
 Springer-Verlag Heidelberg. Permission to reprint/republish this material for advertising or promotional purposes or for creating
new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works,
must be obtained from Springer-Verlag Heidelberg.

In B. Michaelis and G. Krell, editors, Pattern Recognition, Lecturenotes in Computer Science 2781,
pages 148-155. Springer-Verlag, 2003.

Learning Human-like Opponent Behavior for
Interactive Computer Games

Christian Bauckhage, Christian Thurau, and Gerhard Sagerer

Technical Faculty, Bielefeld University, P.O. Box 100131, 33501 Bielefeld, Germany
{cbauckha,cthurau,sagerer}@techfak.uni-bielefeld.de

Abstract. Compared to their ancestors in the early 1970s, present day computer
games are of incredible complexity and show magnificent graphical performance.
However, in programming intelligent opponents, the game industry still applies
techniques developed some 30 years ago. In this paper, we investigate whether
opponent programming can be treated as a problem of behavior learning. To this
end, we assume the behavior of game characters to be a function that maps the
current game state onto a reaction. We will show that neural networks architec-
tures are well suited to learn such functions and by means of a popular commer-
cial game we demonstrate that agent behaviors can be learned from observation.

1 Context, Motivation, and Overview

Modern computer games create complex and dynamic virtual worlds which offer nu-
merous possibilities for interaction and are displayed using incredible computer graph-
ics. Professional game development therefore has become expensive and time consum-
ing and involves whole teams of programmers, authors and artists [2, 8]. However, de-
spite all progress in appearance and complexity, when it comes to implementing intel-
ligent virtual characters the game industry largely ignores scientific advances but still
reverts to techniques known for more than 30 years [2].

Up to now, the most common techniques to control virtual characters are finite state
machines (of admittedly complex topology) and scripts. From a player’s point of view
this has two major drawbacks: (1) The actions of computer controlled characters often
appear artificial since they just cycle through a fixed repertoire; this provokes repetitions
and thus causes ennui and frustration. (2) Finite stated or scripted behaviors cannot
generalize. Thus, if a human player acts unforeseen, i.e. interaction results in a game
state not envisaged by the programmers, virtual characters tend to behave ’dumb’ [2].

Therefore –and certainly because of the popularity computer games enjoy among
today’s students– creating intelligent opponents has attracted attention in AI research
[3, 4, 11]. Especially Laird identifies a need for human-like behaving characters and
heralds games as the ’killer application’ of artificial intelligence [8, 9]. And indeed, all
cited contributions describe ontology based inference machines or reasoning mecha-
nisms and thus are classical AI. In the following, however, we will argue that computer
games also offer interesting problems and testbeds for the pattern recognition commu-
nity. While the next section explains this claim in general, section 3 treats practical

issues concerning this idea. In section 4 we present results obtained from several ex-
periments on learning of human-like behavior and finally an outlook concludes this
contribution.

2 A Pattern Recognition Perspective on Game Characters

Modern computer games create virtual worlds of enormous sizes in which the player
slips into the role of a virtual character who has to fulfill a certain task. Depending
on the genre, tasks can reach from building and administer cities or civilizations over
solving adventurous quests to simply staying alive on a virtual battlefield.

While it is obvious that computer games are not the real world, it is important to note
that most of them must not be confused with simulations either. Like in simulations, the
states of a game are characterized by a huge set of parameters which encode the current
configuration of the virtual world. If this configuration is thought of as a point in a high
dimensional state space, the current state of a player’s virtual character corresponds to
a point in an appropriate subspace and the history of states a character assumes during
a game forms a path in the state space. But in contrast to simulations, interactive games
merely constrain the actions of a player. Of course there are rules which govern the
evolution of game states but they are not necessarily tailored to the real world (in some
games, for instance, teleportation is possible). Therefore, paths in the state space neither
need to be linear nor smooth. And since there are dynamic interactions between virtual
world, computer controlled opponents, and player characters, the state of the player’s
character is influenced by the player’s actions as well as by events in the virtual world.
As computer controlled events in the virtual world often are triggered randomly and a
players can freely chose their actions, the states of player controlled characters evolve
unforeseen rather than predictable.

Given these observations, we see that evolving player states constitute discrete time
series. And in a simple approximation, their evolution could be assumed to depend only
on the last time step. I.e. if we assume the state of player p at time t to be given by a
vector s

p
t , the player’s state at the next time step t + 1 could be modeled as

s
p
t+1 = s

p
t + et + a

p
t (s

p
t) (1)

where et denotes environmental influences at time t and a
p
t (s

p
t) represents the action

player p accomplishes according to his current state. If we restate this equation as

a
p
t = f(sp

t+1, s
p
t , et) (2)

we see that player actions correspond to what Arkin calls reactive behaviors [1]. I.e.
the actions of a player first of all depend on his or her state and on the current en-
vironmental influence. Furthermore, we see that, given suitable training data, proto-
typical actions a

p
t or situated behaviors which we define to be sequences of actions

{ap
ti
, a

p
ti+1

, . . . , a
p
ti+n

} of a player might be learnable using techniques like statistical
classifiers, HMMs, or neural networks.

Actually, Markovian approaches and conditional expectation maximization have al-
ready been successfully applied to behavior learning in human-machine interaction [5,

Fig. 1. Screenshots taken from ID’s (in)famous FPS game Quake II.

7]. Although these methods offer interesting perspectives for computer games, too, we
aimed at finding a non-probabilistic approximation of the mapping f in Eq. (2). We thus
opted for neural network based approaches. But before we discuss first corresponding
results in learning of opponent behavior for commercial games, the next section shall
point out that appropriate training data is easily available for most present day games.

3 Practical Issues in Behavior Learning for Game Characters

For the reminder of this contribution, we will focus on the infamous but nevertheless
popular genre of first person shooter (FPS) games1. In a FPS game, the player moves
through a virtual world (called map in gamers terminology) which he perceives from
the first person perspective (s. Fig.1). Though variations exist, his main task is to battle
against every other character on the map. In doing so, the player will loose health,
armor, and ammunition which can be compensated by collecting corresponding items
distributed all over a map. The state of a FPS character therefore is almost completely
determined by its current position and view on the map and its current armament and
health conditions.

The ideas discussed below resulted from the fact that nowadays it is actually possi-
ble to earn a living from playing computer games. There are professionals who regularly
compete at tournaments worth several 10.000 dollars of trophy money. Observing these
professionals playing FPS games, one realizes that they do not reflect the situations
they encounter in a game but simply react. Their reactions result from long term prac-
tice and usually only depend on the current state of their virtual character as well as on
its current environmental context. Our reactive behavior model in Eq. (1) thus seems
perfectly applicable to this genre. Moreover, game athletes also solve the problem of
getting training data for behavior learning: most present day computer games allow to
record matches. These so called demos can be viewed afterwards and show the game
from the perspective of the player who recorded it. A demo therefore encodes the series
of states s

p
0, s

p
1, s

p
2, . . . , s

p
N the recording player p underwent during a game.

1 Even though ethically controversial, this genre is (pioneered by Laird) commonly to be found
in literature on intelligent computer controlled opponents.

180

−180
0

0

−90

90

Velocity−X

Velocity−Y

Fig. 2. A virtual character’s movement depends on its field of view (fov) which is determined by
the signed angles YAW and PITCH and on the character’s velocity v = (vx, vy).

As there are millions of demos available on the Internet, the idea was to try to
use this data to train neural networks which map human-made state vectors to human-
made (re)action vectors. Such networks would realize artificial opponents (called bots
in gamers terminology) which will imitate human players and thus certainly will behave
human-like. In order to verify this idea, we experimented with ID’s game QUAKE II,
which was chosen for the following reasons:

1. Its C++ source code is freely available on the Internet [6].
2. Its network protocol is simple so that it is easy to extract game state data from

recorded demos.
3. Though no longer state of the art in computer graphics, it is still popular and demo

resources are nearly unlimited.

4 Experiments

In a first series of experiments, we tried to learn moving and aiming behaviors from
recorded demos. In doing so, we assumed the state of a QUAKE II character to be
comprehensively described by its position x ∈

�
3 on a map, its distance d ∈

�
to

the nearest opponent, and the horizontal angle ϕ and the vertical angle ϑ to this oppo-
nent. As QUAKE II encodes angles such that ϕ, ϑ ∈ [0◦, 180◦] both require a signum
σ(ϕ), σ(ϑ) ∈ {−1, 1} in order to cover the whole angular range. Consequently, in our
experiments, a player’s state was represented by an 8 dimensional vector S.

Since we only considered movement and aiming, we assumed a player’s action
to be determined by adjustments of its field of view (fov) and its velocity (s. Fig.2).
In the experiments reported below, we thus realized virtual opponents by means of
at least two neural networks where one was specialized in fov adjustment and the
other was responsible for velocity adapting. Correspondingly, the overall reaction of
our bots was composed from the output of these expert networks. As QUAKE II rep-
resents the fov by means of the angles YAW ∈ [0◦, 180◦] and PITCH ∈ [0◦, 90◦] with
σ(YAW), σ(PITCH) ∈ {−1, 1} and since we assumed the velocity to be given by a
vector v where vx ∈ [−400, 400] and vy ∈ [−200, 200], the networks for adjusting fov
and velocity thus map 8 state parameters onto 4 or 2 action parameters, respectively.

 0

 500

 1000

 1500

 2000

 400 600 800 1000 1200 1400 1600 1800 2000

P
la

ye
r’s

 Y
 C

oo
rd

in
at

e

Player’s X Coordinate

Means of VQ Clusters
Training Data Projected into X,Y Subspace

(a)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 200 400 600 800 1000

S
qu

ar
e

E
rr

or

Nr. of Input Vector

single MLP
5 VQ MLPs

(b)

Fig. 3. (a) Training data (projected into the (x, y) plane) and means of VQ cluster. (b) Differences
between expected and calculated fov adaptions obtained on a test set of 1027 vectors. The plot
compares the performance of a single MLP with that of a combination of 5 MLPs.

Given several training series s
p
t , t ∈ {1, 2, . . . , N} of recorded state vectors, the

state parameters S described above can immediately be extracted while the parameters
A

f and A
v for corresponding fov and velocity adjustments result from the difference

s
p
t+1 − s

p
t . The goal is thus to minimize the square errors

Ex =
1

2

N−1
∑

t=1

∥

∥

∥
Â

x

t (St) −A
x
t (St)

∥

∥

∥

2

, x ∈ {f, v} (3)

between automatically generated adjustments Â
x

t and known ones. As the next para-
graphs indicate, for basic behavior learning tasks this can successfully be done by
different combinations of simple multilayer perceptrons (MLPs) based on Levenberg-
Marquardt training2.

Learning Efficient Paths: Experienced FPS players do not move arbitrarily through a
game environment. They have learned to cycle a map such that the effort for collecting
items is minimal. In a first experiment, we investigated if such paths can be learned from
training data. To this end we recorded a demo containing a total of 2064 state vectors
which show five efficient runs around a map. Figure 3(a) shows a projection of the
corresponding 8 dimensional data into the subspace of the player’s (x, y) coordinates.

Integrating MLPs for fov and velocity adjustments into Quake II, i.e. implementing
a virtual character, allowed to literally observe their performance. This revealed that
a bot based on monolithic MLPs tended to become stuck at certain parts of the map.
A solution was provided by clustering the training data using vector quantization. Fig-
ure 3(a) also shows the means of clusters that resulted after the number of partitions
was chosen to be 5. After MLPs with 12 hidden neurons were trained for each of the
resulting clusters, we could observe the bot smoothly pursuing the path encoded in the

2 Details on the choice of network topologies discussed in the following can be found in [10].

Experiment
Classifier Training Test

Task Network Topology Epochs NTrain ETrain NTest ETest

adapting fov single 8-24-4 MLP 150 2064 35.29 1027 190.76
single adapting velocity single 8-24-2 MLP 150 2064 2455.95 1027 2957.5
path adapting fov 5 VQ 8-12-4 MLPs 150 2064 15.1 1027 140.87
run adapting velocity 5 VQ 8-12-2 MLPs 150 2064 2453.82 1027 2788.75

adapting fov 10 SOM 8-24-4 MLPs 150 2840 119.22 1513 644.1
crossing adapting velocity 10 SOM 8-24-2 MLPs 150 2840 3214.18 1513 7214.18

paths adapting fov 10 SOM 24-12-4 TDNNs 150 2840 30.56 1513 313.17
run adapting velocity 10 SOM 24-12-2 TDNNs 150 2840 2411.85 1513 6032.1

integrated adapting fov 6 SOM 8-12-4 MLPs 150 2361 18.42 1598 4585.5
aim and adapting velocity 6 SOM 8-12-2 MLPs 150 2361 1599.94 1598 2834.38

movement adapting fov 6 SOM 5-12-4 MLPs 150 2361 15.5 1598 119.06
behavior adapting velocity 6 SOM 8-12-2 MLPs 150 2361 1599.94 1598 2834.38

Table 1. Summary of offline evaluation results.

training data. This is documented in Fig.3(b) and the upper part of Tab.1 which summa-
rize results from an offline evaluation of this experiment. Both compare the performance
of the different solutions on an independent test demo of 1027 state vectors.
Learning to Run Crossed Paths: Already in realizing simple running behaviors, the
assumption we made in Eq. (1), i.e. the idea that a reaction just depends on the current
state, proves to be insufficient. Rather, knowledge of temporal context, e.g. knowing
one’s last position, can be crucial for intelligent movement behavior. This becomes ap-
parent if we consider Fig.4(a) which superimposes data from two demos. Both demos
contain cyclic runs around a map which overlap to a certain extend but happened to be
directed contrary. Thus, without knowing where it was last a bot that has to move in
the overlapping section of the paths would be lost for it simply would randomly choose
between velocity adjustments learned from the one or the other demo. This assertion is
backed up empirically in Fig.4(b) and the middle rows of Tab.1. Both compare results
obtained with combinations of regular MLPs with results from combined time delay
neural networks (TDNNs). In these experiments, the training data was separated into
10 clusters using self organizing maps (SOMs). On the one hand, usual MLPs with
24 hidden neurons were trained to learn movement behaviors. On the other hand, we
trained TDNNs which not only regarded the current state but also the last two states to
derive fov and velocity adjustments. Consequently, the input layer of these networks is
of dimension 24. But even if their hidden layers contain only 12 neurons, this architec-
ture lowers the errors Ef and Ev considerably.
Learning to Switch between Movement and Aiming Behaviors: Up to now, we only
described neural network architectures that imitate a single human-demonstrated be-
havior. Figure5(a) depicts a projection of a demo where another character came across
the recording player who correspondingly slowed down and aimed at that opponent.
What we can see are the (x, y, d) coordinates contained in the demo, i.e. the 8 dimen-
sional state vectors S are projected into the subspace describing the player’s spatial

-200

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 400 600 800 1000 1200 1400 1600 1800 2000

P
la

ye
r’s

 Y
 C

oo
rd

in
at

e

Player’s X Coordinate

Training Data
SOM Neurons

(a)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 200 400 600 800 1000 1200 1400 1600

S
qu

ar
e

E
rr

or

Nr. of Input Vector

10 SOM MLPs
10 SOM TDNNs

(b)

Fig. 4. (a) Superimposed projections of crossed, contrary directed paths. (b) Corresponding per-
formance in fov adjustment by hybridly coupled regular MLPs and hybridly combined TDNNs

Training Data
SOM Neurons

 400 600 800 1000 1200 1400 1600 1800 2000
Player’s X Coordinate

-200 0 200 400 600 800 1000 1200 1400 1600 1800

Player’s Y Coordinate

Distance to Opponent

(a)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 200 400 600 800 1000 1200 1400 1600

S
qu

ar
e

E
rr

or

Nr. of Input Vector

8 dimensional input
5 dimensional input

(b)

Fig. 5. (a) (x, y, d) space projection of a demo where another player came across. (b) Errors in
fov adjustment obtained from a combination of SOM clustered MLPs for 8 dimensional input
and from the same architecture applied to PCA reduced input.

coordinates as well as his distance to an opponent. An ingame evaluation yielded that
a combination of only two MLPs for fov and velocity adjustment cannot really repro-
duce the switching between behaviors that was implicitly encoded in the training data.
SOMs, in contrast, automatically unfold evenly into the space of training data and, in
fact, Fig.5(a) shows that one out of 6 SOM neurons emerged as a representative of the
situation where the opponent came close. Consequently, the MLPs attached to this neu-
ron automatically assume the role of experts for aiming and the capability to switch
between behaviors automatically emerges from input space clustering.

However, as we see in Fig.5(b), our accustomed technique of assigning MLPs which
process 8 dimensional input to SOM neurons does not perform well either. The figure
displays the error Ef in fov adjustment. While the first 600 state vectors in the analyzed
test data correspond to a situation where an opponent was near, the remaining 998

vectors represent usual player movements. Thus, as for the first phase of this demo
the observed error oscillates considerably, the aiming behavior was not learned well. A
solution resulted from reducing the input data dimension using PCA. Unsurprisingly,
this yielded that mainly field of view parameters are responsible for aiming. And in
fact, as the second plot in Fig.5(b) as well as the lower most rows of Tab.1 underline,
reducing the input to the fov parameters only improved the quality of aiming.

5 Conclusion and Future Work

Even though computer games have become an enormous business that exhausts con-
siderable intellectual efforts, current commercial realizations of game characters (also
called bots) are far behind the scientific state of the art. In this contribution, we pro-
moted the idea of understanding bot programming as a learning task. And indeed, first
shot experiments with several neural network architectures indicate that it is possible
to realize bots which behave human-like simply because they learned from human-
generated training data.

Currently, we extend our approaches to more complex behavior and to other games.
In doing so, we also investigate online learning for game characters as well as more
sophisticated neural network architectures like mixtures of experts. Furthermore, we
plan to examine data mining techniques in order to determine which information is
relevant to generate and switch between appropriate behaviors. Finally, besides its long-
term commercial impact, we believe that the game domain also provides interesting
impulses for behavior learning in general. A mid-term vision, for instance, is a robocup-
like league where bots from different research groups compete in order to foster the
development of intelligently behaving game characters.

References

1. R. C. Arkin. Behavior-Based Robotics. MIT Press, 1998.
2. S. Cass. Mind games. IEEE Spectrum, pages 40–44, December 2002.
3. K. R. Dixon, R. J. Malak, and P. K. Khosla. Incorporating Prior Knowledge and Previously

Learned Information into Reinforcement Learning Agents. Technical report, CMU, 2000.
4. C. Fairclough, M. Fagan, B. MacNamee, and P. Cunningham. Research Directions for AI in

Computer Games. Technical report, Trinity College Dublin, 2001.
5. A. Galata, N. Johnson, and D. Hogg. Learning Variable-Length Markov Models of Be-

haviour. Computer Visiosn and Image Understanding, 81(3):398–413, 2001.
6. http://www.idsoftware.com/business/home/techdownloads/.
7. T. Jebara and A. Pentland. Action reaction learning: Automatic visual analysis and synthesis

of interactive behaviour. In Proc. 1st Int. Conf. on Computer Vision Systems, volume 1542
of Lecture Notes in Computer Science, pages 273–292, 1999.

8. J. E. Laird. Using a Computer Game to develop advanced AI. IEEE Computer, pages 70–75,
July 2001.

9. J. E. Laird and M. v. Lent. Interactice Computer Games: Human-Level AI’s Killer Applica-
tion. In Proc. AAAI, pages 1171–1178, 2000.

10. C. Thurau. Untersuchung über Lernverfahren für künstliche Agenten in virtuellen 3D-
Umgebungen. Master’s thesis, Bielefeld Universtiy, March 2003.

11. J.M.P. van Vaveren. The Quake III Arena Bot. Master’s thesis, TU Delft, June 2001.

