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Detection with a classifier

Search

e all windows
® at relevant scales

Prepare features
Classify

Issues

® how to get only one response
® gspeed

® accuracy
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Train a classifier on n X m image windows. Positive examples contain
the object and negative examples do not.
Choose a threshold t and steps Ax and Ay in the x and y directions

Construct an image pyramid.

For each level of the pyramid
Apply the classifier to each n x m window, stepping by
Az and Ay, in this level to get a response strength c.
Ife>t

Insert a pointer to the window into a ranked list £, ranked by c.

For each window W in L, starting with the strongest response
Remove all windows U # W that overlap W significantly,
where the overlap is computed in the original image by expanding windows
in coarser scales.

L is now the list of detected objects.

Algorithm 17.1: Sliding Window Detection.




Non-maximum suppression

e Compute “strength of response”
e SVM value
e LR value

e threshold

e gsmall values are not faces

e find largest value (over location, scale)

® suppress nearby values
® repeat




Simplest, standard strategy

e Window features are HOG features
e (lassifier is linear SVM

o ALWAYS try this first




FIGURE 17.7: As Figure 17.6 indicates, a linear SVM works about as well as the best
detector for a pedestrian detector. Linear SVMs can be used to visualize what aspects of
the feature representation are distinctive. On the left, a typical pedestrian window, with
the HOG features visualized on the center left, using the scheme of Figure 5.15. Each
of the orientation buckets in each window is a feature, and so has a corresponding weight
in the linear SVM. On the center right, the HOG features weighted by positive weights,
then visualized (so that an important feature is light). Notice how the head and shoulders
curve and the lollipop shape gets strong positive weights. On the right, the HOG features
weighted by the absolute value of negative weights, which means a feature that strongly
suggests a person is not present is light. Notice how a strong vertical line in the center of

the window is deprecated (because it suggests the window is not centered on a person)

This figure was originally published as Figure 6 of “Histograms of Oriented Gradients for
Human Detection,” N. Dalal and W. Triggs, Proc. IEEE CV PR 2005, ©) IEEE, 2005.




Evaluation

e plot miss rate against false-positive per image rate
e there are alternatives
e total error rate
® accuracy
® Joss
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FIGURE 17.8: The FPPW statistic is useful for evaluating classifiers, but less so for
evaluating systems. On the left, results on the INRIA pedestrian dataset for a variety
of systems, plotted using miss rate against FPPW by Dollar et al. (2009). In this plot,
curves that lie lower on the figure represent better performance (because they have a lower
miss rate for a given FPPW rate). On the right, results plotted using miss rate against
false positive per image (FPPI), a measure that takes into account the number of windows
presented to the classifier. Again, curves that lie lower are better. Notice how different the
ranking of the systems is. This figure was originally published as Figure 8 of “Pedestrian
Detection: A Benchmark” P. Dollar, C. Wojek, B. Schiele, and P. Perona, Proc. IEEE
CVPR 2009 (¢) IEEE 2009.
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FIGURE 17.16: Performance of various pedestrian detectors for a test dataset (top left,
labeled “overall”) and for various special subsets of that test dataset, performed using the

testbed of Dollar et al. (2009). Detectors that do well for some cases (for example, near-
scale pedestrians) can do poorly for other cases (for example, medium-scale pedestrians)

Some cases are hard for all detectors. This figure was originally published as Figure 9 o
“Pedestrian Detection: A Benchmark” P. Dolldar, C. Wojek, B. Schiele, and P. Perona,
Proc. IEEE CVPR 2009 (¢ IEEE 2009.




Deformable objects

e Build several detectors for each object
® (o cover, say, different views

e FEach detector computes a score that is a sum of
® Jocal part scores
® cach is linear SVM+HOG
® position scores for the local part

e This can be learned from training data

http://people.cs.chicago.edu/~pff/latent/
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FIGURE 17.14: A model for a bicycle, built using the scheme of Felzenszwalb et al. (20105).
There are two components, corresponding to a frontal and a lateral view. Each component

has a root and six parts. The root and the part appearance models are visualized with

the scheme of Figure 5.15. Notice how the root for each view corresponds to a rough
layout, but (for example) the wheels in the lateral view or the handlebar in the frontal
view are hard to spot. This is because bicycles will not be in exactly the same place, or
at exactly the same orientation, in each window. The parts can compensate for that, and
the part models show quite clear wheels and handlebars. The offset costs are registered to
the parts, and smaller values are darker. For example, the wheels in the lateral view can
move somewhat apart, but it becomes expensive to separate them by too much, or place
them too close together. The score for a particular image window is the maximum of the
component scores, which are described in the text. This figure was originally published
as Figure 2 of “Object Detection Using Discriminatively Trained Part-based Models,” by
P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan, IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2010 (¢) IEEFE 2010.




FIGURE 17.15: Examples of bicycles detected using the model of Figure 17.14. The large

boxes are bicycle instances; the smaller boxes inside are the locations of the detected

parts. The wheelie i1s not detected by rotating the box, but because the parts are allowed
0 move within the box. This figure was originally published as Figure 2 of “Object Detec-
tion Using Discriminatively Trained Part-based Models,” by P. Felzenszwalb, R. Girshick,
D. McAllester, and D. Ramanan, IEEE Transactions on Pattern Analysis and Machine
ntelligence, 2010 (c) IEEFE 2010.




Evaluation

e Work with boxes

® Put boxes around targets
® Detector reports boxes
e hit if overlap is good enough

e Recall, precision, AP measures for boxes




| Category | 2007 [ 2008 [ 2009 | 2010 |
aeroplane 0.262 | 0.365 | 0.478 | 0.584
bicycle 0.409 | 0.420 | 0.468 [ 0.553
bird 0.098 | 0.113 | 0.174 | 0.192
boat 0.094 | 0.114 | 0.158 | 0.210
bottle 0.214 | 0.282 | 0.285 | 0.351
bus 0.393 | 0.238 | 0.438 [ 0.555
car 0.432 | 0.366 | 0.372 | 0.491
cat 0.240 | 0.213 | 0.340 | 0.477
chair 0.128 | 0.146 | 0.150 | 0.200
cow 0.140 | 0.177 | 0.228 | 0.315
diningtable | 0.098 | 0.229 | 0.575 | 0.277
dog 0.162 | 0.149 | 0.251 | 0.372
horse 0.335 | 0.361 | 0.380 [ 0.519
motorbike | 0.375 | 0.403 | 0.437 | 0.563
person 0.221 | 0.420 | 0.415 | 0.475
pottedplant | 0.120 | 0.126 | 0.132 | 0.130
sheep 0.175 | 0.194 | 0.251 | 0.378
sofa 0.147 | 0.173 | 0.280 | 0.330
train 0.334 | 0.296 | 0.463 [ 0.503
tvmonitor | 0.289 | 0.371 | 0.376 | 0.419
# methods 5 3 6 6
# comp 9 7 17 19

TABLE 17.1: Average precision of the best classification method for each category for the

Pascal image classification challenge by year (per category; the method that was best at

“person” might not be best at “pottedplant”), summarized from http://pascallin.ecs.
soton.ac.uk/challenges/VOC/. On the bottom rows, the number of methods in each
column and the total number of methods competing (so, for example, in 2007, only 2
of 17 total methods were best in category; each of the other 15 methods was beaten by
something for each category). Notice that the average precision grows, but not necessarily
monotonically (this is because the test set changes). Most categories now work moderately
well.




Speed+Accuracy

e There are methods to reject some windows early
® using simple tests
e Key to good performance seems to be

® very large numbers of examples

e and clever methods to train with huge numbers of negatives
e careful feature engineering




Poselets - 1

Detect body parts, using simple HOG feature+classifier strategy

FIGURE 18.7: Poselets are image patches of characteristic, relatively constrained appear-
ance that suggest a restricted range of configurations. These are examples of image patches
corresponding to four distinct poselets (associated with face, arms, whole body, and head)
from Bourdev and Malik (2009). Notice how each could likely be found with current de-
tectors in a relatively straightforward way. This figure was originally published as Figure
1 of “Poselets: Body Part Detectors Trained Using SD Human Pose Annotations,” L.
Bourdev and J. Malik, Proc. IEEE ICCV 2009, (c) 2009 IEEE.




Poselets - 11

Now the parts vote on where the torso is

-
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FIGURE 18.8: Bourdev and Malik (2009) show that poselets can be used to find, say,
the torso of the body even though it might not be visible. Each detected poselet can
cast a vote, whose value i1s determined discriminatively, for the location of the torso. The
likely torso locations are then clustered, to identify groups of votes that agree. Finally,
the strongest cluster gives a torso location, if it is strong enough. Notice how some of
the marked torsos could not be identified by direct image information. This figure was
originally published as Figure 10 of “Poselets: Body Part Detectors Trained Using 3D
Human Pose Annotations,” L. Bourdev and J. Malik, Proc. IEEE ICCV 2009, (c) 2009
IEFEEFE.
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FIGURE 18.9: Visual phrases are composites of objects that are easier to detect than their
components. Farhadi and Sadeghi (2011) demonstrate that some visual phrases exist and
are useful. For example, it is much easier to detect a person drinking from a bottle than it
is to detect a person, because a person drinking from a bottle has a more limited and more
characteristic range of appearances. These figures show some examples of visual phrases,
detected using the methods of Section 17.2. This figure was originally published as Figure
1 of “Recognition using Visual Phrases,” A. Farhadi and A. Sadeghi, Proc. IEEE CVPR
2011, (c) 2011 IEEE.
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FIGURE 18.10: Detection systems that use visual phrases must be able to deal with am-
biguous and possibly mutually exclusive detector responses. For example, when there is a
person drinking from a bottle, there must also be a person and a bottle, and all three de-
tectors might respond. Resolving what to report given a set of detector responses is called
decoding by Farhadi and Sadeghi (2011). The top row shows some detector responses for
each image before decoding (there are too many to show all; these are the stronger ones);
the bottom row shows the detectors marked as correct by the decoding stage. This stage
is able to use the local context of detector responses. For example, a strong response from
a dog lying on sofa detector implies a sofa, and so the sofa can be believed; similarly, a
believable sofa implies that many of the person detector responses are unlikely. Farhadi
and Sadeghi (2011) demonstrate that decoding improves the performance of all detectors
in the system, and that having visual phrase detectors and a decoding stage improves the
performance of conventional object detectors, most likely by exposing contextual informa-
tion that strengthens or reduces the plausibility of the detector response. This figure was
originally published as Figure 6 of “Recognition using Visual Phrases,” A. Farhadi and A.
Sadeghi, Proc. IEEE CVPR 2011, (c) 2011 IEEE.

Decoding




Datasets and Resources

Pedestrian detection datasets: There are multiple pedestrian datasets. The
INRIA pedestrian dataset, used in Dalal and Triggs (2005), is published by Dalal
and Triggs at http://pascal.inrialpes.fr/data/human/. The MIT pedestrian
dataset, introduced in Papageorgiou and Poggio (2000), is published at http://
cbcl.mit.edu/software-datasets/PedestrianData.html.

There is a set of pointers to implementations of systems and to datasets at
http://www.pedestrian-detection. com/.

Dollar, Wojek, Schiele, and Perona publish several very large pedestrian
datasets (including the Caltech training dataset, test dataset, and Japan dataset) at
http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/, and
describe them in Dollar et al. (2009). This location also contains pointers to other
pedestrian datasets.

Ess, Leibe, Schindler, and van Gool publish a dataset of tracked humans—who
are likely pedestrians—at http://www.vision.ee.ethz.ch/~aess/dataset/; this
dataset is described in detail in Ess et al. (2009).

Overett, Petersson, Brewer, Andersson, and Pettersson publish the NICTA
pedestrian dataset at http://nicta.com.au/research/projects/AutoMap/comp
uter_vision_datasets; this dataset is described in detail in Overett et al. (2008).

Wojek, Walk, and Schiele publish a dataset of pedestrians in motion at http:
//www.mis.tu-darmstadt.de/tud-brussels; this dataset is described in detail
in Wojek et al. (2009).

There are several datasets associated with Daimler Chrysler which can be
found at http://www.gavrila.net/Research/Pedestrian_Detection/Daimler
Pedestrian_Benchmarks/daimler_pedestrian_benchmarks.html.

Enzweiler and Gavrila publish the Daimler pedestrian benchmark dataset at
this URL and it described in detail in Enzweiler and Gavrila (2009). Munder
and Gavrila publish the Daimler pedestrian classification dataset at this URL and
it is described in detail in Munder and Gavrila (2006). Enzweiler, Eigenstetter,
Schiele, and Gavrila publish the Daimler multi-cue occluded pedestrian detection
benchmark dataset at this URL and it is described in Enzweiler et al. (2010).

The computer vision center at the Universitat Autonoma de Barcelona pub-
lishes several pedestrian datasets at http://www.cvc.uab.es/adas/index.php?




section=other_datasets. There is a dataset of virtual pedestrians at this URL,
published by Marin, Vazquez, Gerénimo, and Lépez; it is described in detail
in Marin et al. (2010). Gerénimo, Sappa, Lépez, and Ponsa publish a dataset
of pedestrians captured around Barcelona at this URL; this dataset is described in
detail in Gerénimo et al. (2007).

Maji, Berg, and Malik publish pedestrian detector code that uses pyramid
HOG features and an intersection kernel SVM at http://www.cs.berkeley.edu/
~smaji/projects/ped-detector/. The code is described in Maji et al. (2008).

Face detection codes and datasets: The number of face detection datasets

is so great that we provide pointers to pages that collect datasets. These pages
provide pointers to codes as well. There is a collection of 12 datasets, includ-
ing several well-known face datasets, at http://robotics.csie.ncku.edu.tw/
Databases/FaceDetect_PoseEstimate.htm. Frischholz maintains a face detection
home page, containing demonstrations, publications, datsets, and links, at http:

//www.facedetection.com/; many more face datasets appear in the dataset com-
ponent at http://www.facedetection.com/facedetection/datasets.htm. Gr-
gic and Delac supply codes and datasets for face recognition at http://face-rec.
org/. Some sample codes, and further datasets can be found at http://vision.
ai.uiuc.edu/mhyang/face-detection-survey.html.

General object detection codes and datasets: All datasets from the
PASCAL challenge are published at http://pascallin.ecs.soton.ac.uk/chall
enges/V0OC/, and described in detail by Everingham et al. (2010). Most of the
strongest methods on this challenge are based on the detector we described in
Section 17.2; code for training and testing this method is available at http://
people.cs.uchicago.edu/~pff/latent/.

Pb codes and data are published by Arbelaez, Maire, Fowlkes, and Malik
at http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/
resources.html; there is a description in Arbelaez et al. (2011).




Summary

Simple detection strategy is quite effective
e search windows, compute HOG, stick in classifier

Can use somewhat more complex object models
® makes things better

For some objects, detection 1s quite effective



