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Abstract

Multi-class shape detection, in the sense of recognizing and localizing instances from multiple shape

classes, is formulated as a two-step process in which local indexing primes global interpretation. During

indexing a list of instantiations (shape identities and poses) is compiled constrained only by no missed

detections at the expense of false positives. Global information, such as expected relationships among

poses, is incorporated afterward to remove ambiguities. This division is motivated by computational

efficiency. In addition, indexing itself is organized as a coarse-to-fine search simultaneously in class

and pose. This search can be interpreted as successive approximations to likelihood ratio tests arising

from a simple (“naive Bayes”) statistical model for the edge maps extracted from the original images.

The key to constructing efficient “hypothesis tests” for multiple classes and poses is local OR’ing; in

particular, spread edges provide imprecise but common and locally invariant features. Natural tradeoffs

then emerge between discrimination and the pattern of spreading. These are analyzed mathematically

within the model-based framework and the whole procedure is illustrated by experiments in reading

license plates.

Key words: Shape detection, multiple classes, statistical model, spread edges, coarse-to-fine search,

online competition.

I. INTRODUCTION

We consider detecting and localizing shapes in cluttered grey level images when the shapes

may appear in many poses and there are many classes of interest. In many applications, a mere

list of shape instantiations, where each item indicates the generic class and approximate pose,

provides a useful global description of the image. (Richer descriptions, involving higher-level

labels, occlusion patterns, etc. are sometimes desired.) The set of feasible lists may be restricted

by global, structural constraints involving the joint configuration of poses; this is the situation

in our application to reading license plates.

In this paper, indexing will refer to non-contextual detection in the sense of compiling a

list of shape instantiations independently of any global constraints; interpretation will refer

to incorporating any such constraints, i.e., relationships among instantiations. In our approach

indexing primes interpretation.

Indexing

Ideally, we expect to detect all instances from all the classes of interest under a wide range

of geometric presentations and imaging conditions (resolution, lighting, background, etc.). This
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can be difficult even for one generic class without accepting false positives. For instance, all

approaches to face detection (e.g., [8], [31], [36]) must confront the expected variations in the

position, scale and tilt of a face, varying angles of illumination and the presence of complex

backgrounds; despite considerable activity, and marked advances in speed and learning, no

approach achieves a negligible false positive rate on complex scenes without missing faces.

With multiple shape classes an additional level of complexity is introduced and subtle confusions

between classes must be resolved in addition to false positives due to background clutter.

Invariant indexing, or simply invariance, will mean a null false negative rate during indexing,

i.e., the list of reported instantiations is certain to contain the actual ones. Discrimination will

refer to false positive error – the extent to which we fantasize in our zeal to find everything. We

regard invariance as a hard constraint. Generally, parameters of an algorithm can be adjusted

to achieve near-invariance at the expense of discrimination. The important tradeoff is then

discrimination vs computation.

Hypothetically, one could achieve invariance and high discrimination by looking separately

for every class at every possible pose (“templates for everything”). Needless to say, with a large

number of possible class/pose pairs, this would be extremely costly, and massive parallelism is

not the answer. Somehow we need to look for many things at once, which seems at odds with

achieving high discrimination.

Such observations lead naturally to organizing multi-class shape detection as a coarse-to-fine

(CTF) computational process. Begin by efficiently eliminating entire subsets of class/pose pairs

simultaneously (always maintaining invariance) at the expense of relatively low discrimination.

From the point of view of computation, rejecting many explanations at once with a single,

relatively inexpensive “test” is clearly efficient; after all, given an arbitrary subimage, the most

likely hypothesis by far is “no shape of interest” or “background,” and initially testing against

this allows for early average termination of the search. If “background” is not declared, proceed

to smaller class/pose subsets at higher levels of discrimination, and finally entertain highly

discriminating procedures but dedicated to specific classes and poses. Accumulated false positives

are eventually removed by more intense, but focused, processing. In this way, the issue of

computation strongly influences the very development of the algorithms, rather than being an

afterthought.

A natural control parameter for balancing discrimination and computation is the degree of
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invariance of local features, not in the sense of fine shape attributes, such as geometric singu-

larities of curves and surfaces, but rather coarse, generic features which are common in a set

of class/pose pairs. “Spread features” ([1], [3], [8]) provide a simple example: a local feature is

said to be detected at a given location if the response of the feature detector is strong enough

anywhere nearby. The larger the spreading (degree of local OR’ing), the higher the incidence

on any given ensemble of classes and poses, and checking for a certain number of distinguished

spread features provides a simple, computationally efficient test for the ensemble. During the

computational process, the amount of spreading is successively diminished.

Interpretation

The outcome of indexing is a collection of instantiations - class/pose pairs. No contextual

information, such as structural or semantic constraints, has been employed. In particular, some

instantiations may be inconsistent with prior information about the scene layout. Moreover,

several classes will often be detected at roughly the same location due to the insistence on

minimizing false negatives. In this paper, the passage from indexing to interpretation is largely

based on taking into account prior knowledge about the number of shapes and the manner

in which they are spatially arranged. Assuming shapes do not overlap, a key component of

this analysis is a competition among shapes or sequences of shapes covering the same image

region, for which we employ a likelihood ratio test motivated by our statistical model for local

features. Since a relatively small number of candidate instantiations are ever involved, it is also

computationally feasible to bring finer features into play, as well as template-matching, contextual

disambiguation and other intensive procedures.

New directions

We explore three new directions:

• Multiple Shape Classes: Our previous work concerned coarse-to-fine (CTF) representations

and search strategies for a single shape or object class, and hence based entirely on pose

aggregation. We extend this to hierarchies based on recursively partitioning both class and

pose.

• Contextual Analysis: With multiple classes, testing one specific (partial) interpretation

against another is eventually unavoidable, which means we need efficient, online tests for
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competing hypotheses. In particular, we derive online tests based on local features for

resolving one specific hypothesis (a character at a given pose) against another.

• Model-Based Framework: We introduce a statistical model for the local features which

provides a unifying framework for the algorithms employed in all stages of the analysis,

and which allows us to mathematically analyze the role of “spread features” in balancing

discrimination and computation during coarse-to-fine indexing.

These ideas are illustrated by attempting to read the characters appearing on license plates.

Surprisingly, perhaps, there does not seem to be any published literature apart from patents.

Several systems appear to be implemented in the US and Europe. For example in London cars

entering the metropolitan area are identified in order to charge an entrance fee, and in France the

goal is to estimate the average driving speed between two points. We have no way to assess the

performance of these implementations. Our work was motivated by the problem of identifying

cars entering a parking garage, for which current solutions still fall short of commercial viability,

mainly due to the high level of clutter and variation in lighting. It is clear that for any specific task

there are likely to be highly dedicated procedures for improving performance, for example only

reporting plates with identical matches on two different photos, taken at the same or different

times. Our goal instead is a generic solution which could be easily adapted to other OCR

scenarios and to other shape categories, and eventually to three-dimensional objects. In particular,

we do not use any form of traditional, bottom- up segmentation in order to identify candidate

regions or jump start the recognition process. There are many well-developed techniques of this

kind in the document analysis literature which are rather dedicated to specific applications; see

for example the review [24] or the work in [19].

Related work on visual attention, CTF search, hierarchical template- matching and local

OR’ing is surveyed in the following section. Our formulation of multi-class shape detection is

given in §III, followed in §IV by a brief overview of the computational strategy. The statistical

model for the local features is described in §V, leading to a natural likelihood ratio test for an

individual detection. Efficient indexing is the theme of §VI-§VIII. The spread local features are

introduced in §VI, including a comparison of spreading versus two natural alternatives – summing

them and downsampling – and the discrimination/computation tradeoff is studied under a simple

statistical model. How tests are learned from data and organized into a CTF search are discussed

in §VII and §VIII respectively. In §IX we explain how an interpretation of the image is derived
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from the output of the indexing stage. The application to reading license plates, including the

contextual analysis, is presented in §X and we conclude with a discussion of our approach in

§XI.

II. RELATED WORK

Focus-of-Attention: The division of the system into indexing followed by global interpretation

is motivated by computational efficiency. More generally, our indexing phase is a way of

focusing attention, which is studied in both computer vision and in modeling biological vision.

The purpose is to focus subsequent, detailed processing on a small portion of the data. Two

frameworks are usually considered: task-independent, bottom-up control based on the “saliency”

of visual stimuli (see e.g., [16], [20], [28], [27]); and task-driven, top-down control (see e.g.,

[3], [25], [35], [36]). Our approach is essentially top-down in that attention is determined by

the shapes we search for, although the coarsest tests could be interpreted as generic saliency

detectors.

CTF Search: CTF object recognition is scattered throughout the literature. For instance, transla-

tion based versions can be found in [31], [17] and work on distance matching ([32]). The version

appearing in [12] pre-figures our work. Related ideas on dealing with multiple objects can be

found in [2]. In addition, CTF search motivated the face detection algorithm in [3] and was

systematically explored in [8] based on a nested hierarchy of pose bins (and CTF in complexity

within bins) and in [7] based on an abstract theoretical framework. Variations have also been

proposed in [33] and [36]: whereas most poses are explicitly visited, computational efficiency

is achieved by processing which is CTF in the sense of progressively focusing on hard cases.

Whatever the particular CTF mechanism, the end result is that intensive processing is restricted

to a very small portion of the image data, namely those regions containing actual objects or

object-like clutter. Work on efficient “indexing” based on geometric hashing ([18]) and Hough

transforms ([14], [30]) is also related.

Context: The issue of context is central to vision and several distinct approaches can be discerned

in the literature. In ours, context refers to structural rather than semantic relationships; indexing

is entirely non-contextual and is followed by global interpretation in conjunction with structural

constraints. In contrast, all scene attributes are discovered simultaneously in the compositional

approach ([13]), which provides a powerful method for dealing with context and occlusion, but
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involves formulating interpretation as global optimization, raising computational issues. Other

work involves “contextual priming” ([34]) to overcome poor resolution by starting interpretation

with an estimate of semantic context based on low-level features. Context can also be exploited

([6]) to provide local shape descriptors.

Natural Vision: There are strong connections between spreading local features and neural

responses in the visual cortex. Responses to oriented edges are found primarily in V1, where so-

called “simple” cells detect oriented edges at specific locations, whereas “complex” cells respond

to an oriented edge anywhere in the receptive field; see [15]. In other words local “OR’ing”

is performed over the receptive field region and the response of a complex cell can thus be

viewed as a “spread edge.” Because of the high density of edges in natural images, the extent of

spreading must be limited; too much will produce responses everywhere. Neurons in higher level

retinotopic layers V2 and V4 exhibit similar properties, inspiring the work in [9] and [10] about

designing a neural-like architecture for recognizing patterns. In [1] and [4] spreading of more

complex features is incorporated into a neural architecture for invariant detection. An extension

to continuous-valued variables can be achieved with a ‘MAX’ operation, a generalization of

OR’ing, as proposed in [29].

Hierarchical Template Matching: Recent work on hierarchical template matching using dis-

tance transforms, such as [11], is related to ours in several respects even though we are not

doing template-matching per se. Local OR’ing as a device for gaining stability can be seen as a

limiting, binary version of distance transforms such as the Chamfer distance ([5]). In addition,

there is a version of CTF search in [11] (although only translation is considered based on

multiple resolutions) which still has much in common with our approach, including edge features,

detecting multiple objects using a class hierarchy and imposing a running null false negative

constraint. Another approach to edge-based, multiple object detection appears in [26].

Local Features: Finally, in connection with spreading local features, another mechanism has

been proposed in [22] that allows for affine or 3D viewpoint changes or non-rigid deformations.

The resulting “SIFT descriptor”, based on local histograms of gradient orientations, characterizes

a neighborhood (in the Gaussian blurred image) around each individual detected key point,

which is similar to “spreading” the gradients over a 4x4 region. A detailed comparison of the

performance of SIFT with other descriptors can be found in [23]
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Fig. 1. Two images of back side of car from which license plate is read

III. SHAPE DETECTION

Consider a single, grey level image. In particular, there is no information from motion, depth or

color. We anticipate a large range of lighting conditions, as illustrated in Figure 1 (see also Figure

5), as well as a considerable range of poses at which each shape may be present. Moreover,

we anticipate a complex background consisting partly of extended structures, such as clutter

and non-distinguished shapes, which locally may appear indistinguishable from the shapes of

interest.

Let I = {I(z), z ∈ Z} be the raw intensity data on the image lattice Z. Each shape of

interest has a class c ∈ C and each instantiation (presentation in I) is characterized by a pose

θ ∈ Θ. Broadly speaking, the pose θ represents (“nuisance”) parameters which at least partially

characterize the instantiation. For example, one component of the pose of a printed character

might be the font. In some contexts, one might also consider parameters of illumination. For

simplicity, however, we shall restrict our discussion to the geometric presentation, and specifically

(in view of the experiments on license plates) to position, scale and orientation. Much of what

follows extends to affine and more general transformations; similarly, it would not be difficult

to accommodate parameters such as the font of a character.

For a pose θ, let z(θ) be the translation, σ(θ) the scale and ρ(θ) the rotation. Denote by θ0

the identity pose, namely z(θ0) = ρ(θ0) = 0 and σ(θ0) = 1, and by R a reference sub-lattice of

the full image lattice Z such that any shape at θ0 fits inside R. For any subset F of Z let

F (θ) = {z ∈ Z : θ−1z ∈ F}.

In particular, R(θ) is the “support” of the shape at pose θ.
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The set of possible interpretations for an image I is

Y =
K
⋃

k=1

(C × Θ)k

where, obviously, K represents the maximum number of shapes in any given layout. Thus

each interpretation has the form y = {(c1, θ1), · · · , (ck, θk)}. The support of an interpretation is

denoted

R(y) = ∪k
i=1R(θk).

We write y∗ for the true interpretation, and assume it is unambiguous, i.e., y∗ = y∗(I).

Prior information will provide some constraints on the possible lists; for instance, in the case

of the license plates we know approximately how many characters there are and how they are laid

out. In fact, it will be useful to consider the true interpretation to be a random variable, Y , and to

suppose that knowledge about the layout is captured by a highly concentrated prior distribution

on Y . Most interpretations have mass zero under this distribution and many interpretations in

its support, denoted by Yπ = {y ∈ Y : π(y) > 0} have approximately the same mass. Indeed

for simplicity we will assume that the prior is uniform on its support Yπ.

IV. OVERVIEW OF THE COMPUTATIONAL STRATEGY

What follows is summary of the overall recognition strategy. All of the material from this

point to the experiments pertains to one of four topics:

Statistical Modeling: The gray level image data I is transformed into an array of binary local

features X(I) which are robust to photometric variations. For simplicity we use eight oriented

edge features (§V), but the entire construction can be applied to more complex features, for

example functions of the original edges (see §XI). We introduce a likelihood model P (X|Y = y)

for X(I) given an image interpretation Y = y. This model motivates the definition of an image-

dependent set D(X) ⊂ C × Θ of detections, called an index, based on likelihood ratio tests.

According to the invariance constraint, the tests are performed with no missed detections (i.e.

null type I error), which in turn implies that Y ⊂ D with probability one (at least in principle).

However, direct computation of D is highly intensive due to the loop over class/pose pairs.

Efficient Indexing: The purpose of the CTF search is to accelerate the computation of D. This

depends on developing a “test” T B for an entire subset B ⊂ C × Θ whose complexity is of
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the order of the test for a single pair (c, θ) but which nonetheless retains some discriminating

power; see §VI. The set D ∩ B is then found by performing TB first and then exploring the

individual hypotheses in B one-by-one only if TB is positive. This two-step procedure is then

easily extended (in §VIII) to a full CTF search for the elements of D, and the computational

gain provided by the CTF can be estimated.

Spreading Features: The key ingredient in the construction of TB is the notion of a “spread

feature” based on local OR’ing. Checking for a minimum number of spread features provides a

test for the hypothesis Y ∩ B 6= ∅. The same spread features are used for many different bins,

thus pre-computing them at the start yields an important computational gain. In the Appendix the

optimal domain of OR’ing, in terms of discrimination, is derived under the proposed statistical

model and some simplifying assumptions.

Global Interpretation: The final phase is choosing an estimate Ŷ ⊂ D. A key step is a

competition between any two interpretations y, y ′ ⊂ D for which R(y) ∼ R(y′), i.e., which

cover the same image region. The sub-interpretations must satisfy the prior constraints, namely

y, y′ ∈ Yπ; see §IX. A special case of this process is a competition between single detections

with different classes but very similar poses. (We assume a minimum separation between shapes,

in particular no occlusion.) The competitions once again involve likelihood ratio tests based on

the local feature model.

V. DATA MODEL

We describe a statistical model for the possible appearances of a collection of shapes in an

image as well as a crude model for “ background,” i.e., those portions of the image which do

not belong to shapes of interest.

A. Edges

The image data is transformed into arrays of binary edges, indicating the locations of a small

number of coarsely-defined edge orientations. We use the edge features defined in [3], which

more or less take the local maxima of the gradient in one of four possible directions and two

polarities. These edges have proven effective in our previous work on object recognition; see [2]

and [8]. There is a very low threshold on the gradient; as a result, several edge orientations may

be present at the same location. However, these edge features have three important advantages:
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they can be computed very quickly; they are robust with respect to photometric variations; and

they provide the ingredients for a simple “background” model based on labeled point processes.

More sophisticated edge extraction methods can be used [21], although at some computational

cost. In addition, more complex features can be defined as functions of the basic edges, thus

decreasing their background density and increasing their discriminatory power (see [2]), and

in such a way that makes the assumed statistical models more credible. For transparency we

describe the algorithm and report experiments with the simple edge features.

Although the statistical models below are described in terms of the edges arrays, implicitly

they determine a natural model for the original data, namely uniform over intensity arrays giving

rise to the same edges. Still, we shall not be further concerned with distributions directly on I .

Let Xγ(z) be a binary variable indicating whether or not an edge of type γ ∈ Γ is present

at location z ∈ Z. The type γ represents the orientation and polarity. The resulting family of

binary maps – transformed intensity data – is denoted by X = X(I) = {Xγ(z)}γ,z. We still

assume that Y = Y (X), i.e. Y is uniquely determined by the edge data.

B. Probability Model

To begin with, we assume the random variables {Xγ(z), γ ∈ Γ, z ∈ Z} are conditionally

independent given Y = y. We offer two principal “justifications” for this hypothesis as well as

an important drawback:

1) Conditioning: In general, the degree of class-conditional independence among typical

local features depends strongly on the amount of information carried in the “pose” θ -

the more detailed the description of the instantiation, the more decoupled the features. In

the case of printed characters, most of the relevant information (other than the font) is

captured by position, scale and orientation.

2) Simplicity: In a Bayesian context, conditional independence leads to the “naive Bayes

classifier,” a major simplification. When the dimensionality of the features is “large” relative

to the amount of training data favoring simple over complex models (and hence sacrificing

modeling accuracy) may be ultimately advantageous in terms of both computation and

discrimination.

3) Drawback: The resulting “background model” is not realistic. The background is a highly

complex mixture model in which nearby edges are correlated due to clutter consisting
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of parts of occluded objects and other non-distinguished structures. In particular, the

independence assumption renders the likelihood of actual “background” data (see (4)) far

too small, and this in turn leads to the traditional MAP estimator Ŷmap being unreliable.

It is for this reason that we will not attempt to compute Ŷmap. Instead, we base the

upcoming likelihood ratio tests on thresholds corresponding to a fixed missed detection

rate learned from data, either by estimating background correlations or test statistics under

shape hypotheses.

For any interpretation y = {(ci, θi)} ∈ Yπ, we assume the shapes have non-overlapping

supports, i.e. R(θi) ∩ R(θj) = ∅, i 6= j. Decompose the image lattice into Z = R(y) ∪ R(y)c.

The region R(y)c represents “background”. Of course the image data over R(y) c may be quite

complex due to clutter and other regular structures, such as the small characters and designs

which often appear on license plates. It follows that

P (X|Y = y) = P (XR(y)c)|Y = y)
k

∏

i=1

P (XR(θi)|Y = y) (1)

where we have written XU for {Xγ(z), γ ∈ Γ, z ∈ U} for a subset U ⊂ Z.

We assume that the conditional distribution of the data over each R(θi) depends only on

(ci, θi), and hence the distribution of XR(θi) is characterized by the product of the individual

(marginal) edge probabilities

P (Xγ(z) = 1|ci, θi), z ∈ R(θi) (2)

where we have written P (...|ci, θi) to indicate conditional probability given the event {(ci, θi) ∈

Y }. Notice that (2) is well- defined due to the assumption of non-overlapping supports.

For ease of exposition we choose a very simple model of constant edge probabilities on

a distinguished, class- and pose-dependent set of points. The ideas generalize easily to the

case where the probabilities vary with type and location. Specifically, we make the following

approximation: for each class c and for each edge type γ there is a distinguished set Gγ,c ⊂ R

of locations in the reference grid at which an edge of type γ has high relative likelihood when

shape c is at the reference pose (see Figure 2 (a)). In other words, Gγ,c is a set of “model

edges.” Furthermore, given shape c appears at pose θ, the probabilities of the edges at locations
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zi

θ−1

(a) (b)
Ghor,5(θ)Ghor,5

zi + Vhor

zi

Sample five
(e)

Ghor(B)
(d)

Ghor(B)
(c)

Fig. 2. (a) The horizontal edge locations in the reference grid, Ghor,5. (b) Edges in the image for one pose, Ghor,5(θ). (c) The

model edges, Ghor(B), for the entire pose bin B = {5} × Θ0. (d) A partition of Ghor(B) into disjoint regions of the form

z+Vhor. (e) The locations (black points) of actual edges and the domain of local OR’ing (grey strip), resulting in Xspr(zi) = 1.

z ∈ R(θ) are given by:

P (Xγ(z) = 1|c, θ) =







p if z ∈ Gγ,c(θ) (i.e. θ−1z ∈ Gγ,c)

q otherwise

where p >> q. Finally we assume the existence of a “background” edge frequency which is the

same as q.

¿From (1) and (2), the full data model is then

P (X|Y = y) =
∏

γ∈Γ

∏

z∈R(y)c

qXγ(z)(1 − q)1−Xγ(z)

×
k

∏

i=1

(

∏

z∈Gγ,ci
(θi)

pXγ(z)(1 − p)1−Xγ(z)
∏

z∈R(θi)\Gγ,ci
(θi)

qXγ(z)(1 − q)1−Xγ(z)

)

(3)

Under this model the probability of the data given no shapes in the image is

P (X|Y = ∅) =
∏

γ∈Γ

∏

z∈Z

qXγ(z)(1 − q)1−Xγ(z). (4)

VI. INDEXING: SEARCHING FOR INDIVIDUAL SHAPES

Indexing refers to compiling a list D(I) of class/pose candidates for an image I without

considering global constraints. The model described in the previous section motivates a very

simple procedure for defining D based on likelihood ratio tests. The snag is computation -

compiling the list by brute force computation is highly inefficient. This motivates the introduction

of “spread edges” as a mechanism for accelerating the computation of D.
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A. Likelihood Ratio Tests

Consider a non-null interpretation y = {(c1, θ1), ..., (ck, θk)} ∈ Yπ. We are going to compare

the likelihood of the edge data under Y = y to the likelihood of the same data under Y = ỹ where

ỹ is the same as y except that one of the elements is replaced by the background interpretation,

say ỹ = {(c2, θ2), ..., (ck, θk)}. Then using (3) and cancellation outside Gγ,c1(θ1):

P (X|Y = y)

P (X|Y = ỹ)
=

∏

γ

∏

z∈Gγ,c1 (θ1)

(

p

q

)Xγ(z) (

1 − p

1 − q

)1−Xγ(z)

(5)

This likelihood ratio simplifies:

log
P (X|Y = y)

P (X|Y = ỹ)
=

∑

γ

∑

z∈Gγ,c1 (θ1)

αXγ(z) − β

where

α = log
p(1 − q)

(1 − p)q
and β = log

1 − q

1 − p

and the resulting statistic only involves edge data relevant to the class pose pair (c1, θ1).

The log likelihood ratio test at zero type I error relative to the null hypothesis (c, θ) ∈ Y (i.e.,

for class c at pose θ) reduces to a simple, linear test – evaluating

Tc,θ(X)
.
= 1 (Jc,θ(X) > τc,θ) =







1 if Jc,θ(X) > τc,θ

0 otherwise

where

Jc,θ(X)
.
=

∑

γ

∑

z∈Gγ,c(θ)

Xγ(z) (6)

and the threshold τc,θ is chosen such that P (Tc,θ(X) = 0|c, θ) = 0. Note that the sum is over a

relatively small number of features, concentrated around the contours of the shape, i.e. on the

set Gγ,c(θ). We therefore seek the set D(I) of all pairs (c, θ) for which Tc,θ(X) = 1. Notice that

P (Y ⊂ D) = 1.

Bayesian Inference: Maintaining invariance (no missed detections) means that we want to

perform the likelihood ratio test in (5) with no missed detections. Of course computing the actual

(model-based) threshold which achieves this is intractable and hence it will be estimated from

training data; see §VII. Notice that threshold of unity in (5) would correspond to a likelihood

ratio test designed to minimize total error; moreover, (c1, θ1) ∈ Ŷmap implies that the ratio in

(5) must exceed unity. However, due to the severe underestimation of background likelihoods
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(due to the independence assumption), taking a unit threshold would result in a great many false

positives. In other words, the thresholds that arise from a strict Bayesian analysis are far more

conservative than necessary to achieve invariance. It is for these reasons that the model motivates

our computational strategy rather than serving as a foundation for Bayesian inference.

B. Efficient Search

We begin with purely pose-based subsets of C × Θ. Fix c, let Θ0 be a neighborhood of

the identity pose θ0 and put B = {c} × Θ0. Suppose we want to find all θ ∈ Θ0 for which

Tc,θ(X) = 1. We could perform a brute force search over the set Θ0 and evaluate Jc,θ for each

element. Generally, however, this procedure will fail for all elements in B since the background

hypothesis is statistically dominant (relative to B). Therefore it would be preferable to have

a computationally efficient binary test for the compound event B. If that test fails there is no

need to perform the search for individual poses. For simplicity we assume that either the image

contains only one instance from B - HB, or no shape at all - H∅.

The test for HB vs. H∅ will be based on a thresholded sum of a moderate number of binary

features, approximately the same number as in equation (6). The test should be computationally

efficient (hence avoid large loops and online optimization) and have a reasonable false positive

rate at very small false negative rate. Note that the brute force search through B can be viewed

as a test for the above hypothesis of the form

T brute
B (X) =







1 if maxθ∈Θ0 Tc,θ(X) = 1

0 otherwise

Let Gγ(B) denote the set of image locations z of all model edges of type γ for the poses in

B:

Gγ(B) =
⋃

θ∈Θ0

Gγ,c(θ). (7)

This is shown in Figure 2 (c) for the class c = 5 for horizontal edges of one polarity and a set

of poses Θ0 consisting of small shifts and scale changes. Roughly speaking, Gγ(B) is merely a

“thickening” of the γ-portion of the boundary of a template for class c.
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C. Sum Test

One straightforward way to construct a bin test from the edge data is simply to sum all the

detected model edges for all the poses in B, namely to define

Jsum
B

.
=

∑

θ∈Θ0

Jc,θ(X) =
∑

γ

∑

θ∈Θ0

∑

z∈Gγ,c(θ)

Xγ(z) =
∑

γ

∑

z∈Gγ(B)

Xγ(z)

The corresponding test is then

T sum
B = 1 (Jsum

B > τ sum
B ) (8)

meaning of course that we choose HB if T sum
B = 1 and choose H∅ if T sum

B = 0. The threshold

should satisfy

P (T sum
B (X) = 0|HB) = 0.

The discrimination level of this test (i.e. false positive rate or type II error)

δsum
B = P (T sum

B (X) = 1|H∅).

We would not expect this test to be very discriminating. A simple computation shows that,

under HB , the probabilities of Xγ(z) = 1 for z ∈ Gγ(B), are all on the order of the background

probabilities q. Consequently, the null type I error constraint can only be satisfied by choosing a

relatively low threshold τ sum
B , in which case δsum

B might be rather large. In other words, in order

to capture all the shapes of interest, we would need to allow many configurations of clutter (not

to mention other shapes) to pass the test. This observation will be examined more carefully later

on.

D. Spread Test

A more discriminating test for B can be constructed by replacing
∑

Gγ(B) Xγ(z) by a smaller

sum of “spread edges” in order to take advantage of the fact that, under H B, we know approx-

imately how many on-shape edges of type γ to expect in a small subregion of Gγ(B). To this

end, let Vγ be a neighborhood of the origin whose shape may be adapted to the feature type γ.

(For instance, for a vertical edge γ, Vγ might be horizontal strip.) Eventually the size of Vγ will

depend on the size of B, but for now let us consider it fixed. For each γ and z ∈ Z, define the

spread edge of type γ at location z to be

Xspr
γ (z) = max

z′∈z+Vγ

Xγ(z
′)

April 9, 2004 DRAFT



17

Thus if an edge of type γ is detected anywhere in the Vγ-shaped region “centered” at z it is

recorded at z. (See Figure 2 (e).) Obviously, this corresponds to a local disjunction of elementary

features. The spread edges Xspr = Xspr(I) = {Xspr
γ (z)}γ,z are pre-computed and stored. Define

also Xsum
γ (z) =

∑

z′∈z+Vγ
Xγ(z

′).

Let zγ,1, ..., zγ,n be a set of locations whose surrounding regions zγ,i + Vγ “fill” Gγ(B) in the

sense that the regions are disjoint and
n

⋃

i=1

(zγ,i + Vγ) ⊂ Gγ(B).

(See Figure 2 (d).) To further simplify the argument, just suppose these sets coincide; this can

always be arranged up to a few pixels. In that case, we can rewrite J sum
B as

Jsum
B =

∑

γ

∑

Gγ(B)

Xγ(z) =
∑

γ

n
∑

i=1

Xsum
γ (zγ,i).

Now replace Xsum
γ (zγ,i) by Xspr

γ (zγ,i). The corresponding bin test is then

T spr
B = 1 (Jspr

B > τ spr
B ) where Jspr

B =
∑

γ

n
∑

i=1

Xspr
γ (zγ,i) (9)

and τ spr
B satisfies

P (T spr
B (X) = 0|HB) = 0.

The false positive rate is

δspr
B = P (T spr

B (X) = 1|H∅).

E. Comparison

Both T sum
B and T spr

B require an implicit loop over the locations in GB . The exhaustive test

T brute
B requires a similar size loop (somewhat larger since the same location can be hit twice

by two different poses). However there is an important difference: the features X spr and Xsum

can be computed offline and used for all subsequent tests. They are reusable. Thus the tests

T spr
B , T sum

B are significantly more efficient than Tbrute
B . Since all tests are invariants for B (i.e.,

have null type I error for HB vs H∅), the key issue is really one of discrimination - comparing

δsum
B with δspr

B . Notice that as |Vγ| increases, the probability of occurrence of the features X spr
γ (z)

increases, both conditional on HB and conditional on H∅. As a result, the effect of spreading

on false positive rate is not entirely obvious.
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Henceforth we only consider rectangular sets V s,k
γ , which are of length s in the direction

orthogonal to the edge orientation and of length k in the parallel direction. (See Figures 2 (d),(e)

and Figure 12 (b),(d).) Note that T sum
B = T spr

B if we take regions V 1,1
γ , i.e. regions of just one

pixel. Assume now that the set Gγ(B) has more or less fixed width `.

In the Appendix we show, under simplifying assumptions, that:

The test T spr
B with regions V `,1

γ is the most discriminating over all possible combinations s, k.

In other words the smallest δspr
B is achieved with s = `, k = 1, and hence the optimal choice

for Vγ is a single-pixel strip whose orientation is orthogonal to the direction of the edge type

γ and whose length roughly matches the width of the extended boundary Gγ(B). This result

is very intuitive: Spreading - as opposed to summing - over a region z + V `,1
γ that can contain

at most one shape edge for any instantiation in B prevents off-shape edges from contributing

excessively to the total sum. Note that if q = 0, i.e. no off-shape edges appear, then the two

tests are identical.

For future use, for a general spread length s, let X s
γ(z) = maxz′∈z+V s,1

γ
Xγ(z

′). Also T spr
B now

refers to the optimal test using regions V `,1
γ .

F. Spreading vs. Downsampling

A possible alternative for a bin test could be based on the same edge features, computed on

blurred and downsampled versions of the original data. This approach is very common in many

algorithms and architectures; see, for example, the successive downsampling in the feedforward

network of [19], or the jets proposed in [37]. Indeed, low resolution edges do have higher

incidence at model locations, but they are still less robust than spreading at the original resolution.

The blurring operation smooths out low-contrast boundaries and the relevant information gets

lost. This is especially true for real data such as that shown in Figure 5 taken at highly varying

contrasts and lighting conditions. As an illustration we took a sample of the ‘A’ and produced

100 random samples from a pose bin involving shifts of ± 2 pixels, rotations of ± 10 degrees,

and scaling in each axis of ± 20%; see Figure 3(a). With spread 1 in the original resolution

plenty of locations were found with high probability. For example in Figure 3(b) we show a

probability map of a vertical edge type at all locations on the reference grid, darker represents

higher probability. Alongside is a binary image indicating all locations where the probability

was above .7. In Figure 3(c) the same information is shown for the same vertical edge type from
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(a) (b) (c)

Fig. 3. (a) A sample of the population of A’s. (b) Probability maps of a vertical edge type on the population of ‘A’s alongside

locations above probability .7. (c) Probability maps of a vertical edge type on the population of ‘A’s blurred and downsampled

by 2, alongside locations above probability .7.

the images blurred and downsampled by 2. The probability maps were magnified by a factor

of 2 to compare to the original scale. Note that many fewer locations are found of probability

over .7. The structures on the right leg of the ‘A’ are unstable at low resolution. In general the

probabilities at lower resolution without spread are lower than the probabilities at the original

resolution with spread 1.

G. Computational Gain

We have proposed the following two-step procedure. Given data X , first compute the Tspr
B ; if

the result is negative, stop, and otherwise evaluate Tc,θ for each c, θ ∈ B. This yields a set DB

which must contain Y ∩ B; moreover, either DB = ∅ or DB = D ∩ B.

It is of interest to compare this “CTF” procedure to directly looping over B, which by definition

results in finding D ∩ B. Obviously the two-step procedure is more discriminating since DB ⊂

D∩B. Notice that the degree to which we overestimate Y ∩B will affect the amount of processing

to follow, in particular the number of pairwise comparison tests that must be performed for

detections with poses too similar to co-exist in Y .

As for computation, we make two reasonable assumptions: (i) mean computation is calculated

under the hypothesis H∅. (Recall that the background hypothesis is usually true.) (ii) the test

T spr
B has approximately the same computational cost, say β, as Tc,θ. i.e., checking for a single

hypothesis (c, θ). As a result, the false positive rate of T spr
B is then δspr

B . Consequently, direct

search has cost |B|β whereas the two-step procedure has (expected) cost β + δspr
B × |B|β.

Measuring the computational gain by the ratio gives

gain =
|B|

1 + δspr
B |B|
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which can be very large for large bins. In fact, typically δspr
B � 0.5, so that we gain even if B

has only two elements.

There is some extra cost in computing the features X spr relative to simply detecting the original

edges X . However since these features are to be used in many tests for different bins, they are

computed once and for all a priori and this extra cost can be ignored. This is an important

advantage of re-usability - the features that have been developed for the bin test can be reused

in any other bin test.

VII. LEARNING BIN TESTS

We describe the mechanism for determining a test for a general subset B of C × Θ. Denote

by ΘB and CB , respectively, the sets of all poses and classes found in the elements of B. From

here on all tests are based on spread edges. Consequently, we can drop the superscript spr and

simply write TB , τB , etc.

For a general bin B, according to the definitions of Gγ(B) in (7) and TB in (9), we need

to identify Gγ,c(θ) for each γ ∈ Γ, (c, θ) ∈ B; the locations zi and the extent s of the spread

edges appearing in JB; and the threshold τB . In testing individual candidates B = {c, θ} using

(6), there is no spread and the points zi are given by the locations in Gγ,c(θ). These in turn can

be directly computed from the distinguished sets Gγ,c which we assume are derived from shape

models, e.g., shape templates. In some cases the structure of B is simple enough that we can

do everything directly from the distinguished “model” sets G γ,c. This is the procedure adopted

in the plate experiments (see §X-A).

In other cases identifying all (c, θ) ∈ B, and computing Gγ(B), can be difficult. It may be

more practical to directly learn the distinguished spread edges from a sample LB of subimages

with instantiations from B. Fix a minimum probability ρ, say ρ = 0.5. Start with spread s = 1.

Find all pairs (γ, z), γ ∈ Γ, z ∈ ∪θ∈ΘB
R(θ) such that P̂ (Xs

γ(z) = 1|HB) > ρ, where P̂ denotes

an estimate of the given probability based on the training data LB . If there are more than some

minimum number N of these, we consider them a preliminary pool from which the zi’s will

be chosen. Otherwise, take s = 2 and repeat the search, and so forth, allowing the spread to

increase up to some value smax.

If fewer than N such features with frequency at least ρ are found at smax, we declare the bin

to be too heterogeneous to construct an informative test. In this case, we assign the bin B the
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trivial test TB ≡ 1, which is passed by any data point. If, however, N features are found, we

prune the collection so that the spreading regions of any two features are disjoint.

This procedure will yield a spread s = s(B) and a set of feature/location pairs, say (γ, z) ∈ FB ,

such that the spread edge Xs
γ(z) has (estimated) probability at least ρ of being found on an

instantiation from the bin population. The basic assumption is that, with a reasonable choice of

ρ and N , the estimated spread s(B) will more or less correspond to the width of the set GB .

Our bin test is then

TB = 1 (JB > τB) , where JB =
∑

(γ,z)∈FB

Xs
γ(z)

and τB is the threshold which has yet to be determined.

Estimating τB is delicate, especially in view of our “invariance constraint” P (T B = 0|HB) ≈ 0,

which is severe, and somewhat unrealistic, at least without massive training sets. There are

several ways to proceed. Perhaps the most straightforward is to estimate τB based on LB: τB is

the minimum value observed over LB, or some fraction thereof to insure good generalization.

This is what is done in [8] for instance.

An alternative is to use a Gaussian approximation to the sum and determine τB based on

the distribution of JB on background. Since the variables {X s
γ(z), (γ, z) ∈ FB} are actually

correlated on background, we estimate a background covariance matrix C s whose entries are the

covariances between Xs
γ(z) and Xs

γ′(z + dz) under H∅ for a range of displacements |dz| < 4s.

The matrices Cs are then used to determine τB for any B as follows. First, estimate the marginal

probabilities P (Xs
γ(z) = 1|H∅) based on background samples; call this estimate qs

γ , which allows

for γ-dependence but is of course translation-invariant. The mean and variance of J s
B are then

estimated by

µB,∅ =
∑

(γ,z)∈FB

qs
γ , and σ2

B,∅ =
∑

(γ,z)∈FB

∑

(γ′ ,z′)∈FB

|z−z′|<4s

qs
γq

s
γ′C(γ, γ′, z − z′). (10)

Finally, we take

τB = µB,∅ + m · σB,∅

where m is, as indicated, independent of B, i.e., m is adjusted to obtain no false negatives

for every B in the hierarchy. This is possible (at the loss of some discrimination) due to the

inherent background normalization. Of course, since we are not directly controlling the false

positive error, the resulting threshold might not be in the “tail” of the background distribution.
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VIII. CTF SEARCH

The two step procedure described in §VI-B was dedicated to processing that portion of the

image determined by the bin B = {c}×Θ0. As a result of imposing translation invariance, this

is easily extended to processing the entire image in a two level search and even further to a

multi-level search.

A. Two-Level Search

Fix a small integer η and let Θcent be the set of poses θ for which |z(θ)| ≤ η. For any

B ⊂ C × Θcent and any element z ∈ Z denote by B + z the set of class/pose pairs

{(c, θ) : z(θ) = z(θ′) + z for some (c, θ′) ∈ B},

namely all poses appearing in B with positions shifted by z. Thus

Js
B+z =

∑

(γ,z′)∈FB

Xs
γ(z + z′).

Due to translation invariance we need only develop models for subsets of C ×Θcent. Let B be

a partition of C×Θcent; it is not essential that the elements of B be disjoint. In any case, assume

that for each B ∈ B a test TB(Xs) = 1 (JB(Xs) > τB) has been learned as in §VII based on a

set FB of distinguished features.

Let Zη be the sub-lattice of the full image lattice Z based on the spacing η: Zη = {(k1η, k2η)}.

Then the full set of poses is covered by shifts of the elements of B along the coarse sub-lattice:

C × Θ =
⋃

B∈B

⋃

z∈Zη

B + z.

In order to find the full index set D we first loop over all elements B ∈ B, and for each B

we loop over all z ∈ Zη and perform the test TB+z where z = (k1η, k2η). For those subsets

B + z for which TB+z = 1, we loop over all individual explanations (c, θ) and examine each

one separately based on the likelihood ratio test Tc,θ(X) described in §VI-A.

B. Multi-Level Search

The extension to multiple levels is straightforward. Let B(0),B(1), . . . ,B(M) be a sequence of

finer and finer partitions of B
.
= B(0). Each element B(m) ∈ B(m) is the union of elements in

B(m+1). Perform the same loop over shifts described above for all elements B(1). If TB+z(X) = 1
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For z ∈ Zη

m = 0.

Check(B(m), m, z).

Endfor

Function Check(B, m, z).

If (m > M ) Add B to D∗, Return.

For B′ ∈ B(m+1) such that B′ ⊂ B

If [TB′+z(X) = 1] Check(B′, m + 1, z).

Fig. 4. Pseudo-code for multi-level search.

for some B ∈ B(1) and z ∈ Zη, loop over all elements of B ′ ∈ B(2) such that B′ ⊂ B, and so

on until the finest level M . Elements of B(M) that are reached and pass their test are added to

D∗. Note that the loop over all shifts in the image is performed only on the coarse lattice at the

top level of the hierarchy. This is summarized in Figure 4.

C. Indexing

The result of such a CTF search is a set of detections (or “index”) D ∗ ⊂ C × Θ which of

course depends on the image data. More precisely, (c, θ) ∈ D∗ if and only if TB = 1 for every

B appearing in the entire hierarchy (i.e., in any partition) which contains (c, θ). In other words,

such a pair (c, θ) has been “accepted” by every relevant hypothesis test. If indeed every test in the

hierarchy had zero false negative error, then we would have Y ⊂ D∗, i.e., the true interpretation

would only involve elements of D∗. In any case, we do confine future processing to D∗.

In general D∗ and D, the set of class/pose pairs satisfying the individual hypothesis test (6),

are different. However, if the hierarchy goes all the way down to individual pairs (c, θ), then

D∗ ⊂ D. Of course, constraints on learning and memory render this difficult when C×Θ is very

large. Hence, it may be necessary to allow the finest bins B to represent multiple explanations,

although perhaps “pure” in class.

IX. FROM INDEXING TO INTERPRETATION:

RESOLVING AMBIGUITIES

We now seek the admissible interpretation y ⊂ D∗ ∩ Yπ with highest likelihood. In principle

we could perform a brute force loop over all subsets of D∗ ∩ Yπ. But this can be significantly

simplified.
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Let y = (y1, y2), where y1, y2 are two admissible interpretations whose concatenation gives

y, and similarly let y′ = (y′
1, y

′
2). Assume that y1 = y′

1 and that the supports of the two

interpretations y, y′ are the same, i.e., R(y) = R(y′), which implies that R(y2) = R(y′
2).

Then, due to cancellation over the background and over the data associated with y1, it follows

immediately from (3) that

P (X|Y = y)

P (X|Y = y′)
=

P (XR(y2)|Y = y2)

P (XR(y2)|Y = y′
2)

.

A. Individual Shape Competition

In the equation above if the two interpretations y, y ′ differ by only one shape, i.e., if y2 =

(c2, θ2) and y′
2 = (c′2, θ

′
2), then the assumptions imply that θ2 ∼ θ′2. Thus we need to compare

the likelihoods on the two largely overlapping regions R(θ2) and R(θ′2). This suggests that an

efficient strategy for disambiguation is to begin the process by resolving competing detections

in D∗ with very similar poses.

Different elements of D∗ may indeed have very similar poses; after all, the data in a region

can pass the sequence of tests leading to more than one terminal node of the CTF hierarchy. In

principle one could simply evaluate the likelihood of the data given each hypothesis and take the

largest. However, the estimated pose may not be sufficiently precise to warrant such a decision,

and such straightforward evaluations tend to be sensitive to background noise. Moreover we

are still dealing with individual detections and the data considered in the likelihood evaluation

involves only the region R(θ), which may not coincide with R(θ ′).

A more robust approach is to perform likelihood ratio tests between pairs of hypotheses

(c, θ), and (c′, θ′) on the region R∗ = R(θ) ∪ R(θ′), so that the data considered is the same

for both hypotheses. The straightforward likelihood ratio based on (3) and taking into account

cancellations is given by

log
P (XR∗|c, θ)

P (XR∗|c′, θ′)
=

∑

γ

[

∑

z∈Gγ,c(θ)\Gγ,c′ (θ
′)

Xγ(z) log
p

q
+ (1 − Xγ(z)) log

1 − p

1 − q

−
∑

z∈Gγ,c′ (θ
′)\Gγ,c(θ)

Xγ(z) log
p

q
+ (1 − Xγ(z)) log

1 − p

1 − q

]

(11)

B. Spreading the Likelihood Ratio Test

Notice that for each edge type γ the sums range over the symmetric difference of the edge

supports for the two shapes at their respective poses. In order to stabilize this log-ratio we restrict
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the two sums to regions where the two sets Gγ,c(θ) and Gγ,c′(θ
′) are really different as opposed

to being slight shifts of one another. This is achieved by limiting the sums to

Gγ,c(θ) − [Gγ,c′(θ
′)]s and Gγ,c′(θ

′) − [Gγ,c(θ)]
s, (12)

respectively, where for any set F ⊂ Z, we define the expanded version Fs = {z : z ∈ z′ +

Ns for some z′ ∈ F}, where Ns is a neighborhood of the origin. These regions are illustrated

in Figure 9.

C. Competition Between Interpretations

This pairwise competition is performed only on detections with similar poses θ, θ ′. It makes

no sense to apply it to detections with overlapping regions where there are large non-overlapping

areas, in which case the two detections are really not “explaining” the same data. In the

event of such an overlap it is necessary, as indicated above, to perform a competition between

admissible interpretations with the same support. The competition between two such sequences

y = (c1, θ1, . . . , ck, θk) and y′ = (c′1, θ
′
1, . . . , c

′
m, θ′m) is performed using the same log likelihood

ratio test as for two individual detections. For edge type γ and each interpretation let

Gγ,y = ∪k
i=1Gγ,ci

(θi).

The two sums in equation (11) are now performed on Gγ,y − [Gγ,y′ ]s and Gγ,y′ − [Gγ,y]
s

respectively. These regions are illustrated in Figure 10.

The number of such sub-interpretation comparisons can grow very quickly if there are large

chains of partially overlapping detections. In particular, this occurs when detections are found

that straddle two real shapes. This does not occur very frequently in the experiments reported

below, and various simple pruning mechanisms can be employed to reduce such instances.

X. READING LICENSE PLATES

Starting from a photograph of the rear of a car, we seek to identify the characters in the

license plate. Only one font is modeled - all license plates in the dataset are from the state of

Massachusetts - and all images are taken from more or less the same distance, although the

location of the plate in the image can vary significantly. Two typical photographs are shown

in Figure 1, illustrating some of the challenges. Due to different illuminations, the characters
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(a) (c) (e)

(b) (d) (f)

Fig. 5. (a),(b) The subimages extracted from the images in Fig. 1 using a coarse detector for a sequence of characters. (c)

Vertical edges from (a). (d) Horizontal edges from (b). (e) Spread vertical edges on (a). (f) Spread horizontal edges on (b).

in the two images have very different stroke widths despite having the same template. Also,

different contrast settings and physical conditions of the license plates produce varying degrees of

background clutter in the local neighborhood of the characters, as observed in the left panel. Other

variations result from small rotations of the plates and small deformations due to perspective

projection. For example the plate on the right is somewhat warped at the middle and the size

of the characters is about 25% smaller than the size of those on the left. For additional plate

images, together with the resulting detections, see Figure 11.

The plate in the original photograph is detected using a very coarse, edge-based model for a

set of six generic characters arranged on a horizontal line and surrounded by a dark frame, at

the expected scale, but at 1/4 of the original image resolution. A subimage is extracted around

the highest scoring region and processed using the CTF algorithm. If no characters are detected

in this subimage, the next highest scoring plate detection is processed and so on. In almost all

images the highest scoring region was the actual plate. In a few images some other rectangular

structure scored highest but then no characters were actually detected, so that the region was

rejected, and the next best detection was the actual plate. We omit further details because this is

not the limiting factor for this application. Subimages extracted from the two images of Figure

1 are shown in Figure 5(a),(b).

The mean spatial density of edges in the subimage then serves as an estimate for q, the

background edge probability, and we estimate qs
γ in (10) by sq. In this way, the thresholds τB

for the bin tests are adapted to the data, i.e., image-dependent. The edges and spread edges on

the extracted images in Figure 5(a),(b) are shown in Figure 5(c)-(f)).
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Fig. 6. Top: The 37 prototypes for characters in Massachusetts license plates. Bottom: The class hierarchy. Not shown is the

root and the final split into pure classes.

A. The CTF Hierarchy

Since the scale is roughly known, and the rotation is generally small, we can take Θ0 = Θcent,

defined as follows: .8 ≤ σ(θ) ≤ 1.2; |ρ(θ)| ≤ 10 degrees; |z(θ)| ≤ η = 2 (i.e., confined to a

5 × 5 window). There are 37 classes defined by the prototypes (bit maps) shown in Figure 6.

Bottom-up, binary clustering yields the pure-class hierarchy. Starting from the edge maps of

the prototypes, at every level of the hierarchy each cluster is merged with the nearest one still

available, where distance between two clusters is measured as the average Hamming distance

between any two of their elements. The hierarchy is shown in Figure 6 without the root (all

classes together) and the leaves (individual classes).

The class/pose hierarchy starts with the same structure - there is a bin B corresponding to

each CB × Θcent, where CB is a set in the class hierarchy. Each bin in the last layer is then of

the form B = {c} × Θcent and is split into 2 × 9 = 18 sub-bins corresponding to two scale

ranges ([.8, 1] and [1, 1.2]) and to nine (overlapping) 3× 3 windows inside the 5× 5 determined

by |z(θ)| ≤ 2.

The spreading is determined as in Section VII and the sets Gγ,c are computed directly from the

character templates. The tests for bins B = CB×Θcent are constructed by taking all edge/location

pairs that belong to all classes in B at the reference pose. The spread is not allowed under s = 5

because we can anticipate the “width” of G B based on the range of poses in Θcent. A subsample

of all edge/location pairs is taken to ensure non-overlapping spreading domains. This provides
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(a) (b) (c) (d) (e)

Fig. 7. The sparse subset FB of edge/location pairs for some of a few bins B in the hierarchy. (a) 45 degree edges on the

cluster {A, 4, 6}. (b) 90 degree edges on cluster {B, C, D, G, O, Q, 0, 8}. (c) 0 degree edges on cluster {J, S, U, 5}. (d) 45

degree edges on cluster {G, O}. (e) 135 degree edges on cluster {X}.

(a) (b) (c)

Fig. 8. (a) Coarse level detections. (b) Fine level detections. (c) Detections after pruning based on vertical alignment.

the set FB described in Section VII. There is no test for the root; the search commences with

the four tests corresponding to the four subnodes of the root because merging any of these four

with spread s = 5 produced very small sets FB. Perhaps this could be done more gradually.

The subsets FB for several bins are depicted in Figure 7. For the sub-bins described above,

which have a smaller range of poses, the spread is set to s = 3. Moreover since this part of

the hierarchy is purely pose-based and the class is unique, only the highest scoring detection is

retained for D∗.

B. The Indexing Stage

We have set η = 2 (see §VIII-A) so that the image (i.e., subimage containing the plate) is

scanned at the coarsest level every 5 pixels, totaling approximately 4 × 1000 tests for a plate

subimage of size 250× 110. The outcome for this stage is shown in Figure 8(a); each white dot

represents a 5 × 5 window for which one of the four coarsest tests (see Figure 6) is positive

at that shift. If the test for a coarse bin B passes at shift z, the tests at the children B are

performed at shift z, and so on at their children if the result is positive, until a leaf of the

hierarchy is reached. Note that, due to our CTF strategy for evaluating the tests in the hierarchy,

if the data X do reach a leaf B, then necessarily TA(X) = 1 for every ancestor A ⊃ B in the
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hierarchy; however, the condition TB(X) = 1 by itself does not imply that all ancestor tests are

also positive. The set of all leaf bins reached (equivalently, the set of all complete chains) then

constitutes D∗. Each such detection has a unique class label c (since leaves are pure in class),

but the pose has only been determined up to the resolution of the sub-bins of Θcent. Also, there

can be several detections corresponding to different classes at the same or nearby locations. The

set of locations in D∗ is shown in Figure 8(b). The pose of each detection in D∗ is refined by

looping over a small range of scales, rotations and shifts and selecting the c, θ with the highest

likelihood, that is, the highest score under Tc,θ.

C. Interpretation: Prior Information and Competition

The index set D∗ consists of several tens to several hundred detections depending on the

complexity of the background and the type of clutter in the image. At this point we can take

advantage of the a priori knowledge that the characters appear on a straight line by clustering the

vertical coordinates of the detected locations and using the largest cluster to estimate this global

pose parameter (see Figure 8(c).) This eliminates some false positives created by combining part

of a real character with part of the background, for example part of small characters in the word

“Massachusetts” at the top of the plate; see Figure 8(b).

Among the remaining detections we perform the pairwise competitions as described in §IX.

This is illustrated in Figure 9 showing a region in a plate where both a “3” and a “5” were

detected. For one type of edge - vertical - the regions Gvert,c1(θ1) are shown in grey (Figure

9(a)), and Gvert,c2(θ2) (Figure 9b). The white areas illustrate a “spreading” of these regions

as defined in §IX. Figures 9(c)(d) show in white the locations in Gvert,c1(θ1) \ [Gvert,c2(θ2)]
s

(Gvert,c2(θ2) \ [Gvert,c1(θ1)]
s) where an edge is detected.

After the pairwise competitions there are sometimes unresolved chains of overlapping de-

tections. It is then necessary to perform competitions, as described in §IX, between valid

candidate subsequences of the chain. A valid subsequence is one which does not have overlapping

characters, and is not a subsequence of a valid subsequence. This last criterion follows simply

from (5). In Figure 10(a) we show a region in a plate where a chain of overlapping detections

was found. The regions Gγ,y, G
s
γ,y for one competing subsequence (“RW ”) are shown in Figure

10(b), for another (“|K|”) in 10(c), and the resulting symmetric difference in the 10(d).
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(a) (b) (c) (d)

Fig. 9. Competition between c1 = 3 and c2 = 5 at a location on the plate. (a) In grey Gvert,c1(θ1), in white [Gvert,c1(θ1)]
s.

(b) Same for class c2. (c) Locations in Gvert,c1(θ1)\ [Gvert,c2 (θ2)]
s where an edge is detected. (d) Locations in Gvert,c2(θ2)\

[Gvert,c1(θ1)]
s where an edge is detected;

(a) (b) (c) (d)

Fig. 10. Sequence competition. (a) detected classes on a subimage - a chain with labels |,R,|,K,|,R,|,I. (b) the sets Gvert,y and

Gs
vert,y for the subsequence “RW ”. (c) G vert,y, Gs

vert,y for the subsequence ‘| K |’. (d) the symmetric difference Gvert,y \

Gs
vert,y′ ∪ Gvert,y′ \ Gs

vert,y.

D. Performance Measures

Classification rate: We have tested the algorithm on 520 plates. The correct character string

is found on all but 17 plates. The classification rate per symbol is much higher - over 99%. Most

of the errors involve confusions between I and | and between O and D. Some detections are

shown in Figure 11. However, there are also false positives, about 30 in all the plates combined,

including a small number in the correctly labeled plates, usually due to detecting the symbol

“|” near the borders of the plate. Other false positives are due to pairs of smaller characters as

in last row of Figure 11. We have not attempted to deal separately with these in the sense of

designed dedicated procedures for eliminating them.

Computation time: The average classification time is 3.5 seconds per photograph on a Pentium

3 1Mghz laptop. Approximately 1.6 seconds is needed to obtain the set D∗ via the CTF search.
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Fig. 11. Examples of detections on a variety of plates. Last rows illustrates false positives

The remaining 1.9 seconds is devoted to refining the pose and performing the competitions.

Of interest is the average number of detections per bin in the tree hierarchy as a function

of the level, of which there are five not including the root. For the coarsest level (which has

four bins) there are, on average, 183 detections per bin per plate, then 37, 29 and 18 for the

next three levels, and finally 4 for the finest level. On average, the CTF search yields about 150

detections per plate.

If the CTF search is initiated with the leaves of the hierarchy in Figure 6, i.e., with the

pairwise clusters, the classification results are almost the same but the computation time doubles

and detection takes about 5 seconds. Therefore, approximately the same amount of time is

devoted to the post-detection processing (since the resulting D∗ is about the same). This clearly

demonstrates the advantage of the CTF computation.
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XI. DISCUSSION

We have presented an approach to multi-class shape detection which focuses on the computa-

tional process, dividing it into two rather distinct phases: a search for instances of shapes from

multiple classes which is CTF, context-independent, and constrained by minimizing false negative

error, followed by arranging subsets of detections into global interpretations using structural

constraints and model-based competitions to resolve ambiguities. Spread edges are the key to

producing efficient tests for subsets of classes and poses in the CTF hierarchy; they are reusable,

and hence efficient, common on shape instantiations, and yet sufficiently discriminating against

background to limit the number of false detections. Spreading also serves as a means to stabilize

likelihood ratio tests in the competition phase.

The experiments involve reading license plates. In this special scenario there is exactly one

prototype shape for each object class, but the problem is extremely challenging due to the

multiplicity of poses, extensive background clutter and large variations in illumination.

The CTF recognition strategy can be extended in various directions, for instance to multiple

prototypes per class, (e.g., multiple fonts in OCR), to situations in which templates do not exist

(e.g., faces) and the tests for class/pose bins are learned directly from sample images, and perhaps

to three-dimensional and deformable objects.

Furthermore, the framework can be extended from edges to more complex features having

much lower background probabilities. Indeed it seems imperative to adopt more discriminating

features in order to cope with more challenging clutter and a wider range of objects with more

variability. Even in the present context it is possible that the number of indexed instantiations

could be significantly reduced using more complex features; some evidence for this with a single

class can be found in [2]. This is a direction we are currently exploring, along with several others,

including hypothesis tests against specific alternatives (rather than “background”), inducing CTF

decompositions directly from data in order to generalize to cases where templates are not

available, and sequential learning techniques such as incrementally updating CTF hierarchies,

and refining the tests, as additional classes and samples are encountered.
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APPENDIX

Recall from §VID that our goal is to determine the optimal domain of OR’ing for a bin of

the form B = {c} × Θ0 under our statistical edge model.

A. Simplifying Assumptions

To simplify the analysis suppose the class c is a square. In this case, there are two edge types γ

of interest - horizontal and vertical - and a corresponding set of model edge locations Gγ(B) for

each one. Suppose also that Θ0 captures only translation in an `× ` neighborhood of the origin;

scale and orientation are fixed. This is illustrated in Figure 12. The regions Ws,k
i = zi + V s,k

γ

are k× s rectangles, for 1 ≤ s ≤ ` and k = 1, 2, . . .. When k = 1, a detected edge is spread to a

strip oriented perpendicular to the direction of the edge; for instance, for a vertical edge, an edge

detected at z is spread to a horizontal strip of width 1 and length s centered at z. See Figure

12(c),(d) for two different region shapes corresponding to s = `, k = 1 and s = `/2, k = 2.
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Fig. 12. From left to right: The model square with the region Gvert; The range of translations of the square; The model square

with the region Ĝvert(B) tiled by regions Wi with s = ` and k = 1, centered around points zi; The same with s = `/2 and

k = 2.

We restrict the analysis to a single γ, say vertical, and drop the dependence on γ; the general

result, combining edge types, is then straightforward. Define

Js,k
B =

n
∑

i=1

Xs,k
i , where : Xs,k

i = max
z′∈W s,k

i

Xγ(z
′).

The thresholds are chosen to insure a null type I error and we wish to compare the type II errors,

δs,k, for different values of s and k. Note that J sum
B = J1,1

B and Jspr
B = J `,1

B . The W s,k
i are taken

to be disjoint and for any choice of s and k their union is a fixed set Ĝ(B) ⊂ G(B); see Figure

12. Thus the smaller s or k the larger the number of regions. We also assume that the image

either contains no shape or it contains one instance of the shape c at some pose θ ∈ Θ0.

Fix s and k and let n denote the number of regions W s,k
i in Ĝ(B). Since ` is the width of the

region FB , we have n ∼ M/k · `/s, where M is the number of regions used when s = `, k = 1.

Let m = M/k and α = `/s. Note that we assume each pose hits the same number, m, of

regions.

Conditioning on θ we have

P (Xs,k
i = 1|c, θ) =











1 − (1 − p)k(1 − q)(s−1)k .
= P if G(θ) ∩ W s,k

i 6= ∅

1 − (1 − q)sk .
= Q if G(θ) ∩ W s,k

i = ∅
,

and P (Xs,k
i = 1|H∅) = Q. This implies that P (Xs,k

i = 1|HB) = αP + (1 − α)Q, but the Xs,k
i

variables are not independent given HB. Furthermore

E(

n
∑

i=1

Xs,k
i |c, θ) = mP + (n − m)Q, V ar(

n
∑

i=1

Xs,k
i |c, θ) = mP (1 − P ) + (n − m)Q(1 − Q).
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Since the conditional expectation does not depend on θ we have

EB,s,k
.
= E(

n
∑

i=1

Xs,k
i |HB) = mP + (n − m)Q = n(αP + (1 − α)Q).

The conditional variance is also independent of θ, and since variance of the conditional expec-

tation is 0:

VB,s,k
.
= V ar(

n
∑

i=1

Xs,k
i |HB) = n(αP (1 − P ) + (1 − α)Q(1 − Q)).

On background the test is binomial B(n, Q) and we have E∅,s,k = nQ, and V∅,s,k = nQ(1−Q).

B. The Case p = 1

This case, although unrealistic, is illuminating. Since P = 1, J s,k is a non-negative random

variable added to the constant m. Thus the largest possible zero false negative threshold is

τs,k = m. For any fixed k we have J`,k ≤ Js,k for 1 ≤ s < `, since we are simply replacing

parts of the sum by maxima. Since τs,k is independent of s, it follows that δ`,k ≤ δs,k.

Proposition: For k ≥ 2, assume (i) `q ≤ 1
2

and (ii) (1 − q)k` ≤ 1 − `q. Then δ1,1 < δ`,k. As a

result,

δ`,1 ≤ δ1,1 < δ`,k ≤ δ1,k.

In particular, the test J spr
B (s = `, k = 1) is the most efficient.

Note: The assumptions are valid within reasonable ranges for the parameters q, `, say .01 ≤ q ≤

.05 and 2 ≤ ` ≤ 10..

Proof: When s = ` we have n = m and, under H∅, the statistic J `,k is binomial B(m, 1−(1−q)`k)

and the statistic J1,1 is binomial B(M`, q). Using the normal approximation to the binomial

δ1,1 ≈ 1 − Φ

[

M − Mlq

(M`q(1 − q))1/2

]

= 1 − Φ

[

M1/2 1 − `q

(`q(1 − q))1/2

]

and, similarly,

δ`,k ≈ 1 − Φ

[

m − m(1 − (1 − q)`k)

((1 − q)`k(1 − (1 − q)`k))1/2

]

= 1 − Φ

[

m1/2

(

(1 − q)k`

(1 − (1 − q)k`)

)1/2
]

.

Now

m
(1 − q)k`

(1 − (1 − q)k`)
≤ m

1 − `q

`q
≤ 2m

(1 − `q)2

`q
≤ M

(1 − `q)2

`q(1 − q)

where we have used (ii) in the first inequality, (i) in the second and k ≥ 2 in the third. The

result follows directly from this inequality.

April 9, 2004 DRAFT



37

(a) 0 5 10 15
1

2

3

4

5

6

7

8

S
R

(s
,1

)

q=.01 

q=.02 

q=.03 

q=.04 

q=.05 

(b) 0 5 10 15
−1

−0.5

0

0.5

1

1.5

2

2.5

S

R
(s

,k
)

k=1 

k=2 

k=3 

Fig. 13. R(s, k) (a) m = 20, p = .8, ` = 10, k = 1 for .01 ≤ q ≤ .05. (b) m = 20, p = .8, ` = 10, q = .05 for k = 1, 2, 3.

C. The Case p < 1

For p < 1 we cannot guarantee no false negatives. Instead, let σB,s,k =
√

VB,s,k and choose

a τs,k = EB,s,k − 3σB,s,k,, making the event J s,k = 0 very unlikely under HB. Again, using the

normal approximation, the error δs,k is a decreasing function of

R(s, k) =
EB,s,k − 3σB,s,k − E∅,s,k

σ∅,s,k
.

For general p we do not attempt analytical bounds. Rather, we provide numerical results for

the range of values of interest: .01 < q < .05, .5 < p ≤ 1, 10 < M < 50, 1 ≤ k ≤ 3, and

` = 10. In Figure 13, we show plots for the values M = 20, k = 1, p = .8, .01 ≤ q ≤ .05, and

k = 1, 2, 3. The conclusions are the same as for p = 1:

• δs,k is decreasing in s in the range 1 ≤ s ≤ ` and increasing for s > `.

• δ1,1 < δ`,k for any k > 1.

• The optimal test is Jspr
B , corresponding to s = `, k = 1.
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