Light and Color

D.A. Forsyth

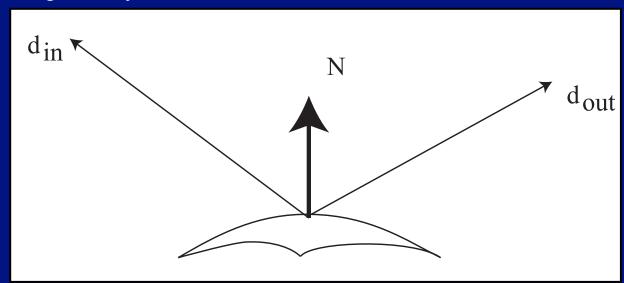
Key issues

- Physical
 - what makes a pixel take its brightness values?
- Inference
 - what can we recover from the world using those brightness values?
- Human
 - What can people do?
 - which suggests problems we might be able to solve

By nickwheeleroz, on Flickr



Processes


- Cameras
 - film: non-linear
 - CCD: linear, with non-linearities made by electronics
- Light
 - is reflected from a surface
 - got there from a source
- Many effects when light strikes a surface -- could be:
 - absorbed; transmitted; reflected; scattered
 - Simplify
 - Assume that
 - surfaces don't fluoresce
 - surfaces don't emit light (i.e. are cool)
 - all the light leaving a point is due to that arriving at that point

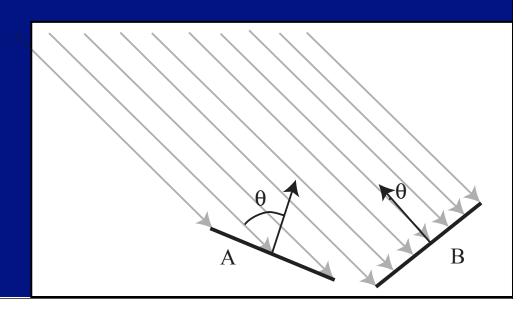
Specularities

- For some surfaces, reflection depends strongly on angle
 - mirrors (special case)
 - incoming direction, normal and outgoing direction are coplanar
 - angle din, normal and angle dout, normal are the same
 - specular surfaces
 - light reflected in a "lobe" of directions
 - eg slightly battered metal surface
 - can see light sources specularly reflected
 - specularities

Flickr, by suzysputnik

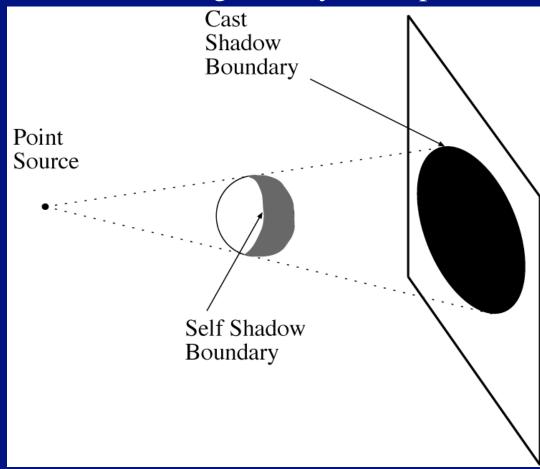
Flickr, by piratejohnny

- Specularities are relatively easy to detect
 - small and bright (usually)


Diffuse reflection

- Light leaves the surface evenly in all directions
 - cotton cloth, carpets, matte paper, matte paints, etc.
 - most "rough" surfaces
 - Parameter: Albedo
 - percentage of light arriving that leaves
 - range 0-1
 - practical range is smaller

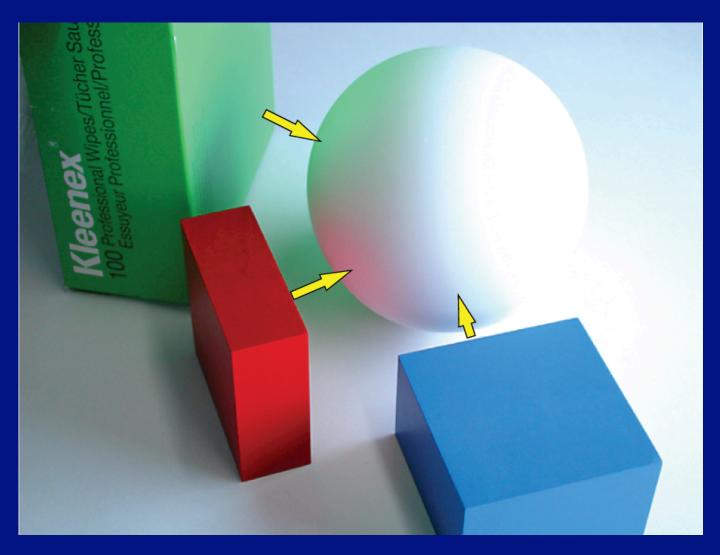
Point source at infinity


- E.g. the sun
 - energy travels in parallel rays
 - energy density received is proportional to cos theta
- Write:
 - p for albedo
 - S for source vector
 - N for normal
 - I for image intensity

$$I(\mathbf{x}) = \rho(\mathbf{x})\mathbf{S} \cdot \mathbf{N}(\mathbf{x})$$

Shadows cast by a point source

- A point that can't see the source is in shadow
- For point sources, the geometry is simple

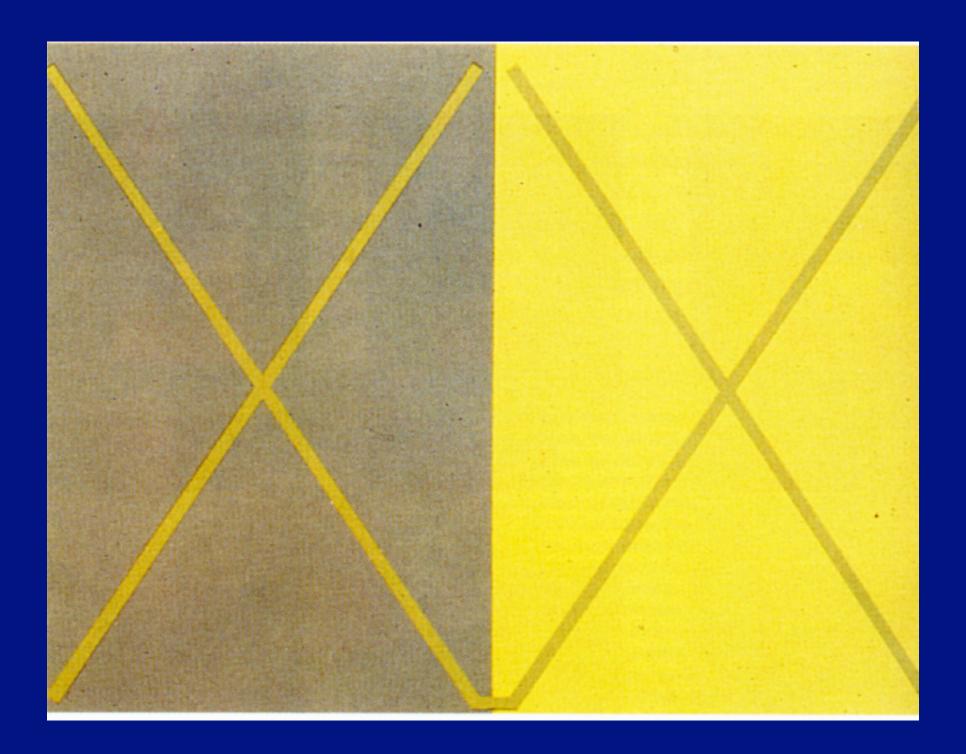

From Koenderink slides on image texture and the flow of light

Interreflections

• Issue:

- local shading model is a poor description of physical processes that give rise to images
 - because surfaces reflect light onto one another
- This is a major nuisance; the distribution of light (in principle) depends on the configuration of every radiator; big distant ones are as important as small nearby ones (solid angle)
- The effects are easy to model
- It appears to be hard to extract information from these models

Interreflections

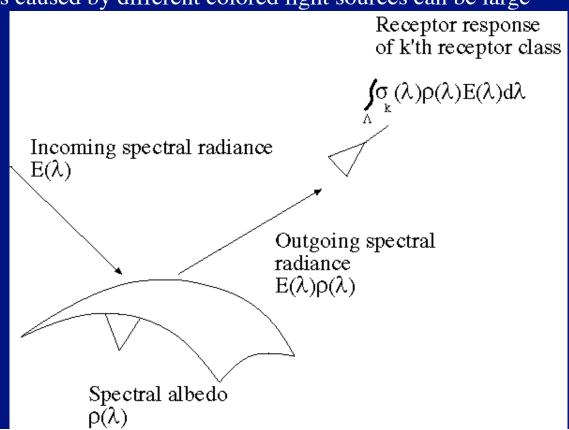


From Koenderink slides on image texture and the flow of light

Causes of colour

- The sensation of colour is caused by the brain.
- One way to get it is the response of the eye to the presence/absence of light at various wavelengths.
 - Dreaming, hallucination, etc.
 - Pressure on the eyelids
- Light could be
 - emitted with wavelengths absent (flourescent light vs. incandescent light)
 - differentially reflected e.g. paint on a surface
 - differentially refracted e.g. Newton's prism
 - subject to wavelength dependent specular reflection (most metals).
 - Flourescence -
 - invisible wavelengths absorbed and reemitted at visible wavelengths.
 - Phosphorescence (ditto, energy, longer timescale)

XXXXX	BLUE	YELLOW
XXXXX		BLUE
XXXXX	RED	GREEN
	YELLOW	RED
XXXXX	BLUE	YELLOW
XXXXX	RED	GREEN
XXXXX	GREEN	BLUE
XXXXX	BLUE	YELLOW
XXXXX	YELLOW	RED
XXXXX		GREEN



Trichromacy

- By experience, it is possible to match almost all colors, viewed in film mode using only three primary sources the principle of trichromacy
- Other modes may have more dimensions
 - Glossy-matte
 - Rough-smooth
 - Most of what follows discusses film mode.

The color of objects

- Colored light arriving at the camera involves two effects
 - The color of the light source
 - The color of the surface
 - Changes caused by different colored light sources can be large

Color receptors and color deficiency

• Trichromacy is justified -

• in color normal people, there are three types of color receptor (shown by molecular biologists).

• Some people have fewer;

• most common deficiency is red-green color blindness in men. Red and green receptor genes are carried on the X chromosome. Most red-green color blind men have two red genes or two green genes. Yields an evolutionary story.

Deficiency

• can be caused by CNS, by optical problems in the eye, or by absent receptors

• Other color deficiencies:

- Anomalous trichromacy
- Achromatopsia
- Macular degeneration

Stage lighting

From Koenderink slides on image texture and the flow of light

Karsch et al in review 10

Crucial points

- Image brightness affected by
 - albedo
 - surface orientation
 - light intensity
- Image color affected by
 - surface color
 - light color
 - there are methods to disentangle these effects