Classifying images
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Image classification - features

e [ssue:

e category will not produce a single, simple pattern

® but it might have components that are distinctive, but move around
e [dea:

® Jook for distinctive local patches (visual words)

® build a histogram




Important trick: K-Means

Choose a fixed number of clusters

Choose cluster centers and point-cluster allocations to
minimize error
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® there are too many possible allocations.

Algorithm

e fix cluster centers; allocate points to closest cluster
e fix allocation; compute best cluster centers

® x could be any set of features for which we can compute a distance
(careful about scaling)

can’t do this by search




Choose k data points to act as cluster centers
Until the cluster centers change very little
Allocate each data point to cluster whose center is nearest.
Now ensure that every cluster has at least
one data point; one way to do this is by
supplying empty clusters with a point chosen at random from
points far from their cluster center.

Replace the cluster centers with the mean of the elements
in their clusters.

end

Algorithm 6.3: Clustering by K-Means.




Building visual words - I

e [earn a dictionary

® cluster patch representations with k-means
e k will be big (1000’s-100,000’s)

|
K

?‘n
-
<
=
o
=
o
o
2+
2hn
=
8
-
2]
L
—

Dictionary




Building visual words - 11

e Encode an image
e find all interest points
e for each patch around each interest point
® map patch to closest cluster center
® build histogram of interest points
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Visual words

FIGURE 16.6: Visual words are obtained by vector quantizing neighborhoods like those
shown in Figure 16.5. This figure shows 30 examples each of instances of four different
visual words. Notice that the words represent a moderate-scale local structure in the
image (an eye, one and a half letters, and so on). Typical vocabularies are now very large,
which means that the instances of each separate word tend to look a lot like one another.
This figure was originally published as Figure 3 of “Efficient Visual Search for Objects in
Videos,” by J. Sivic and A. Zisserman, Proc. IEEFE, Vol. 96, No. /, April 2008 ©) IEEE
2008.




Visual words

FIGURE 16.5: The original application of visual word representations was to search video
sequences for particular patterns. On the left, a user has drawn a box around a pattern
of interest in a frame of video; the center shows a close-up of the box. On the right,
we see neighborhoods computed from this box. These neighborhoods are ellipses, rather
than circles; this means that they are covariant under affine transforms. Equivalently,
the neighborhood constructed for an affine transformed patch image will be the affine
transform of the neighborhood constructed for the original patch (definition in Section
5.3.2). This figure was originally published as Figure 11 of J. Sivic and A. Zisserman
“Efficient Visual Search for Objects in Videos,” Proc. IEEE, Vol. 96, No. /, April 2008
() IEEE 2008.




Visual words

FIGURE 16.7: This figure shows results from the query of Figure 16.5, obtained by looking
for image regions that have a set of visual words strongly similar to those found in the
query region. The first row shows the whole frame from the video sequence; the second
row shows a close-up of the box that is the result (indicated in the first row); and the
third row shows the neighborhoods in that box that generated visual words that match
those in the query. Notice that some, but not all, of the neighborhoods in the query were
matched. This figure was originally published as Figure 11 of J. Sivic and A. Zisserman
“Efficient Visual Search for Objects in Videos,” Proc. IEEE, Vol. 96, No. }, April 2008
(© IEEE 2008.




Features from visual words

e Histogram
® ¢ood summary of what is in image; quick and efficient
® insensitive to spatial reorganization
e Spatial pyramid
® build histograms of local blocks at various scales
® less insensitive to spatial reorganization




Spatial pyramids
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FIGURE 16.8: A simplified example of constructing a spatial pyramid kernel, with three
levels. There are three feature types, too (circles, diamonds, and crosses). The image is
subdivided into one-, four-, and sixteen-grid boxes. For each level, we compute a histogram
of how many features occur in each box for each feature type. We then compare two images
by constructing an approximate score of the matches from these histograms. This figure
was originally published as Figure 1 of “Beyond bags of features: Spatial pyramid matching
for recognizing natural scene categories,” by S. Lazebnik, C. Schmid, and J. Ponce, Proc.

IEEE CVPR 2006, © IEEFE 2006.




Some standard tasks

Caltech 101, 256

® images of isolated objects in 101, 256 categories

Imagenet
e same, 1000’s of categories

Pascal image classification
® not isolated, fewer categories

Scenes
® c¢g indoor, etc.

Materials




Evaluation methods

Total error rate

® percentage of classification attempts that get the wrong answer
Accuracy

® percentage of classification attempts that get the right answer
Class confusion matrix

® table showing how classes are mixed up

Look at errors




Accuracy on Caltech

Caltech101 comparison to literature Caltech-256 (39 kernels)
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FIGURE 16.20: Graphs illustrating typical performance on Caltech 101 for single descriptor
types (left) and on Caltech 256 for various types of descriptor (right; notice the vertical
scale is different), plotted against the number of training examples. Although these figures
are taken from a paper advocating nearest neighbor methods, they illustrate performance
for a variety of methods. Notice that Caltech 101 results, while not perfect, are now quite
strong; the cost of going to 256 categories is quite high. Methods compared are due to:
Zhang et al. (2006b), Lazebnik et al. (2006), Wang et al. (2006), Grauman and Darrell
(2005), Mutch and Lowe (2006), Griffin et al. (2007), and Pinto et al. (2008); the graph
is from Gehler and Nowozin (2009), which describes multiple methods (anything without
a named citation on the graph). This figure was originally published as Figure 2 of “On
Feature Combination for Multiclass Object Classification,” by P. Gehler and S. Nowozin
Proc. ICCV 2009, 2009 (¢) IEEE 2009.




Material classification
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FIGURE 16.17: Liu et al. (2010) prepared a material classification dataset from flickr im-
ages, and used a combination of SIFT features and novel features to classify the materials.
This is a difficult task, as the class confusion matrix on the left shows; for example, it is
quite easy to mix up metal with most other materials, particularly glass. On the right,
examples of misclassified images (the italic label is the incorrect prediction). This figure
was originally published as Figure 12 of “Exploring Features in a Bayesian Framework for
Material Recognition,” by C. Liu, L. Sharan, E. Adelson, and R. Rosenholtz Proc. CVPR
2010, 2010 © IEEE, 2010.




Spatial pyramids + scenes

windsor chair (94 6%) joshua tree (87.9%)

ant (25.0%)

FIGURE 16.10: The spatial pyramid kernel is capable of complex image classification tasks.
Here we show some examples of categories from the Caltech 101 collection on which the
method does well (top row) and poorly (bottom row). The number is the percentage
of images of that class classified correctly. Caltech 101 is a set of images of 101 categories
of objects; one must classify test images into this set of categories (Section 16.3.2). This
figure was originally published as Figure 5 of "‘Bez/o-nd bags of features: Spatial pyramid
matching for recognizing natural scene categories,” by S. Lazebnik, C. Schmid, and J.

Ponce, Proc. IEEE CVPR 2006, (c) IEEE 2006.




Evaluation

Precision
® percentage of items in retrieved set that are relevant

Recall

® percentage of relevant items that are retrieved

Precision vs recall
® use classifier to label a collection of images
® now plot precision against recall for different classifier thresholds

AP

® average precision
® average of precision as a function of recall




list. Write rel(r) for the binary function that is one when the rth document is
relevant, and otherwise zero; P(r) for the precision of the first » documents in the
ranked list; N for the number of documents in the collection; and N, for the total
number of relevant documents. Then, average precision is given by

N

> (P(r)rel(r))

r=1

1

N,

A

Notice that average precision is highest (100%) when the top N, documents are
the relevant documents. Averaging over all the relevant documents means the




Precision vs recall
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FIGURE 16.19: Plots of precision as a function of recall for six object queries. Notice
how precision generally declines as recall goes up (the occasional jumps have to do with
finding a small group of relevant images; such jumps would become arbitrarily narrow
and disappear in the limit of an arbitrarily large dataset). Each query is made using the
system sketched in Figure 16.5. Each graph shows a different query, for two different
configurations of that system. On top of each graph, we have indicated the average
precision for each of the configurations. Notice how the average precision is larger for
systems where the precision is higher for each recall value. This figure was originally
published as Figure 9 of J. Siwvic and A. Zisserman “Efficient Visual Search for Objects in
Videos,” Proc. IEEE, Vol. 96, No. }, April 2008 (©) IEEE 2008.




| Category | 2007 | 2008 | 2009 | 2010 |
aeroplane 0.775 | 0.811 | 0.881 | 0.933
bicycle 0.636 | 0.543 | 0.686 | 0.790
bird 0.561 | 0.616 | 0.681 | 0.716
boat 0.719 | 0.678 T 0.778
bottle 0.331 | 0.300 442 | 0.543
bus 0.606 | 0.521 .795 | 0.859
car 0.780 | 0.595 0.804
cat 0.588 | 0.599 0.794
chair 0.535 | 0.489 0.645
cow 0.426 | 0.336 0.662
diningtable | 0.549 | 0.408 0.629
dog 0.458 | 0.479 0.711
horse 0.775 | 0.673 0.820
motorbike | 0.640 | 0.652 0.844
person 0.859 | 0.871 0.916
pottedplant | 0.363 | 0.318 0.533
sheep 0.447 | 0.423 0.663
sofa 0.509 | 0.454 0.596
train 0.792 | 0.778 | 0.860 | 0.894
tvmonitor | 0.532 | 0.647 | 0.686 | 0.772
# methods 2 ¢ 4 6
# comp 17 18 48 32
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TABLE 16.1: Average precision of the best classification method for each category for
the Pascal image classification challenge by year (per category; the method that was best

at “person” might not be best at “pottedplant”), summarized from http://pascallin.
ecs.soton.ac.uk/challenges/VOC/. The bottom rows show the number of methods in
each column and the total number of methods competing (so, for example, in 2007, only
2 of 17 total methods were best in category; each of the other 15 methods was beaten by
something for each category). Notice that the average precision grows, but not necessarily

monotonically (this is because the test set changes). Most categories now work rather
well.




Can be hard

Dandelion - A Colts’ foot Dandelion -B

FIGURE 16.21: Identifying a flower from an image is one useful specialized application for
image classification techniques. This is a challenging problem. Although some flowers have
quite distinctive features (for example, the colors and textures of the pansy, the fritillary,
and the tiger lily), others are easy to confuse. Notice that dandelion-A (bottom) looks
much more like the colts’ foot than like dandelion-B. Here the within-class variation is
high because of changes of aspect, and the between-class variation is small. This figure was
originally published as Figures 1 and 8 of “A Visual Vocabulary for Flower Classification,”
by M.E. Nilsback and A. Zisserman, Proc. IEEE CVPR 2006, (c) IEEE 2006.




Codes for Image Features

Oliva and Torralba provide GIST feature code at http://people.csail.mit.edu/
torralba/code/spatialenvelope/, together with a substantial dataset of outdoor
scenes.

Color descriptor code, which computes visual words based on various color
SIFT features, 18 published by van de Sande et al at http://koen.me/research/
colordescriptors/.

The pyramid match kernel is an earlier variant of the spatial pyramid kernel
described in Section 16.1.4; John Lee provides a library, 1ibpmk, that supports this
kernel at http://people.csail.mit.edu/jj1l/libpmk/. There are a variety of
extension libraries written for libpmk, including implementations of the pyramid
kernel, at this URL.

Li Fei-Fei, Rob Fergus, and Antonio Torralba publish example codes for

core object recognition methods at http://people.csail.mit.edu/torralba/
shortCourseRLOC/. This URL is the online repository associated with their very
successful short course on recognizing and learning object categories.

VLFeat is an open-source library that implements a variety of popular com-
puter vision algorithms, initiated by Andrea Vedaldi and Brian Fulkerson; it can
be found at http://www.vlfeat.org. VLFeat comes with a set of tutorials that
show how to use the library, and there is example code showing how to use VLFeat
to classify Caltech-101.

There is a repository of code links at http://featurespace.org.

At the time of writing, multiple-kernel learning methods produce the strongest
results on standard problems, at the cost of quite substantial learning times. Sec-
tion 15.3.3 gives pointers to codes for different multiple-kernel learning methods.




16.3.2 1Image Classification Datasets

There is now a rich range of image classification datasets, covering several applica-
tion topics. Object category datasets have images organized by category (e.g.,
one is distinguishing between “bird”s and “motorcycle”s, rather than between
particular species of bird). Five classes (motorbikes, airplanes, faces, cars, spot-
ted cats, together with background, which isn’t really a class) were introduced
by Fergus et al. (2003) in 2003; they are sometimes called Caltech-5. Caltech-
101 has 101 classes, was introduced in Perona et al. (2004) and by Fei-Fei et al.
(2006), and can be found at http://www.vision.caltech.edu/Image_Datasets/
Caltech101/. This dataset is now quite well understood, but as Figure 16.20
suggests, it 1s not yet exhausted. Caltech-256 has 256 classes, was introduced
by (Griffin et al. 2007), and can be found at http://www.vision.caltech.edu/
Image_Datasets/Caltech256/. This dataset is still regarded as challenging.

LabelMe is an image annotation environment that has been used by many
users to mark out and label objects in images; the result is a dataset that is changing
and increasing in size as time goes on. LabelMe was introduced by Russell et al.
(2008), and can be found at http://labelme.csail.mit.edu/.

The Graz-02 dataset contains difficult images of cars, bicycles, and people in
natural scenes; it is originally due to Opelt et al. (2006), but has been recently
reannotated Marszalek and Schmid (2007). The reannotated edition can be found
at http://lear.inrialpes.fr/people/marszalek/data/ig02/.

Imagenet contains tens of millions of examples, organized according to the
Wordnet hierarchy of nouns; currently, there are examples for approximately 17,000
nouns. Imagenet was originally described in Deng et al. (2009), and can be found
at http://www.image-net.org/.

The Lotus Hill Research Institute publishes a dataset of images annoted in
detail at http://www.imageparsing.com; the institute is also available to prepare
datasets on a paid basis.



Each year since 2005 has seen a new Pascal image classification dataset; these
are available at http://pascallin.ecs.soton.ac.uk/challenges/VOC/.

There are numerous specialist datasets. The Oxford visual geometry group
publishes two flower datasets, one with 17 categories and one with 102 categories;
each can be found at http://www.robots.ox.ac.uk/~vgg/data/flowers/. Other
datasets include a “things” dataset, a “bottle” dataset, and a “camel” dataset, all
from Oxford (http://www.robots.ox.ac.uk/~vgg/data3.html).

There 18 a bird dataset published by Caltech and UCSD jointly at http:

//www.vision.caltech.edu/visipedia/CUB-200.html.

Classifying materials has become a standard task, with a standard dataset.
The Columbia-Utrecht (or CURET) material dataset can be found at http://
www.cs.columbia.edu/CAVE/software/curet/; it contains image textures from
over 60 different material samples observed with over 200 combinations of view and
light direction. Details on the procedures used to obtain this dataset can be found
in Dana et al. (1999). More recently, Liu et al. (2010) offer an alternative and
very difficult material dataset of materials on real objects, which can be found at
http://people.csail.mit.edu/celiu/CVPR2010/FMD/.

We are not aware of collections of explicit images published for use as research
datasets, though such a dataset would be easy to collect.

There are several scene datasets now. The largest is the SUN dataset (from
MIT; http://groups.csail.mit.edu/vision/SUN/; Xiao et al. (2010)) contains
130,519 images of 899 types of scene; 397 categories have at least 100 examples per
category. There is a 15-category scene dataset used in the original spatial pyramid
kernel work at http://www-cvr.ai.uiuc.edu/ponce_grp/data/.

It isn’t possible (at least for us!) to list all currently available datasets.
Repositories that contain datasets, and so are worth searching for a specialist
dataset, include: the pilot European Image Processing Archive, currently at http:
//peipa.essex.ac.uk/index.html; Keith Price’s comprehensive computer vision
bibliography, whose root is http://visionbib.com/index.php, and with dataset

pages at http://datasets.visionbib.com/index.html; the Featurespace dataset
a Orvfar T ya—




