Edges, Orientation,
HOG and SIFT

D.A. For

ILinear Filters

¢ Example: smoothing by averaging
¢ form the average of pixels in a neighbourhood

¢ Example: smoothing with a Gaussian
¢ form a weighted average of pixels in a neighbourhood

¢ Example: finding a derivative
¢ form a weighted average of pixels in a neighbourhood

Smoothing by Averaging

where u, v, 1s a window of N pixels in total centered at 0, O

Smoothing with a Gaussian

¢ Notice “ringing”
* apparently, a grid is
superimposed

* Smoothing with an average
actually doesn’t compare at
all well with a defocussed
lens

* what does a point of light A Gaussian gives a good
produce? model of a fuzzy blob

Gaussian filter kernel

(27302) xp (— [u;; o)

We’re assuming the index can take negative values

Smoothing with a Gaussian

Notice the curious looking form

Finding derivatives

Convolution

Each of these involves a weighted sum of image pixels

The set of weights is the same
* we represent these weights as an image, H
¢ H is usually called the kernel

Operation is called convolution
® it’s associative
Any linear shift-invariant operation can be represented by
convolution
® linear: G(k f)=k G(f)
¢ shift invariant: G(Shift(f))=Shift(G(f))
¢ Examples:
* smoothing, differentiation, camera with a reasonable, defocussed lens

system
Nij — E Hqui—u,j—’U
uv

Filters are templates

Nij — Z Hqui—u,j—v

¢ At one point
* output of convolution is a (strange) dot-product
¢ Filtering the image involves a dot product at each point

o Insight
o filters look like the effects they are intended to find
o filters find effects they look like

Normalised correlation

¢ Think of filters of a dot product
* now measure the
¢ i.e normalised correlation output is filter output, divided by root sum of
squares of values over which filter lies
® Tricks:
* ensure that filter has a zero response to a constant region
* helps reduce response to irrelevant background

® subtract image average when computing the normalising constant
* absolute value deals with contrast reversal

normalised correlation
with non-zero mean filter

Positive responses

Zero mean image, -1:1 scale Zero mean image, -max:max scale

Finding hands

[essraear T

Figure from “Computer Vision for Interactive Computer Graphics,” W.Freeman et al, IEEE Computer
Graphics and Applications, 1998

¢ Simplest noise model
* independent stationary additive Gaussian noise

* the noise value at each pixel is given by an independent draw from the
same normal probability distribution

o [ssues

¢ allows values greater than maximum camera output or less than zero
¢ for small standard deviations, this isn’t too much of a problem

* independence may not be justified (e.g. damage to lens)

* may not be stationary (e.g. thermal gradients in the ccd)

sigma=16

Smoothing reduces noise

¢ Generally expect pixels to “be like” their neighbours
* surfaces turn slowly
¢ relatively few reflectance changes

¢ Expect noise to be independent from pixel to pixel
* Implies that smoothing suppresses noise, for appropriate noise models

e Scale

¢ the parameter in the symmetric Gaussian

* as this parameter goes up, more pixels are involved in the average
* and the image gets more blurred

* and noise is more effectively suppressed

— [u? +v2}>

202

Pl L™
ek

1:‘i no
o -t smoothing

f-ll. - B
S 1 i
e M

0=2 pixels

ohmg and scales

FIGURE 4.17: A Gaussian pyramid of images running from 512x512 to 8x8. On the top
row, we have shown each image at the same size (so that some have bigger pixels than
others), and the lower part of the figure shows the images to scale. Notice that if we
convolve each image with a fixed-size filter, it responds to quite different phenomena. An
8x8 pixel block at the finest scale might contain a few hairs; at a coarser scale, it might
contain an entire stripe; and at the coarsest scale, it contains the animal’s muzzle.

Smoothing and scales

Set the finest scale layer to the image

For each layer, going from next to finest to coarsest
Obtain this layer by smoothing the next finest
layer with a Gaussian, and then subsampling it

end

Algorithm 4.2: Forming a Gaussian Pyramid.

Representing image changes: Edges

e Jdea:

points where image value change very sharply are important
e changes in surface reflectance

e shadow boundaries
e outlines
* Finding Edges:

Estimate gradient magnitude using appropriate smoothing
Mark points where gradient magnitude is

e Locally biggest and

* big

Smoothing and Differentiation

¢ Jssue: noise
¢ smooth before differentiation
® two convolutions to smooth, then differentiate?
¢ actually, no - we can use a derivative of Gaussian filter

Scale affects derivatives

Marking the points

Non-maximum suppression

® q ®
Gradient /

® O o ®

Predicting the next edge point

Remaining issues

e Check maximum value of gradient value 1s sufficiently large
e drop-outs?

e use hysteresis

Typical edges

little smoothing, heavy smoothing, high heavy smoothing, low
low threshold threshold threshold

N
S
O
=
S
o
Q
~N—
S
en
-
o v—
o
O
Q.
Q.
<
=
N
o v—

Scale affects contrast
* Edges aren’t bounding contours

e Something nasty

The Laplacian of Gaussian

* Another way to detect an extremal first derivative is to
look for a zero second derivative

e Appropriate 2D analogy is rotation invariant

Laplacian

e Edges are zero crossings

Bad idea to apply a Laplacian without smoothing

smooth with Gaussian, apply Laplacian

this 1s the same as filtering with a Laplacian of Gaussian filter
Now mark the zero points where

¢ there is a sufficiently large derivative,

* and enough contrast

The Laplacian of Gaussian

Filters and Edges: Crucial points

¢ Filters are simple detectors
¢ they look like patterns they find

* Smoothing suppresses noise
* because pixels tend to agree

e Sharp changes are interesting
* because pixels tend to agree
® casy to find - edges

Orientation representations

¢ Gradient magnitude is affected by illumination changes
® but it’s direction isn’t

Orientations

FIGURE 5.7: The magnitude of the image gradient changes when one increases or decreases
the intensity. The orientation of the image gradient does not change; we have plotted every
10th orientation arrow, to make the figure easier to read. Note how the directions of the
gradient arrows are fixed, whereas the size changes. Philip Gatward (©) Dorling Kindersley,
used with permission.

Orientations at different scales

Orientation histograms vary

FIGURE 5.9: Different patterns have quite different orientation histograms. The left shows
rose plots and images for a picture of artists pastels at two different scales; the right shows
rose plots and images for a set of pastels arranged into a circular pattern. Notice how the
pattern of orientations at a particular scale, and also the changes across scales, are quite
different for these two very different patterns. Philip Gatward (©) Dorling Kindersley, used
with permission.

Histograms of oriented gradients

o Strategy:
® break patch up into blocks
® construct histogram representing gradients in that block
¢ which won’t change much if the patch moves slightly

¢ Variants

* histogram of angles
* histogram of gradient vectors, length normalized by block averages

HOG features

Given a grid cell G for patch with center ¢ = (z.,y.) and radius r

Create an orientation histogram
For each point p in an m X m subgrid spanning G
Compute a gradient estimate VZ |p estimate at p
as a weighted average of VZ, using bilinear weights centered at p.

Add a vote with weight | VZ | \/1_ exp (—M)

V2T re

to the orientation histogram cell for the orientation of VZ.

Algorithm 5.5: Computing a Weighted ¢ Element Histogram for a SIFT Feature.

Histograms of oriented gradients

s ARG %¢~%\
TR SIS

From Deva Ramanan’s lake Como slides

HOG features

o L
[*
"
.
N W
&
R
s
e
[&

FIGURE 5.15: The HOG features for each the two images shown here have been visualized
by a version of the rose diagram of Figures 5.7-5.9. Here each of the cells in which the
histogram is taken is plotted with a little rose in it; the direction plotted is at right angles
to the gradient, so you should visualize the overlaid line segments as edge directions.
Notice that in the textured regions the edge directions are fairly uniformly distributed,
but strong contours (the gardener, the fence on the left; the vertical edges of the french
windows on the right) are very clear. This figure was plotted using the toolbox of Dollar
and Rabaud. Left: © Dorling Kindersley, used with permission. Right: Geoff Brightling
© Dorling Kindersley, used with permission.

Interest points

¢ Automatic patch construction
¢ HOG works if we know the patch
* but what patches should we use?
* sliding windows

e We then

¢ find patches
* make descriptions
* match patches

e Matches for

* making mosaics

* spotting near duplicates
detection
reconstruction

d(fs f5) <T

Interest points

¢ For image, find center/radius of circles “worth describing”
¢ these should be “stable”
* if the image is panned, the centers should pan
* if the image is scaled, the centers should scale

Interest points: locating centers

¢ We use a corner detector (Harris, 88)

® at a corner there are
* strong gradients
¢ in different directions

o Use second moments of derivatives

I}(c,) 11,0))

0,,0,)=g(0,)*
u(1 D) g(1)]x[y(GD) LZ(OD)

Interest points: locating centers

3. Gaussian
filter g(o)

har = det[u(0,,0 ;)] -aftrace(u(c,,0)] =

gUINg)-[g I —alg(;)+gI)T

o
Pt
D)
~—
-
D)
Q
o\)
-
=
<
Q
o
e

Interest points

Interest points: finding the radius

Laplacian of Gaussian: radius or blob detector

Interest points: finding the radius

f([il..jm (x,0)) = f(]il...im (x',0"))

Interest points: finding the radius

c ‘1']

scale L o <r'a
fd, . (%,0)) AU

(x,0))

Interest points: finding the radius

c ‘1']

scale L o <r'a
fd, . (%,0)) AU

(x,0))

Interest points: finding the radius

c ‘1']

scale L o <r'a
fd, . (%,0)) AU

(x,0))

Interest points: finding the radius

c ‘1']

scale L o <r'a
fd, . (%,0)) AU

(x,0))

Interest points: finding the radius

c ‘1']

scale L o <r'a
fd, . (%,0)) AU

(x,0))

Interest points: finding the radius

7
fu, , (x',6)

Interest points: finding the radius

Orientation of the patch

¢ We would like to know how the patch is rotated
* to compare, compute features, etc.
* Strategy

® compute orientation histogram
* select most common orientation
® this is O degrees

Describing patches

Various histograms of orientation

HOG
SIFT
SURF
etc.

LLowe’s SIFT features

Subgrid :|:|—>
S— B

=R s e UL P (RN ERR IREERYIRY) 5 Z
- . o gl A7 o O
v L S G == = 3

Y AATEATYERRER [-
X FEN ERY Pl) o B
o =
...... U A U BN v Q (\J
i N) — 1

- 1 LK LU . - . = .
T S 3 — Gradient g =

AR ARNERE L . —
AR : | Subgrid estimate — N §

) - v s .o 3 MR . v
e =
= AN IR DN I S element —| 3
— » - E
Wil L | » b

Neighborhood Grid

-

Grid element
histograms

»
L

FIGURE 5.14: To construct a SIFT descriptor for a neighborhood, we place a grid over
the rectified neighborhood. Each grid is divided into a subgrid, and a gradient estimate

is computed at the center of each subgrid element. This gradient estimate is a weighted
average of nearby gradients, with weights chosen so that gradients outside the subgrid
cell contribute. The gradient estimates in each subgrid element are accumulated into
an orientation histogram. Each gradient votes for its orientation, with a vote weighted
by its magnitude and by its distance to the center of the neighborhood. The resulting
orientation histograms are stacked to give a single feature vector. This i1s normalized to
have unit norm; then terms in the normalized feature vector are thresholded, and the
vector 1s normalized again.

Matching SIFT features

e (Can be compared with Euclidean distance
e test: (dist to closest)/(dist to second closest)

i PDF for correct matches -
. PDF for incorrect matches

0.1 05 06 07 08 0.9
Lowe IJCV 2004 Ratio of distances (closest/next closest)

HOG and SIFT - Crucial points

Orientation based descriptors are very powerful
® because robust to changes in brightness

HOG feature

® known window, make histogram of orientations

SIFT feature

¢ find domain
® patch center and radius
® compute descriptor
® histogram of orientations

Numerous powerful variants
Software available

Software, etc

5.5 COMPUTING LOCAL FEATURES IN PRACTICE

We have sketched the most important feature constructions, but there is a huge
range of variants. Performance is affected by quite detailed questions, such as the
extent of smoothing when evaluating orientations. Space doesn’t allow a detailed

survey of these questions (though there’s some material in Section 5.6), and the

answers seem to change fairly frequently, too. This means we simply can’t supply
accurate recipes for building each of these features.

Fortunately, at time of writing, there are several software packages that pro-
vide good implementations of each of these feature types, and of other variations.
Piotr Dollar and Vincent Rabaud publish a toolbox at http://vision.ucsd.
edu/~pdollar/toolbox/doc/index.html; we used this to generate several figures.
VLFeat is a comprehensive open-source package that provides SIFT features, vec-
tor quantization by a variety of methods, and a variety of other representations.
At time of writing, it could be obtained from http://www.vlfeat.org/. SIFT
features are patented (Lowe 2004), but David Lowe (the inventor) provides a refer-
ence object code implementation at http://www.cs.ubc.ca/~lowe/keypoints/.
Navneet Dalal, one of the authors of the original HOG feature paper, provides
an implementation at http://www.navneetdalal.com/software/. One variant
of SIFT is PCA-SIFT, where one uses principal components to reduce the di-
mension of the SIF'T representation (Ke and Sukthankar 2004). Yan Ke, one
of the authors of the original PCA-SIF'T paper, provides an implementation at
http://www.cs.cmu.edu/~yke/pcasift/. Color descriptor code, which computes
visual words based on various color SIF'T features, is published by van de Sande et
al. at http://koen.me/research/colordescriptors/.

