
Protected Interactive 3D Graphics Via Remote Rendering

David Koller∗ Michael Turitzin∗ Marc Levoy∗ Marco Tarini† Guiseppe Croccia† Paolo Cignoni†

Roberto Scopigno†

∗Stanford University †ISTI-CNR, Italy

Abstract

Valuable 3D graphical models, such as high-resolution scans of dig-
ital heritage objects, may require protection to prevent piracy or
misuse, while still allowing for interactive display and manipula-
tion by a widespread audience. We have investigated techniques for
protecting 3D graphics content, and we have developed a remote
rendering system that best meets our requirements for protecting
and sharing archives of 3D models. The system consists of a 3D
viewer client with low-resolution versions of the 3D models, and
a render server that renders and returns images of high-resolution
models according to client requests. The server implements a num-
ber of defenses to guard against 3D reconstruction attacks, such
as monitoring and limiting request streams, and slightly perturbing
and distorting the rendered images. We consider several possible
types of reconstruction attacks on the render server, including voxel
enumeration and computer vision algorithms, and demonstrate that
these attacks can be defended against without excessively compro-
mising the interactive experience for normal users.

CR Categories: I.3.2 [Computer Graphics]: Graphics Systems—
Remote systems

Keywords: security, 3D models, remote rendering, digital rights
management

1 Introduction

Protecting digital information from theft and misuse, a subset of the
digital rights management problem, has been the subject of much
research and many attempted practical solutions. Efforts to protect
software, databases, digital images, digital music files, and other
content are ubiquitous, and data security is a primary concern in
the design of modern computing systems and processes. However,
there have been few technological solutions to specifically protect
interactive 3D graphics content.

The demand for protecting 3D graphical models is significant. Con-
temporary 3D digitization technologies allow for the reliable and
efficient creation of accurate 3D models of many physical objects,
and a number of sizable archives of such objects have been created.
The Stanford Digital Michelangelo Project [Levoy et al. 2000], for
example, has created a high-resolution digital archive of 10 large
statues of Michelangelo, including the David. These statues rep-
resent the artistic patrimony of Italy’s cultural institutions, and the
contract with the Italian authorities permits the distribution of the
3D models only to established scholars for non-commercial use.

Though all parties involved would like the models to be widely
available for constructive purposes, were the digital 3D model of
the David to be distributed in an unprotected fashion, it would soon
be pirated, and simulated marble replicas would be manufactured
outside the provisions of the parties authorizing the creation of the
model.

Digital 3D archives of archaeological artifacts are another exam-
ple of 3D models often requiring piracy protection. Curators of
such artifact collections are increasingly turning to 3D digitization
as way to preserve and widen scholarly usage of their holdings, by
allowing virtual display and object examination over the Internet,
for example. However, the owners and maintainers of the artifacts
often desire to maintain strict control over the use of the 3D data
and to guard against theft. An example of such a collection is the
Stanford Digital Forma Urbis Project [Levoy 2000], in which over
one thousand fragments of an ancient Roman map were digitized
and are being made available through a web-based database, pro-
viding that the 3D models can be adequately protected.

Other application areas such as entertainment and online commerce
may also require protection for 3D graphics content. 3D character
models developed for use in motion pictures are often repurposed
for widespread use in video games and promotional materials. Such
models represent valuable intellectual property, and solutions for
preventing their piracy from these interactive applications would be
very useful. In some cases, such as 3D body scans of high pro-
file actors, content developers may be reluctant to distribute the 3D
models without sufficient control over reuse. In the area of online
commerce, a number of Internet content developers have reported
an unwillingness of clients to pursue 3D graphics projects specif-
ically due to the lack of ability to prevent theft of the 3D content
[Ressler 2001].

Prior technical research in the area of intellectual property protec-
tions for 3D data has primarily concentrated on 3D digital water-
marking techniques. Over 30 papers in the last 7 years describe
steganographic approaches to embedding hidden information into
3D graphical models, with varying degrees of robustness to attacks
that seek to disable watermarks through alterations to the 3D shape
or data representation. Many of the most successful 3D water-
marking schemes are based on spread-spectrum frequency domain
transformations, which embed watermarks at multiple scales by in-
troducing controlled perturbations into the coordinates of the 3D
model vertices [Praun et al. 1999; Ohbuchi et al. 2002]. Comple-
mentary technologies search collections of 3D models and examine
them for the presence of digital watermarks, in an effort to detect
piracy.

We believe that for the digital representations of highly valuable
3D objects such as cultural heritage artifacts, it is not sufficient to
detect piracy after the fact; we must instead prevent it. The com-
puter industry has experimented with a number of techniques for
preventing unauthorized use and copying of computer software and
digital data. These techniques have included physical dongles, soft-
ware access keys, node-locked licensing schemes, copy prevention
software, program and data obfuscation, and encryption with em-
bedded keys. Most such schemes are either broken or bypassed by
determined attackers, and cause undue inconvenience and expense



for non-malicious users. High-profile data and software is particu-
larly susceptible to being quickly targeted by attackers.

Fortunately, 3D graphics data differs from most other forms of dig-
ital media in that the presentation format, 2D images, is fundamen-
tally different from the underlying representation (3D geometry).
Usually, 3D graphics data is displayed as a projection onto a 2D
display device, resulting in tremendous information loss for single
views. This property supports an optimistic view that 3D graphics
systems can be designed that maintain usability and utility, while
not being as vulnerable to piracy as other types of digital content.

Within the scope of the research described in this paper, we address
the problem of preventing the piracy of the detailed geometry of
high-resolution static 3D models, while still allowing for their inter-
active display and manipulation. We attempt to provide a solution
for maintainers of large collections of these types of 3D models,
such as the digitized cultural heritage artifacts described above.

In the following paper sections, we first examine the graphics
pipeline to identify its possible points of attack, and then propose
several possible techniques for protecting 3D graphics from such
attacks. Our experimentation with these techniques led us to con-
clude that remote rendering provides the best solution for protecting
3D graphical models, and we describe the design and implementa-
tion of a prototype system in Section 4. Section 5 describes two
general classes of reconstruction attacks against such a remote ren-
dering system and the results of our efforts to guard against them.

2 Possible Attacks in the Graphics Pipeline

Figure 1 shows a simple abstraction of the graphics pipeline for
purposes of identifying possible attacks to recover 3D geometry.
We note several places in the pipeline where attacks may occur:

3D model file reverse-engineering.Fig. 1(a). 3D graphics models
are typically distributed to users in data streams such as files in
common file formats. One approach to protecting the data is to
obfuscate or encrypt the data file. If the user has full access to the
data file, such encryptions can be reverse-engineered and broken,
and the 3D geometry data is then completely unprotected.

Tampering with the viewing application. Fig. 1(b). A 3D viewer
application is typically used to display the 3D model and allow for
its manipulation. Techniques such program tracing, memory dump-
ing, and code replacement are practiced by attackers to obtain ac-
cess to data in use by application programs.

Graphics driver tampering. Fig. 1(c). Because the 3D geometry
usually passes through the graphics driver software on its way to
the GPU, the driver is vulnerable to tampering. Attackers can re-
place graphics drivers with malicious or instrumented versions to
capture streams of 3D vertex data, for example. Such replacement
drivers are widely distributed for purposes of tracing and/or debug-
ging graphics programs.

Reconstruction from the framebuffer. Fig. 1(d). Because the
framebuffer holds the result of the rendered scene, its contents can
be used by sophisticated attackers to reconstruct the model geome-
try, using computer vision 3D reconstruction techniques. The frame
buffer contents may even include depth values for each pixel, and
attackers may have precise control over the rendering parameters
used to create the scene (viewing and projection transformation,
lighting, etc.). This potentially creates a perfect opportunity for
computer vision reconstruction, as the synthetic model data and
controlled parameters do not suffer from the noise, calibration, and
imprecision problems issues that make robust real world vision with
real sensors very difficult.

Figure 1: Abstracted graphics pipeline showing possible attack lo-
cations (a-e). These attacks are described in the text.

Reconstruction from the final image display. Fig. 1(e). Re-
gardless of whatever protections a graphics system can guarantee
throughout the pipeline, the rendered images finally displayed to
the user are accessible to attackers. Just as audio signals may be
recorded by external devices when sound is played through speak-
ers, the video signals or images displayed on a computer monitor
may be recorded with a variety of video devices. The images so
gathered may be used as input to computer vision reconstruction
attacks such as those possible when the attacker has access to the
framebuffer itself, though the images may be of degraded quality,
unless a perfect digital video signal (such as DVI) is available.

3 Techniques for Protecting 3D Graphics

In light of the possible attacks in the graphics pipeline as described
in the previous section, we have considered a number of approaches
for sharing and rendering protected 3D graphics.

Software-only rendering. A 3D graphics viewing system that does
not make use of hardware acceleration may be easier to protect from
the application programmer’s point of view. Displaying graphics
with a GPU can require transferring the graphics data in precisely
known and open formats, through a graphics driver and hardware
path that is often out of the programmer’s control. A custom 3D
viewing application with software rendering allows the 3D content
distributor to encrypt or obfuscate the data in a specific manner, all
the way through the graphics pipeline until display.

Hybrid hardware/software rendering. Hybrid hardware and soft-
ware rendering schemes can be used to take at least some advantage
of hardware accelerated rendering, while benefiting from software
rendering’s protections as described above. In one such scheme, a
small but critically important portion of a protected model’s geom-
etry (such as the nose of a face) is rendered in software, while the
rest of the model is rendered normally with the accelerated GPU
hardware. This technique serves as a deterrent to attackers tamper-
ing with the graphics drivers or hardware path, but the two-phase
drawing with readback of the color and depth buffers can incur a
performance hit, and may require special treatment to avoid arti-
facts on the border of the composition of the two images.

In another hybrid rendering scheme, the 3D geometry is trans-
formed and per-vertex lighting computations are performed in soft-
ware. The depth values computed for each vertex are distorted in
a manner that still preserves the correct relative depth ordering,
while concealing the actual model geometry as much as possible.
The GPU is then used to complete rendering, performing rasteri-
zation, texturing, etc. Such a technique potentially keeps the 3D
vertex stream hidden from attackers, but the distortions of the depth



buffer values may impair certain graphics operations (fog compu-
tation, some shadow techniques), and the geometry may need to be
coarsely depth sorted so that Z-interpolation can still be performed
in a linear space.

Deformations of the geometry. Small deformations in large 2D
images displayed on the Internet are sometimes used as a defense
against image theft; zoomed higher resolution sub-images with
varying deformations cannot be captured and easily reassembled
into a whole. A similar idea can be used with 3D data: subtle 3D
deformations are applied to geometry before the vertices are passed
to the graphics driver. The deformations are chosen so as to vary
smoothly as the view of the model changes, and to prohibit recov-
ery of the original coordinates by averaging the deformations over
time. Even if an attacker is able to access the stream of 3D data af-
ter it is deformed, they will encounter great difficulty reconstructing
a high-resolution version of the whole model due to the distortions
that have been introduced.

Hardware decryption in the GPU. One sound approach to provid-
ing for protected 3D graphics is to encrypt the 3D model data with
public-key encryption at creation time, and then implement custom
GPUs that accept encrypted data, and perform on-chip decryption
and rendering. Additional system-level protections would need to
be implemented to prevent readback of framebuffer and other video
memory, and to place potential restrictions on the command stream
sent to the GPU, in order to prevent recovery of the 3D data.

Image-based rendering. Since our goal is to protect the 3D ge-
ometry of graphic models, one technique is to distribute the mod-
els using image-based representations, which do not explicitly in-
clude the complete geometry data. Examples of such represen-
tations include light fields and Lumigraphs [Levoy and Hanrahan
1996; Gortler et al. 1996], both of which are highly amenable to
interactive display.

Remote rendering. A final approach to secure 3D graphics is to
retain the 3D model data on a secure server, under the control of
the content owner, and pass only rendered images of the models
to client requests. Very low-resolution versions of the models, for
which piracy is not a concern, can be distributed with special client
programs to allow for interactive performance during manipulation
of the 3D model. This method relies on good network bandwidth
between the client and server, and may require significant server
resources to do the rendering for all client requests, but it is vulner-
able primarily only to reconstruction attacks.

Discussion. We have experimented with several of the 3D model
protection approaches described above. For example, our first pro-
tected 3D model viewer was an encrypted version of the “QS-
plat” [Rusinkiewicz and Levoy 2000] point-based rendering sys-
tem, which omits geometric connectivity information. The 3D
model files were encrypted using a strong symmetric block cipher
scheme, and the decryption key was hidden in a heavily obfus-
cated 3D model viewer program, using modern program obfusca-
tion techniques [Collberg and Thomborson 2000]. Vertex data was
decrypted on demand during rendering, so that only a very small
portion of the decrypted model was ever in memory, and only soft-
ware rendering modes were used.

Unfortunately, systems such as this ultimately rely on “security
through obfuscation,” which is theoretically unsound from a com-
puter security point of view. Given enough time and resources, an
attacker will be able to discover the embedded encryption key or
otherwise reverse-engineer the protections on the 3D data. For this
reason, any of the 3D graphics protection techniques that make the
actual 3D data available to potential attackers in software can be
broken [Schneier 2000]. It is possible that future “trusted comput-
ing” platforms for general purpose computers will be available that

Figure 2: Screenshot of the client program.

make software tampering difficult or impossible, but such systems
are not widely deployed today. Similarly, the idea of a GPU with
decryption capability has theoretical merit, but it will be some years
before such hardware is widely available for standard PC comput-
ing environments, if ever.

Thus, for providing practical, robust, anti-piracy protections for 3D
data, we gave strongest consideration to purely image-based rep-
resentations and to remote rendering. Distributing light fields at
the high resolutions necessary would involve huge, unwieldy file
sizes, would not allow for any geometric operations on the data
(such as surface measurements performed by archaeologists), and
would still give attackers unlimited access to the light field for pur-
poses of performing 3D reconstruction attacks using computer vi-
sion algorithms. For these reasons, we finally concluded that the
last technique, remote rendering, offers the best solution for pro-
tecting interactive 3D graphics content.

Remote rendering has been used before in networked environments
for 3D visualization, although we are not aware of a system specif-
ically designed to use remote rendering for purposes of security
and 3D content protection. Remote rendering systems have been
previously implemented to take advantage of off-site specialized
rendering capabilities not available in client systems, such as in-
tensive volume rendering [Engel et al. 2000], and researchers have
developed special algorithmic approaches to support efficient dis-
tribution of rendering loads and data transmission between render-
ing servers and clients [Levoy 1995; Yoon and Neumann 2000].
Remote rendering of 2D graphical content is common for Internet
services such as online map sites; only small portions of the whole
database are viewed by users at one time, and protection of the en-
tire 2D data corpus from theft via image harvesting may be a factor
in the design of these systems.

4 Remote Rendering System

To test our ideas for providing controlled, protected interactive ac-
cess to collections of 3D graphics models, we have implemented
a remote rendering system with a client-server architecture, as de-
scribed below.



Figure 3: Client-side low resolution (left) and server-side high res-
olution (right) model renderings.

4.1 Client Description

Users of our protected graphics system employ a specially-designed
3D viewing program to interactively view protected 3D con-
tent. This client program is implemented as an OpenGL and
wxWindows-based 3D viewer, with menus and GUI dialogs to con-
trol various viewing and networking parameters (Figure 2). The
client program includes very low-resolution, decimated versions of
the 3D models, which can be interactively rotated, zoomed, and re-
lit by the user in real-time. When the user stops manipulating the
low-resolution model, detected via a “mouse up” event, the client
program queries the remote rendering server via the network for a
high-resolution rendered image corresponding to the selected ren-
dering parameters. These parameters include the 3D model name,
viewing matrices, and lighting conditions. When the server passes
the rendered image back to the client program, it replaces the low-
resolution rendering seen by the user (see Figure 3).

On computer networks with reasonably low latencies, the user thus
has the impression of manipulating a high-resolution version of
the model. In typical usage for cultural heritage artifacts, we use
models with approximately 10,000 polygons for the low resolution
version, whereas the server-side models often contain tens of mil-
lions polygons. Such low-resolution model complexities are of lit-
tle value to potential thieves, yet still provide enough clues for the
user to navigate.

4.2 Server Description

The remote rendering server receives rendering requests from
users’ client programs, renders corresponding images, and passes
them back to the clients. The rendering server is implemented as
a module running under the Apache 2.0 HTTP Server; as such,
the module communicates with client programs using the standard
HTTP protocol, and takes advantage of the wide variety of ac-
cess protection and monitoring tools built into Apache. The render
server module is based upon the FastCGI Apache module, and al-
lows for multiple rendering processes to be spread across any num-
ber of server hardware nodes.

As render requests are received from clients, the render server
checks their validity and dispatches the valid requests to a GPU for
OpenGL hardware-accelerated rendering. The rendered images are
read back from the framebuffer, compressed using JPEG compres-
sion, and returned to the client. If multiple requests from the same
client are pending (such as if the user rapidly changes views while
on a slow network), earlier requests are discarded, and only the
most recent is rendered. The server uses level-of-detail techniques
to speed the rendering of highly complex models, and lower level-
of-detail renderings can be used during times of high server load
to maintain high throughput rates. In practice, an individual server

node with a Pentium 4 CPU and an NVIDIA GeForce 4 video card
can handle about 8 typical client requests per second; the bottle-
necks are in the rendering and readback (about 100 milliseconds),
and in the JPEG compression (approximately 25 milliseconds). In-
coming request sizes are about 700 bytes each, and the images re-
turned from our deployed servers average 30 kB per request.

4.3 Server Defenses

In section 2, we enumerated several possible places in the graphics
pipeline that an attacker could steal 3D graphics data. The benefit of
using remote rendering is that it leaves only 3D reconstruction from
2D images in the frame buffer or display device as possible attacks.
General 3D reconstruction from images constitutes a very difficult
computer vision problem, as evidenced by the great amount of re-
search effort being expended to design and build robust computer
vision systems. However, synthetic 3D graphics renderings can be
particularly susceptible to reconstruction because the attacker may
be able to exactly specify the parameters used to create the images,
there is a low human cost to harvest a large number of images, and
synthetic images are potentially perfect, with no sensor noise or
miscalibration errors. Thus, it is still necessary to defend the remote
rendering system from reconstruction attacks; below, we describe a
number of such defenses that we have implemented for our server.

Session-based defenses.Client programs that access the remote
rendering system are uniquely identified during the course of a us-
age session. This allows the server to monitor and track the specific
sequence of rendering requests made by each client. Automatic
analysis of the server logs allows suspicious request streams to be
classified, such as an unusually high number of requests per unit
time, or a particular pattern of requests that is indicative of an image
harvesting program. High quality computer vision reconstructions
require a large number of images that densely sample the space of
possible views, so we are able to effectively identify such access
patterns and terminate service to those clients. To guard against
distributed attacks using IP hiding techniques, we can optionally
require recurrent user authentication.

Obfuscation. Although we do not rely on obfuscation to protect the
3D model data, we do use obfuscation techniques on the client side
of the system to discourage and slow down certain attacks. The
low-resolution models that are distributed with the client viewer
program are encrypted using an RC4-variant stream cipher, and the
keys are embedded in the viewer and heavily obfuscated. The ren-
dering request messages sent from the client to the server are also
encrypted with heavily obfuscated keys. These encryptions simply
serve as another line of defense; even if they were broken, attackers
would still not be able to gain access to the high resolution 3D data
except through reconstruction from 2D images.

Limitations on valid rendering requests. As a further defense,
we provide the option in our client and remote server to prevent
viewing under particular view conditions. In some cases, users are
prevented from zooming close to the 3D model surface, and models
may have particular “stayout” regions defined that disallow certain
viewing and lighting angles, thus keeping attackers from being able
to reconstruct a complete model. For the particular purpose of de-
fending against the enumeration attacks described in Section 5.1,
we put restrictions on the class of projection transformations al-
lowed to be requested by users, and we prevent viewpoints from
within a small offset of the model surface.

Perturbations and distortions. Passive 3D computer vision recon-
structions of real-world objects from real-world images are usually
of relatively poor quality compared to the original object. This fail-
ure inspires the belief that we can protect our synthetically rendered
models from reconstruction by introducing into the images the same



types of obstacles known to plague vision algorithms. The pertur-
bations and distortions that we use are described below; in each
case, we are careful to apply these defenses to the images only to
the degree that it is not distracting to the user viewing the models.
Additionally, these defenses are applied in a pseudorandomly gen-
erated manner for each different rendering request, so that attackers
cannot systematically determine and reverse their effects, even if
the specific form of the defenses applied is known (such as if the
source code for the rendering server is available):

• Perturbed viewing parametersWe pseudorandomly intro-
duce subtle perturbations into the view transformation ma-
trix for the images rendered by the server; these perturba-
tions have the effect of slightly rotating, translating, and non-
uniformly scaling the model. The range of these distortions
is bounded such that no point in the rendered image is further
than eithern pixels orm meters from its corresponding point
in an unperturbed view. In practice, we use generally use val-
ues ofn = 15 pixels andm= 0.1 m, as experience has shown
that users can be distracted by larger shifts between consecu-
tively displayed images.

• Perturbed lighting parameters We pseudorandomly intro-
duce subtle perturbations into the lighting parameters used to
render the images; these perturbations include modifying the
lighting direction specified in the client request, as well as
addition of randomly changing secondary lighting to illumi-
nate the model. Users are quite sensitive to shifts in the over-
all scene intensity and shading, so the primary light direction
perturbations used are generally quite small (maximum of 5
degrees for typical models).

• High-frequency noise added to the imagesWe introduce
two types of high-frequency noise artifacts into the rendered
images. The first, JPEG artifacts, are a convenient result of
the compression scheme applied to the images returned from
the server. At high compression levels (we use a maximum
libjpeg quality factor of 50), the quantization of DCT coeffi-
cients used in JPEG compression creates “blocking” disconti-
nuities in the images, and adds noise in areas of sharp contrast.
These artifacts create problems for low-level computer vision
image processing algorithms, while the design of JPEG com-
pression specifically seeks to minimize the overall perceptual
loss of image quality for human users.

Additionally, we add pseudorandomly generated monochro-
matic Gaussian noise to the images, implemented efficiently
by blending noise textures during hardware rendering on the
server. The particular noise pattern applied is a function of the
viewing parameters, so that attackers cannot defeat the noise
through simple averaging. The added noise defends against
computer vision attacks by making background segmentation
more difficult, and breaking up the highly regular shading pat-
terns of synthetic renderings. Interestingly, users are not gen-
erally distracted by the added noise, but have even commented
that the rendered models often appear “more realistic” with
the high-frequency variations caused by the noise. One draw-
back of the added noise is that the increased entropy of the
images can result in significantly larger compressed file sizes;
we address this in part by primarily limiting the application
of noise to the non-background regions of the image via sten-
ciled rendering.

• Low-frequency image distortionsJust as real computer vi-
sion lens and sensor systems sometimes suffer from image
distortions due to miscalibration, we can effectively simulate
and extend these distortions in the render server. Subtle ra-
dial distortions, pinching, and low-frequency waves can be

implemented with two-pass rendering of the image as a tex-
ture onto a mesh. In practice, we use a simpler and faster
perspective “keystoning” distortion, in which the projection
matrix is slightly perturbed by a pseudorandomly determined
amount.

Due to the variety of random perturbations and distortions that are
applied to the images returned from the render server, there is a risk
of distracting the user, as the rendered 3D model exhibits changes
from frame to frame, even when the user makes very minor adjust-
ments to the view. However, we have found that the brief switch
to the lower resolution model in between display of the high reso-
lution perturbed images, inherent to our remote rendering scheme,
very effectively masks these changes. This masking of changes is
attributed to the visual perception phenomenon known aschange
blindness[Simons and Levin 1997], in which significant changes
occurring in full view are not noticed due to a brief disruption in
visual continuity. Recent experiments in change blindness effects
with global disruptions, such as those experienced by the users of
our system, demonstrate that remarkably large variations in visual
stimuli can go unnoticed when a “flicker” is introduced between
successive images.

5 Reconstruction Attacks

In this section we consider several specific attacks, in which sets of
images may be gathered from our remote rendering server to make
3D reconstruction of the model possible.

5.1 Enumeration Attacks

The rendering server responds to rendering requests from users
specifying the viewing conditions for the rendered images. This
ability for precise specification can be exploited by attackers, as
they can potentially explore the entire 3D model space, using the re-
turned images to discover the location of the 3D model to any arbi-
trary precision. In practice, these attacks involve enumerating many
small cells in a voxel grid, and testing each such voxel to determine
intersection with the remote high-resolution model’s surface; thus
we term themenumeration attacks. Once this enumeration process
is complete, occupied cells of the voxel grid are exported as a point
cloud that can then be passed as input to a surface reconstruction
algorithm.

Below we describe three types of enumeration attacks. The first
two require the ability to specify the view frustum for the rendered
images; an obvious defense against these attacks is thus to remove
or severely limit control of the view frustum parameters. In our re-
mote rendering system, we have restricted the client’s view frustum
controls to specify viewpoint position and orientation only. Other
possible defenses against each attack will be discussed in the fol-
lowing sections.

Individual voxel enumeration In this attack, rendering requests
are made to determine whether individual voxels contain the model
surface. A voxel-sized cubic view frustum is used per-voxel to
make this determination. In the simplest case, a 1x1 pixel image is
requested from the server, and if the returned image pixel does not
match the expected background color, then the voxel is assumed
to be occupied. Because backfacing polygons may not be visible
from a particular angle, images from multiple view angles (such as



(a) (b)

Figure 4: Enumeration Attacks: (a) the plane sweep enumeration
attack sweeps a one-voxel thick view frustum over the model, (b)
the near plane sweep enumeration attack sweeps the viewpoint over
the model, marking voxels where the model surface is clipped by
the near plane.

the six faces of the voxel cube) must be requested. Surface follow-
ing techniques can be used to minimize the number of rendering
requests.

While the remote model can theoretically be fully reconstructed us-
ing this attack, the immense number of rendering requests it re-
quires is often prohibitive; for ann× n× n voxel grid, O(n3) re-
quests are necessary in the worst case, even with surface follow-
ing. Viewing parameter perturbation defenses work very effectively
against this attack. With these defenses in place, the maximum
reconstruction resolution will be limited by the maximum relative
displacement an individual model surface point undergoes. Image-
and lighting-based defenses are generally not effective against this
attack, as only a simple test on images as small as a single pixel is
required.

Plane sweep enumeration Plane sweep enumeration requires
many less rendering requests than individual voxel enumeration
(O(n) requests for ann× n× n voxel grid, compared toO(n3)).
In this attack, the view frustum, which is given the shape of a tall
and wide but only one-voxel-thick “plane,” is swept over the model
(Figure 4(a)). Each requested image represents one slice of the
model’s surface, and each pixel of each image corresponds to a sin-
gle voxel. As in the individual voxel enumeration attack, a simple
test is used per-pixel to determine whether that pixel is a model sur-
face or background pixel. Since this attack involves plane sweeps in
several directions, false negatives are unimportant; the attacker can
be liberal in ignoring potential background pixels that may occur,
if low-amplitude background noise or JPEG compression is being
used as a defense on the server.

Our tests indicate that the remote model can potentially be effi-
ciently reconstructed at full resolution using this attack. See Fig-
ure 5(b) for an example of a reconstruction against a defenseless
server. As with individual voxel enumeration, perturbing view-
ing parameters is an effective defense against this attack; see Fig-
ure 5(c) for a failed reconstruction attempt against a server pseu-
dorandomly perturbing the viewing direction by up to 0.3◦ in the
returned images. Since plane sweep enumeration relies on the cor-
respondence between image pixels and voxels, image warps can
also be quite effective as a defense.

Near plane sweep enumeration The exact location of the re-
mote model surface can be determined using this attack without re-
liance on user control of the view frustum parameters. The essence

(a) (b)

(c) (d)

Figure 5: 3D reconstruction results from enumeration attacks:
(a) original 3D model, (b) plane sweep attack against defenseless
server (6 passes, 3168 total rendered images), (c) plane sweep
attack against viewing parameter perturbation defense (6 passes,
3168 total rendered images), (d) near plane sweep attack against
defenseless server (6 passes, 7952 total renderered images)

of near plane sweep enumeration is to sweep the viewpoint (and
thus the near plane) over the model, checking when the model sur-
face is clipped by the near plane and marking voxels when this
happens (Figure 4(b)). The attacker knows that the near plane has
clipped the model when a pixel previously containing the model
surface begins to be classified as the background. In order to de-
termine which voxel each image pixel corresponds to, the attacker
must know two related parameters: the distance between the view-
point position and the near plane, and the field of view.

These parameters can be easily discovered. The near plane dis-
tance can be determined by first obtaining the exact location of one
feature point on the model surface through triangulation of multi-
ple rendering requests and then moving the viewpoint slowly to-
ward that point on the model. When the near plane clips the feature
point, the distance between that point and the view position equals
the near plane distance. The horizontal and vertical field of view
angles can be obtained by moving the viewpoint slowly toward the
model surface, stopping when any surface point becomes clipped by
the near plane. The viewpoint is then moved a small amount per-
pendicular to its original direction of motion such that the clipped
point moves slightly relative to the view but stays on the new im-
age (near plane). Since the near plane distance has already been
obtained, the field of view angle (horizontal or vertical depending
on direction of motion) can be obtained from the relative motion of
the clipped point across the image.

Because the near plane is usually small compared to the dimen-
sions of the model, many sweeps must be tiled in order to attain
full coverage. For the reasons mentioned in the previous attacks,
sweeps must be made in several directions to ensure that all model
faces are seen. Because this attack relies on seeing the background
to determine when the near plane has clipped a surface, concave
model geometries will present a problem for surface detection. Al-
though sweeps from multiple directions will help, this problem is
not fully avoidable. Figure 5(d) illustrates this problem, showing
a case in which six sweeps have not managed to fully capture all



Figure 6: The 160 viewpoints used to reconstruct the model with a
shape-from-silhouette attack. The reconstruction results are shown
in Figure 7.

surface geometry. Additionally, determination of surface location
near silhouette edges can be difficult due to image aliasing issues;
the attacker can alleviate this problem to some degree by supersam-
pling and averaging down (and then throwing out potential false
positives). Depending on the size of the near plane in relation to
the model, near plane sweep enumeration can require many less
rendering requests than single voxel enumeration, though it always
requires more than regular plane sweep enumeration.

Perturbation of the near plane distance is an effective defense
against this attack, as such perturbation will make it difficult for
the attacker to know where the model surface lies. Model position
and angle perturbations and image warps will nearly destroy the
effectiveness of the attack, as they can make it very difficult to de-
termine where the surface lies and where it does not near silhouette
edges (pixels near these edges will change erratically between sur-
face and background). The most solid defense against this attack
is to prevent views within a certain small offset of the model sur-
face. This defense, which we have implemented, prevents the near
plane from ever clipping the model surface and thereby completely
nullifies this attack.

5.2 Computer Vision Attacks

Computer vision research efforts have generated many different ap-
proaches to the reverse rendering problem, and these techniques
potentially allow attackers to recover the 3D shape of models from
the rendered images displayed on the client in our remote system.
Robust reconstruction of high resolution models is usually difficult,
but in our case the task is potentially made easier by the perfect na-
ture of the synthetic images, the availability of the low-resolution
3D models, knowledge of the exact rendering algorithms used to
create the model (ie. the standard OpenGL shading equations), and
the ability of the user to freely and flexibly choose viewpoints and
lighting conditions that may be best suited for 3D reconstruction.

In this section, we consider several classes of computer vision at-
tacks, and analyze their efficacy against the countermeasures we
have implemented in the rendering server.

Shape-from-silhouette attacks Shape-from-silhouette
[Slabaugh et al. 2001] is one well studied, robust technique for ex-
tracting a 3D model from a set of images. The method consists of
segmenting the object pixels from the background in each image,
then intersecting in space their resulting extended truncated silhou-
ettes, and finally computing the surface of the resulting shape. The

Figure 7: Performance of shape-from-silhouette reconstructions
against various server defenses. Top row: original model, recon-
struction from defenseless server, reconstruction with 0.5◦ and 2.0◦

perturbations of the view direction. Bottom row: reconstruction
with a random image offset of 4 pixels, with 1.2% and 2.5% ra-
dial image distortion, and reconstruction against combined defenses
(1.0◦ view perturbation, 2 pixel random offset, and 1.2% radial im-
age distortion).

main limitation of this technique is that only a visual hull [Lau-
rentini 1994] of the 3D shape can be recovered, meaning that the
line-concaveparts of the model are beyond the capabilities of the
reconstruction. Thus, the effectiveness of this attack depends on the
specific geometric characteristics of the object; the high-resolution
3D models that we target often have many crevices and concavities
that are difficult or impossible to fully recover using shape-from-
silhouette. However, this attack may also be of use to attackers
to obtain a coarse, low-resolution version of the model, if they are
unable to break through the obfuscation protections we use in the
low-resolution models distributed with the client.

To measure the potential of a shape-from-silhouette attack against
our protected graphics system, we have conducted reconstruction
experiments on a 3D model of the David as served via the render-
ing server, using a shape-from-silhouette implementation described
in [Tarini et al. 2002]. With all server defenses disabled, 160 im-
ages were harvested from a variety of viewpoints around the model;
these viewpoints were selected incrementally, with later viewpoints
chosen to refine the reconstruction accuracy as measured during the
process. The set of views used from around the model is illustrated
in Figure 6, and the resulting 3D reconstruction is shown in Fig-
ure 7.

Several of the perturbation and distortion defenses implemented in
our server are effective against the shape-from-silhouette attack.
Results from experiments showing the reconstructed model qual-
ity with server defenses independently enabled are shown in Fig-
ure 7. Small perturbations in the viewing parameters were particu-
larly effective at decreasing the quality of the reconstructed model,



Figure 8: Potential effectiveness of shape-from-shading attacks:
Original model (left) and reconstruction attack against a defenseless
server using photometric stereo techniques with normal integration
to displace a coarse mesh (right) .

as would be expected; Niem [Niem 1997] performed an error anal-
ysis of silhouette-based modeling techniques and showed the linear
relationship between error in the estimation of the view position
and error in the resulting reconstruction. Perturbations in the im-
ages returned from the server, such as radial distortion and small
random shifts, were also effective. Combining the different pertur-
bation defenses, as they are implemented in our remote rendering
system, makes for further deterioration of the reconstructed model
quality.

High frequency noise and JPEG defenses in the server images can
pose problems for untuned shape-from-silhouette software imple-
mentations, although these defenses can be largely bypassed if their
specific characteristics are taken into account by the attacker. The
addition of noise and JPEG artifacts to the images increases the dif-
ficulty of segmenting the object from the background. However,
more sophisticated image processing operations can use multiple
images to help classify pixels as background or foreground, and
shape-from-silhouette algorithms are innately robust with respect
to false negatives in determining background pixels, due to the in-
tersection process applied to each image silhouette.

Stereo correspondence-based attacks Stereo based recon-
struction is another well known 3D computer vision technique.
Stereo pairs of similarly neighborhooded pixels are detected, and
the position of the corresponding point on the 3D surface is found
via the intersection of epipolar lines. Of particular relevance to our
remote rendering system, [Debevec et al. 1996] showed that the
reconstruction task can be made easier and more accurate if an ap-
proximate low resolution model is available, by warping the images
over it before performing the stereo matching.

Ultimately, however, stereo correspondence techniques usually rely
on matching detailed, high-frequency features in order to yield
high-resolution reconstruction results. The smoothly shaded 3D
computer models generated by laser scanning that we share via our
remote rendering system thus present significant problems to stereo
matching algorithms. When we add in the server defenses such as
image-space high frequency noise, and slight perturbations in the
viewing and lighting parameters, the stereo matching task becomes
even more ill-posed. Other stereo research such as [Scharstein and
Szeliski 2002] also reports great difficulty in stereo reconstruction
of noise-contaminated, low-texture synthetic scenes. Were we to
distribute 3D models with high resolution textures applied to their
surfaces, stereo correspondence methods may be a more effective
attack.

Shape-from-shading attacks Shape-from-shading attacks rep-
resent another family of computer vision techniques for recon-
structing the shape of a 3D object (see [Zhang et al. 1999] for a
survey). The primary attack on our remote rendering system that

we consider in this class involves first obtaining several images
from the same viewpoint under varying, known lighting conditions.
Then, using photometric stereo methods, a normal is computed for
each pixel by solving a system of rendering equations. The result-
ing normal map can be registered and applied to an available ap-
proximate 3D geometry, such as the low-resolution model used by
the client.

This coarse normal-mapped model itself may be of value to some
attackers: when rendered it will show convincing 3D high fre-
quency details that can be shaded under new lighting conditions,
though with artifacts at silhouettes. However, the primary purpose
of our system is to protect the high-resolution 3D geometry, which
if stolen could be used maliciously for shape analysis or to create
replicas. Thus, a greater risk is posed if the normal map is inte-
grated by the attacker to compute a displacement map [Horn 1986],
and the results are used to displace a refined version of the low-
resolution model mesh.

Following this procedure with images harvested from a defenseless
remote rendering server and using a low-resolution client model,
we were able to successfully reconstruct a high-resolution 3D
model. The results shown in Figure 8 depict a reconstruction of the
David’s head produced from images taken from 10 viewpoints, with
20 lighting positions used at each viewpoint, assuming a known
OpenGL lighting model and using a 30,000 polygon low-resolution
model of the whole statue. However, as with the other reconstruc-
tion attacks, when a combination of defenses are enabled on the
render server, the ability to produce such high quality reconstruc-
tions may be significantly diminished.

Some of the render server defenses, such as adding high-frequency
noise to the images, can be compensated for by the attacker by sim-
ply adding more input images to increase the robustness of the pho-
tometric stereo solution step (although harvesting too many images
will eventually trigger the render server log analysis monitors). Ef-
fective defenses against shape-from-shading attacks include small
viewing and lighting perturbations and low-frequency image dis-
tortions. These defenses make it difficult to register images onto
the low-resolution model, and viewpoint and lighting perturbations
can cause catastrophic failures in the photometric stereo solution
step without a very large number of input images. The reliance
on a low-resolution base mesh for the 3D model reconstruction is
another weak point of this attack; attackers may be deterred by the
effort required to reverse-engineer the protections guarding the low-
resolution model, and may not be able to reconstruct an acceptable
base mesh themselves from other techniques such as shape-from-
silhouette.

6 Results and Future Work

Prototypes of our remote rendering system have been deployed to
share 3D models from a major cultural heritage archive, the Digital
Michelangelo Project [Levoy et al. 2000], as well as other collec-
tions of archaeological artifacts that require protected usage. In
the several months since becoming publically available, more than
4,000 users have installed the client program on their personal com-
puters and accessed the remote servers to view the protected 3D
models. The users have included art students, art scholars, art en-
thusiasts, and sculptors examining high-resolution artworks, as well
as archaeologists examining particular artifacts. Few of these indi-
viduals would have qualified under the strict guidelines required to
obtain completely unrestricted access to the models, so the pro-
tected remote rendering system has enabled large, entirely new
groups of users access to 3D graphical models for professional
study and enjoyment.



Reports from users of the system have been uniformly positive and
enthusiastic. Fetching high-resolution renderings over interconti-
nental broadband Internet connections takes less than 2 seconds of
latency, while fast continental connections generally experience la-
tencies dominated by the render server’s processing time (around
150 ms). Due to the international usage of the system, rendering
server loads are fairly evenly distributed around the clock; the ren-
der server architecture can scale up to support an arbitrary number
of requests per second by adding additional CPU and GPU nodes,
and render servers can be installed at distributed locations around
the world to reduce cross-continent latencies if desired.

To our knowledge, our efforts to protect the 3D models from piracy
have been successful. Our log analysis defenses have detected
multiple episodes of system users attempting to harvest large sets
of images from the server for purposes of later 3D reconstruc-
tion attempts, though these incidents were determined to be non-
malicious. In general, the monitoring capabilities of a remote ren-
dering server are useful for reasons beyond just security, as the
server logs provide complete accounts of all usage of the 3D mod-
els in the archive, which can be valuable information for archive
managers to gauge popularity of individual models and understand
user interaction patterns.

Our plans for future work include further research on the usage
of remote rendering for protecting 3D models. In particular, we
are continuing to experiment with computer vision reconstruction
techniques, and determine their efficacy against the various render
server defenses we have implemented. More sophisticated exten-
sions to the basic vision approaches described above, such as multi-
view stereo algorithms, and robust hybrid vision algorithms which
combine the strengths of different reconstruction techniques, can
present difficult challenges to protecting the models. Another di-
rection of research is to consider how to allow a greater degree of
analysis of the 3D objects by users while still maintaining a similar
degree of protection. The current system functionality is limited to
3D display and simple interactions such as moving the viewpoint
and lighting. However, scholarly and professional users have ex-
pressed interest in measuring distances and plotting profiles of 3D
objects for analytical purposes; how to support these sorts of exact-
ing geometric analyses without further exposing the data to theft is
an open area of research. Finally, we are continuing to investigate
alternative approaches to protecting 3D graphics, designing special-
ized systems which make data security a priority while potentially
sacrificing some general purpose computing platform capabilities.
The GPU decryption scheme described herein, for example, is one
such idea that may be appropriate for console devices and other
custom graphics systems.

Acknowledgements

We would like to thank Kurt Akeley, Sean Anderson, Jonathan
Berger, Dan Boneh, Ian Buck, Pat Hanrahan, Hughes Hoppe, David
Kirk, Matthew Papakipos, Nick Triantos, and the anonymous re-
viewers and referees for their useful feedback. This work has been
supported in part by NSF contract IIS–0113427 and the Max Planck
Center for Visual Computing and Communication.

References

COLLBERG, C., AND THOMBORSON, C. 2000. Watermarking, tamper-proofing, and
obfuscation: Tools for software protection. Tech. Rep. 170, Dept. of Computer
Science, The University of Auckland.

DEBEVEC, P., TAYLOR , C., AND MALIK , J. 1996. Modeling and rendering ar-
chitecture from photographs: A hybrid geometry- and image-based approach. In
Proceedings of SIGGRAPH 96, ACM Press / ACM SIGGRAPH, H. Rushmeier,
Ed., Computer Graphics Proceedings, Annual Conference Series, 11–20.

ENGEL, K., HASTREITER, P., TOMANDL , B., EBERHARDT, K., AND ERTL, T.
2000. Combining local and remote visualization techniques for interactive vol-
ume rendering in medical applications. InProceedings of IEEE Visualization 2002,
IEEE Computer Society, 449–452.

GORTLER, S., GRZESZCZUK, R., SZELISKI , R., AND COHEN, M. F. 1996. The
lumigraph. InProceedings of SIGGRAPH 96, ACM Press / ACM SIGGRAPH,
Computer Graphics Proceedings, Annual Conference Series, 43–54.

HORN, B. K. P. 1986.Robot Vision. MIT Press.

LAURENTINI , A. 1994. The visual hull concept for silhouette-based image under-
standing.IEEE Trans. on Pattern Analysis and Machine Intelligence 16, 2 (Febru-
ary), 150–162.

LEVOY, M., AND HANRAHAN , P. 1996. Light field rendering. InProceedings of
SIGGRAPH 96, ACM Press / ACM SIGGRAPH, Computer Graphics Proceedings,
Annual Conference Series, 31–42.

LEVOY, M., PULLI , K., CURLESS, B., RUSINKIEWICZ, S., KOLLER, D., PEREIRA,
L., GINZTON, M., ANDERSON, S., DAVIS , J., GINSBERG, J., SHADE, J., AND

FULK , D. 2000. The digital michelangelo project. InProceedings of SIGGRAPH
2000, ACM Press / ACM SIGGRAPH, New York, K. Akeley, Ed., Computer
Graphics Proceedings, Annual Conference Series, ACM, 131–144.

LEVOY, M. 1995. Polygon-assisted jpeg and mpeg compression of synthetic im-
ages. InProceedings of SIGGRAPH 95, ACM Press / ACM SIGGRAPH, Computer
Graphics Proceedings, Annual Conference Series, 21–28.

LEVOY, M. 2000. Digitizing the forma urbis romae. InProceedings of the Siggraph
Digital Campfire on Computer and Archaeology.

NIEM , W. 1997. Error analysis for silhouette-based 3d shape estimation from multiple
views. In International Workshop on Synthetic-Natural Hybrid Coding and 3D
Imaging (IWSNHC3DI’97).

OHBUCHI, R., MUKAIYAMA , A., AND TAKAHASHI , S. 2002. A frequency-domain
approach to watermarking 3d shapes.Computer Graphics Forum (Eurographics
2002 Proc.) 21, 3.

PRAUN, E., HOPPE, H., AND FINKELSTEIN, A. 1999. Robust mesh watermarking.
In Proceedings of SIGGRAPH 1999, ACM Press / ACM SIGGRAPH, Computer
Graphics Proceedings, Annual Conference Series, ACM, 49–56.

RESSLER, S., 2001. Web3d security discussion. Online article:
http://web3d.about.com/library/weekly/aa013101a.htm, January.

RUSINKIEWICZ, S.,AND LEVOY, M. 2000. QSplat: A multiresolution point rendering
system for large meshes. InProceedings of SIGGRAPH 2000, ACM Press / ACM
SIGGRAPH, Computer Graphics Proceedings, Annual Conference Series, 343–
352.

SCHARSTEIN, D., AND SZELISKI , R. 2002. A taxonomy and evaluation of dense
two-frame stereo correspondence algorithms.International Journal of Computer
Vision 47, 1–3 (April–June), 7–42.

SCHNEIER, B. 2000. The fallacy of trusted client software.Information Security
(August).

SIMONS, D., AND LEVIN , D. 1997. Change blindness.Trends in Cognitive Sciences
1, 7, 261–267.

SLABAUGH , G., CULBERTSON, B., MALZBENDER, T., AND SCHAFER, R. 2001. A
survey of methods for volumetric scene reconstruction from photographs. InPro-
ceedings of the Joint IEEE TCVG and Euro graphics Workshop (VolumeGraphics-
01), Springer-Verlag, Wien, K. Mueller and A. Kaufmann, Eds., 81–100.

TARINI , M., CALLIERI , M., MONTANI , C., ROCCHINI, C., OLSSON, K., AND

PERSSON, T. 2002. Marching intersections: An efficient approach to shape-from-
silhouette. InProceedings of the Conference on Vision, Modeling, and Visualization
(VMV 2002), B. Girod, G. Greiner, H. Niemann, and H.-P. Seidel, Eds., 255–262.

YOON, I., AND NEUMANN , U. 2000. Web-based remote rendering with IBRAC.
Computer Graphics Forum (Eurographics 2000 Proc.) 19, 3.

ZHANG, R., TSAI, P.-S., CRYER, J. E.,AND SHAH , M. 1999. Shape from shading:
A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 21, 8,
690–706.


