorly conditioned if matching is poor
  - eg featureless region
  - eg flow region

#### • Match must work from i to i+1

- Method is OK so far for this
- what about 1 to 100?

• Second test; compare with first frame, by minimizing, testing

$$E(M, c) = \sum_{u \in P_1} [I(u, 1) - I(Mu + c, t)]^2.$$

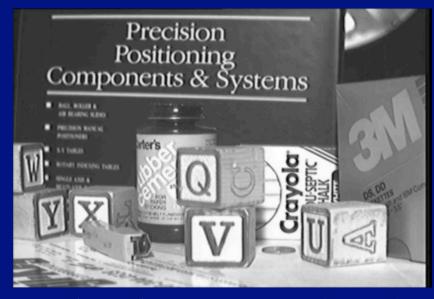
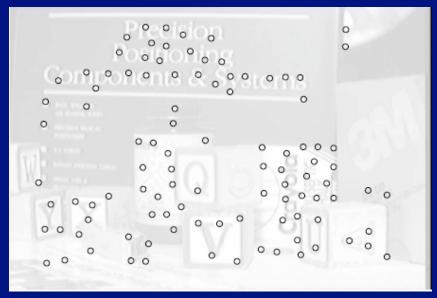
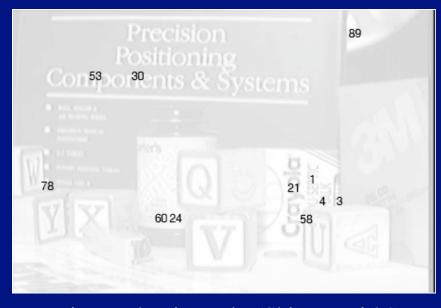


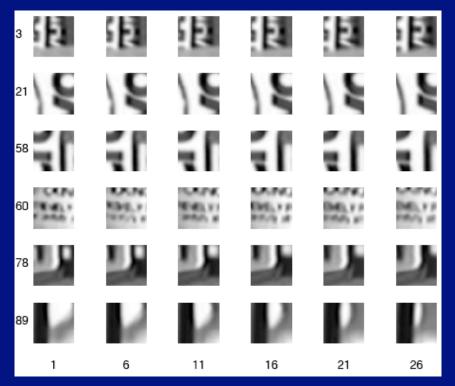
Image frame, from a sequence (Shi Tomasi 94)

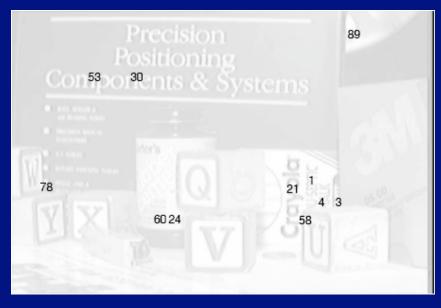


Strongly textured points (Shi Tomasi 94)

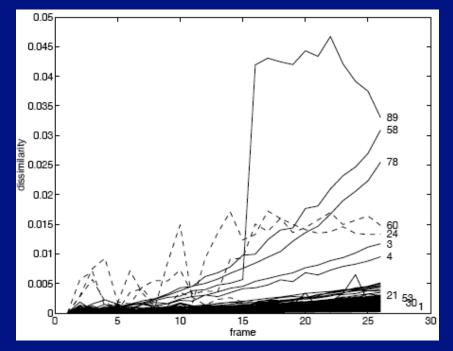


Point patches in tracks (Shi Tomasi 94)





Dissimilarity (Shi Tomasi 94)

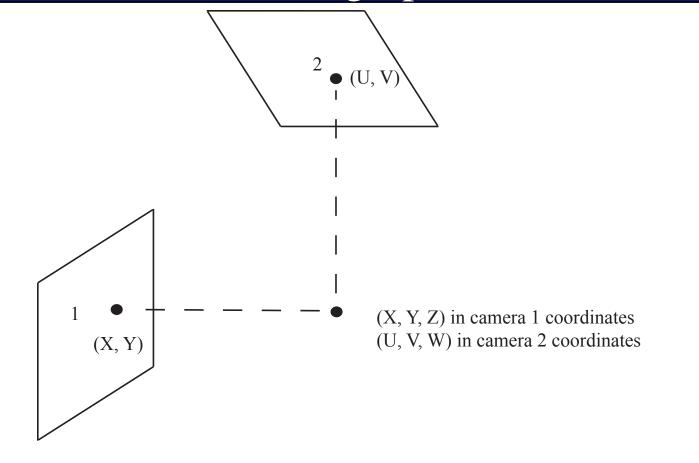


## Simple reconstruction from multiple views

#### • Assume

- fixed set of points, all can be seen in each view
- orthographic cameras that rotate and translate
- origin of world coordinates is at center of gravity of points
  - origin in each camera is at center of gravity of points in camera
- points are tracked, so we know which is which in each view
- All these assumptions can be relaxed, with work

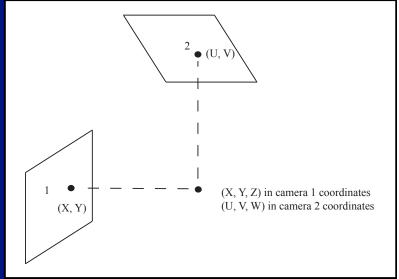
## What does an orthographic camera do?



### What does an orthographic camera do?

- Camera 2 is rotated and translated
  - with respect to camera 1
  - no translation center of gravity assumption
- Hence

$$\left(\begin{array}{c} U\\V\\W\end{array}\right) = \mathcal{R}\left(\begin{array}{c} X\\Y\\Z\end{array}\right)$$



### What orthographic cameras do

- Model  $x_{im} = \mathbf{v}_x^T \mathbf{X}_{3D}$   $y_{im} = \mathbf{v}_y^T \mathbf{X}_{3D}$
- constraints

$$\mathbf{v}_x^T \mathbf{v}_y = 0$$
$$\mathbf{v}_x^T \mathbf{v}_x - \mathbf{v}_y^T \mathbf{v}_y = 0$$

# Multiple views

$$x_{i,j} = \mathbf{v}_{x,i}^T \mathbf{X}_j$$
  
 $y_{i,j} = \mathbf{v}_{y,i}^T \mathbf{X}_j$   
Point index is j

View index is i

# Multiple views

$$\begin{pmatrix} x_{1,1} & x_{1,2} & \dots & x_{1,n} \\ x_{2,1} & x_{2,2} & \dots & x_{2,n} \\ \dots & & & & \\ y_{m,1} & y_{m,2} & \dots & y_{m,n} \\ y_{1,1} & y_{1,2} & \dots & y_{1,n} \\ y_{2,1} & y_{2,2} & \dots & y_{2,n} \\ \dots & & & & \\ y_{m,1} & y_{m,2} & \dots & y_{m,n} \end{pmatrix} = \begin{pmatrix} \mathbf{v}_{x,1}^T \\ \mathbf{v}_{x,2}^T \\ \dots \\ \mathbf{v}_{y,1}^T \\ \mathbf{v}_{y,2}^T \\ \dots \\ \mathbf{v}_{y,m}^T \end{pmatrix} \left( \begin{array}{cccc} \mathbf{X}_1 & \mathbf{X}_2 & \dots & \mathbf{X}_n \end{array} \right)$$

$$\mathcal{D} = \mathcal{V}\mathcal{X}$$

Data - observed!

## Multiple views

- The data matrix has rank 3
  - so we can factor it into an mx3 factor and a 3xn factor
- Procedure
  - Build data matrix
  - Factor into point matrix, camera matrix
  - Use constraints to choose correct camera matrix
  - Output:
    - all points in 3D
    - all camera orientations in 3D

## Setting up factorization

#### • We need to fill in a data matrix

- Strategy
  - find points in one frame
  - link each to corresponding point in next frame; etc.

#### • Cues for linking

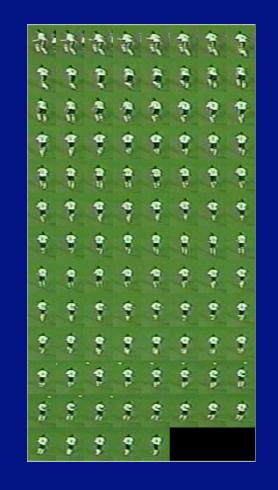
- patches
  - "look the same"
  - "don't move much"



Efros et al, 03



Efros et al, 03



Efros et al, 03

### What if the pixels get mixed up?



- Describe with histograms
- Match with procedure called "mean shift" (chapter)

## When are large motions "easy"?

#### • When they're "predictable"

- e.g. ballistic motion
- e.g. constant velocity

#### • Need a theory

### Tracking - more formal view

#### • Very general model:

- We assume there are moving objects, which have an underlying state X
- There are observations Y, some of which are functions of this state
- There is a clock
  - at each tick, the state changes
  - at each tick, we get a new observation
- Examples
  - object is ball, state is 3D position+velocity, observations are stereo pairs
  - object is person, state is body configuration, observations are frames, clock is in camera (30 fps)