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Abstract
Modal analysis provides a powerful tool for efficiently

simulating the behavior of deformable objects. This
paper shows how manipulation, collision, and other
constraints may be implemented easily within a modal
framework. Results are presented for several example
simulations. These results demonstrate that for many ap-
plications the errors introduced by linearization are ac-
ceptable, and that the resulting simulations are fast and
stable even for complex objects and stiff materials.
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1 Introduction

Interactive modeling of deformable objects has a wide
range of applications from surgical training to video
games. Many of these applications require realistic,
real-time simulation for complex objects. Unfortunately,
the most straightforward simulation methods turn out to
be prohibitively expensive for modeling objects of even
modest complexity. When the high cost of simulation
couples with the reality that CPU cycles must be shared
among many tasks, the need for faster, more sophisticated
simulation methods becomes clear.

Recently several ingenious techniques for modeling
deformable objects have been proposed addressing is-
sue. Examples include multi-resolution representations
that avoid wasting time on irrelevant details (e.g.[3,5,7]),
reformulating the dynamics to make them more stable
(e.g.[14,19], extensive precomputation to minimize run-
time costs (e.g.[8,9,18], robust integration schemes that
afford large time-steps (e.g. [2]), and many other ap-
proaches that we cannot list here due to space constraints.
As of yet, none provides a perfect solution that satisfies
the requirements for all interactive applications.

This paper reexamines a technique known as modal
analysis that was originally introduced to the graph-
ics community over a decade ago, but has since been
largely neglected, with only a couple of notable excep-
tions (e.g.[9,21]). Like the techniques mentioned above,

Figure 1: This example demonstrates a complex model
being deformed using a modal simulation method. The
object furthest from the viewer shows the undeformed
configuration. The nearer objects are being deformed by
a force indicated by the blue arrows.

modal analysis does not provide a perfect solution for ev-
ery interactive application, but it does provide a solution
that suits some applications quite well.

The results presented here show that modal analysis
can be used effectively to model situations where the de-
formable object is directly manipulated using constraints
and where it interacts with an environment through con-
tact forces. We demonstrate that although linear modal
analysis does incur errors because of the inherent lin-
earization of the dynamics these errors are acceptable in
many contexts. While precomputing the modal decom-
position for a complex object may take up to a few hours
of precomputation, for applications which make use of
fixed content this computational cost only occurs during
content development and it is well worth the dramatic in-
crease in runtime performance.

The concepts required to manipulate the modal equa-
tions are to a certain extent conceptually difficult to work
with but their implementation is surprisingly simple. The
results shown in this paper (e.g. figure 1) were gener-
ated using an implementation that we have ported to sev-
eral platforms: SGI IRIX, Windows, Linux, and Sony
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PlayStation2. On each of these platforms we were able
to obtain interacive simulation times even for relatively
complex models.

2 Background

Modal analysis is a well established mathematical tech-
nique that has been used extensively in mechanical,
aerospace, civil, and other engineering disciplines for
several decades. To a large extent the work we present
in this paper follows as direct application of the methods
developed in those fields to the task of interactively simu-
lating deformable solids. There are, however, some issues
that are unique to interactive simulation, such as impos-
ing manipulation constraints and computing fast collision
responses. This paper focuses on those issues. A discus-
sion of modal analysis and its use with the finite element
method can be found in the text by Cook, Malkus, and
Plesha [4], and a more detailed discussion of modal anal-
ysis, its mathematical theory, and its applications may be
found in the text by Maia and Silva [12].

Modal analysis was first introduced to the graphics
community in 1989 by Pentland and Williams as fast
method for approximating deformation [18]. They used
a hybrid framework, previously described by Terzopou-
los and Fleischer [22], that separated the motion of a
deformable solid into a rigid component and a deforma-
tion component. The deformable component existed in
a non-inertial reference frame that moved with the rigid
component. To avoid the cost of computing the modes
for a particular object Pentland and Williams used lin-
ear and quadratic deformation fields defined over a recti-
linear volume instead of the object’s actual modes and
then embedded the object within the region in a fash-
ion similar to a free-form deformation. While using ap-
proximated modes is computationally inexpensive it only
generates reasonable results for compact objects that are
well approximated by a rectilinear solid. Pentland and his
colleagues also integrated their modal deformation tech-
niques into the ThingWorld modeling system [17].

In 1997 Stam developed a modal method for model-
ing trees blowing in the wind [21]. Rather than starting
with a deformable object, he computed the low-frequency
modes from an articulated structure that described the
tree. Once the closed-form solutions for each mode were
computed the response of the tree to a stochastic wind
field could be computed efficiently.

Most recently, James and Pai implemented a system
for computing real-time modal deformations on com-
modity graphics hardware [9]. They focused on mod-
eling deformable skin and soft tissues attached to mov-
ing characters or as background elements in a surgical
simulation. Because they computed the deformed shapes

from a linear combination of the modes shapes using pro-
grammable graphics hardware, only a very small amount
of work needed to be done on the main CPU.

Other related work includes sound generation tech-
niques that make use of modal synthesis, and deforma-
tion techniques that use global shape functions that have
some general similarities to a object’s mode shapes. Van
den Doel and his colleagues have used both analytically
computed modes for simple geometric shapes and sam-
pled modes from real objects to compute realistic sounds
for simulated environments [24, 25, 26]. O’Brien and
his colleagues developed similar techniques that used nu-
merically computed modes from a finite element descrip-
tion of an object [16]. Examples of deformation tech-
niques using global shape functions include: free-form
deformations and their dynamics extensions [6, 20], de-
formable superquadrics [13], and the boundary element
method [8]. Finally, modal bases have also proven to be
an efficient way to compactly encode both shapes and de-
formations [10,11].

3 Methods

The mechanical properties of an object can generally be
captured by a function that maps the state of the object to
a distribution of internal forces. For nearly any non-trivial
system this function will be nonlinear and the represen-
tation of state will require many variables. Consequently,
modeling the object’s behavior over time will involve in-
tegrating a large, nonlinear system of differential equa-
tions. These systems are typically far too complex to be
solved analytically so some type of numerical solution
method must be employed.

Modal analysis is the process of taking the nonlinear
description of a system, finding a good linear approxima-
tion, and then finding a coordinate system that diagonal-
izes the linear approximation. This process transforms a
complicated system of nonlinear equations into a simple
set of decoupled linear equations that may be individually
solved analytically.

The main benefit of this modal approach is that the be-
havior of the system can be computed much more effi-
ciently. Because each of the decoupled equations can be
solved analytically, the stability limitations that plague
numerical integration methods are eliminated. Further,
one may examine each of the decoupled components and
discard those that are irrelevant to the problem at hand.

There are also two drawbacks to a modal approach.
First, linearizing the original nonlinear equations means
that the solution will only be a first order approximation
of the true solution. How objectionable the lineariza-
tion error is depends on the application and the extent
to which the objects deform from their initial configura-
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Figure 2: Using a linear formulation to model a bend-
ing bar produces acceptable results for small to moderate
amounts of deformation. For larger deformations signif-
icant amounts of distortion appear. This example shows
the deformation corresponding to the bar’s second trans-
verse mode.

tions. As illustrated by figure2, small to moderate defor-
mations exhibit little or no noticeable error when casually
observed. Even when the errors do grow noticeable, they
have a cartoon-like, exaggerated appearance that may ac-
tually be desirable for some applications.

The second drawback arises because decoupling the
linear system requires computing its eigendecomposition.
However we do not believe that this drawback is partic-
ularly significant. The content in most interactive appli-
cations is constant, so that eigendecompositions can be
precomputed during content development and stored with
the objects. Furthermore, the linear systems are sparse,
so that fast, robust, publicly available codes may be used
computing the decompositions (e.g.TRLAN [27]).

The remainder of this section describes how one com-
putes the modal decomposition for a given object and
how that decompoition can be used to efficently model
the object’s behavior. Some of this material has been
presented elsewhere by others in the graphics community
(e.g.[9,18]) but we include it here for completeness. The
discussion will focus in particular on including manipu-
lation and collision constraints in the modal framework.
An overview of the entire process is shown in figure3.

3.1 Modal Decomposition
The modal decomposition of a physical system begins
with a linear set of equations that describe the system’s
behavior. In general, the equations describing the system
may be nonlinear, and one obtains the linear equations by
linearizing about some point, typically the rest configu-
ration of the system. The linearized equations have the
general form:

Kd + Cḋ + Md̈ = f , (1)

whereK, C, andM are respectively known as the sys-
tem’s stiffness, damping, and mass matrices,d andf re-
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Figure 3: This diagram illustrates both the preprocessing
steps used to construct the deformable modal model for
an object, and the processes that subsequently generate
interactive motion from this description.

spectively as the vector of generalized displacements and
forces, and an overdot indicated differentiation with re-
spect to time. The physical meaning of the generalized
force and displacement vectors, and the method for com-
puting the system matrices will depend on the type of
method used for modeling the system. For general fi-
nite element methods, we refer the reader to the excellent
text by Cook, Malkus, and Plesha [4]. We are using an
implementation of the piecewise-linear tetrahedral finite
element method described by O’Brien and Hodgins [15].

Modal decomposition refers to the process of diago-
nalizing equation (1). The most general form of model
decomposition can be used for nearly arbitrary systems,
but the systems arising from the finite element method
we use have a structure that makes them amenable to a
simpler manipulation provided we assume that the damp-
ing matrix,C, is a linear combination of theK andM .
This restriction is known as Rayleigh damping, and al-
though it is a restriction it still produces results superior to
the simple mass damping that is most commonly used in
graphics applications. With these conditions, diagonaliz-
ing equation (1) becomes equivalent to solving a general-
ized symmetric eigenproblem with symmetric, positive-
definite matrices. Cook, Malkus, and Plesha describe the
process in detail and we only repeat the end result here.

With the restriction of Rayleigh damping equation (1)
may be rewritten as:

K(d + α1ḋ) + M(α2ḋ + d̈) = f , (2)
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Figure 4: The two rows show a side and top view of
a bowl along with three of the bowl’s first vibrational
modes. The modes selected for the illustration are the
first three non-rigid modes with distinct eigenvalues that
are excited by a transverse impulse to the bowl’s rim.

whereα1 andα2 are the Rayleigh coefficients. Let the
columns ofW be the solution to the generalized sym-
metric eigenproblemKx + λMx = 0 andΛ be the
diagonal matrix of eigenvalues1, then equation (2) may
be transformed to:

Λ(z + α1ż) + (α2ż + z̈) = g , (3)

wherez = W−1d is the vector of modal coordinates
andg = W Tf is the external force vector in the modal
coordinate system.

Each row of equation (3) corresponds to a single scalar
second-order differential equation:

λizi + (α1λi + α2)żi + z̈i = gi . (4)

The analytical solutions to each equation are

zi = c1e
tω+

i + c2e
tω−

i (5)

wherec1 andc2 are arbitrary (complex) constants, andωi
is the complex frequency given by

ω±i =
−(α1λi + α2)±

√
(α1λi + α2)2 − 4λi
2

. (6)

The absolute value of the imaginary part ofωi is the fre-
quency (in radians/second, not Hertz) of the mode, and
the real part is the mode’s decay rate. In the special case
where the term under the radical in equation (5) is zero,
we haveω+

i = ω−i , which gives the critically damped
solution:

zi = c1te
tωi + c2e

tωi . (7)

The columns ofW are the vibrational modes of the
object being modeled. (See figure4.) Each mode has the
property that a displacement or velocity over the object

1 Equivalently letW = L−TV whereM = LLT (Cholesky
decomposition) andV ΛV T = L−1KL−T (symmetric eigendecom-
position).

that is a scalar multiple of the mode will produce an ac-
celeration that is also a scalar multiple of the mode. This
property means that the modes do not interact with each
other, which is why decoupling the system into a set of
independent oscillators was possible. The eigenvalue for
each mode is the ratio of the mode’s elastic stiffness to the
mode’s mass, and it is the square of the mode’s natural
frequency (in radians per second). In general the eigen-
values will be positive, but for each free body in the sys-
tem there will be six zero eigenvalues that correspond to
the body’s six rigid-body modes. The rigid-body eigen-
values are zero because a rigid-body displacement will
not generate any elastic forces.

The decoupled system of equations isnot an approxi-
mationof the original linear system, it will generate ex-
actly the same results as the original linear system. Of
course the linear system may have been an approxima-
tion to some initial nonlinear one, but any problem that
could be solved using equation (1) could also be solved
with equation (3). Furthermore, simulation that would
have required numerical time integration of equation (1)
can now be solved without integration using the analyti-
cal solutions in equation (5).

3.2 Discarding Modes
Although decoupling equation (1) and then solving each
of the resulting components analytically provides signifi-
cant benefits, we can derive additional benefit by consid-
ering whether or not each of these components is needed.
In particular we can discard modes that will have no sig-
nificant effect on the phenomena we wish to model.

If the eigenvalue,λi, associated with a particular mode
is large, then the force required to cause a discernible
displacement of that mode will also be large. We can
expect that in a given environment there will be both
an upper bound on the magnitude of the forces encoun-
tered and a lower limit on the amplitude of observable
movement. For example, if modeling an indoor environ-
ment we would not expect to encounter forces in excess
of 60, 000 N (the breaking force of a large truck), and
we would not be able to observe displacements less than
about0.1 mm. Thus if ||wi||2/λi < min res/max frc
for some mode then that mode’s behavior will be unob-
servable.

The imaginary part ofωi determines the frequency that
a mode will vibrate at. Modes that vibrate at more than
half the display’s frame rate will cause temporal aliasing.

Removing modes that are too stiff and/or too high fre-
quency to be observed will not change the appearance of
the resulting simulation, but removing them will greatly
reduce the simulation’s cost. For most objects that we
have worked with, nearly all of the modes are unobserv-
able. A typical result is that an object with several thou-
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sand vertices will have fewer than fifty modes that need
to be retained.

For later convenience let̄W be the matrixW with
the columnscorresponding to the discarded modes re-
moved, and letW̄

−1
be the matrixW−1 with the rows

corresponding to the discarded modes removed. Note
thatW̄

−1 6= (W̄ )−1, W̄ andW̄
−1

are not square, and
W̄

−1
W̄ = I butW̄W̄

−1 6= I.

3.3 Oscillator Coefficients and Time Steps
The analytical solution for each mode, equation (5), de-
scribes how that mode will behave when no external
forces are acting on it. Using these solutions, however, re-
quires some way of modeling responses to external forces
and of setting initial conditions.

Given a set of initial conditions described by the node
positions,d0, and their velocities,̇d0, setting the oscil-
lators to match those conditions requires finding appro-
priate values for the coefficientsc1 and c2. First, the
initial conditions are transformed to modal coordinates:
z0 = W̄

−1
d0 andż0 = W̄

−1
ḋ0. For each modec1 and

c2 are given by

c1 =
z0
2

+
(α1λi + α2)z0 + 2ż0

2
√

(α1λi + α2)2 − 4λi
(8)

c2 =
z0
2
− (α1λi + α2)z0 + 2ż0

2
√

(α1λi + α2)2 − 4λi
. (9)

For the critically damped casec1 andc2 are given by

c1 =
(α1λi + α2)z0

2
+ ż0 (10)

c2 = z0 . (11)

Note that if theω±i are real thenc1 andc2 will also be
real. If theω±i are complex then theω±i and thec1 and
c2 will be complex conjugate pairs. In either case equa-
tion (6) will evaluate to a real value.

To compute the response of a mode to an impulse de-
livered at t = 0, first transform the impulse to modal
coordinates with∆tg = ∆tW̄ T

f and then computec1
andc2 as shown above withz0 set to zero anḋz0 replaced
by ∆tg. Because the modes behave linearly, the response
of the system to forces applied at an arbitrary time may
be computed by time-shifting this impulse response and
adding it to the existing values.

Becausece(t+∆t)ω = (cetω)e∆tω, the state of each
oscillator can be stored simply as a pair of complex num-
bers that reflect the current values ofc1e

tω+
andc2etω

−
.

Each time the system is advanced forward in time, these
values get multiplied bye∆tω

±
. If ∆t is constant then

the step multiplier for each mode may be cached to avoid
the cost of evaluating an exponential. Impulses applied to

the system simply require adding the appropriate values
to each oscillator’s state. Finally, modes whereω+ and
ω− are complex conjugate pairs can be reduced to only a
single oscillator.

3.4 Constraints

Although we can compute the behavior of the decom-
posed system extremely efficiently, for the system to be
useful requires that it accommodate common operations.
The two most significant operations are applying con-
straints and responding to collisions. When working with
the original system constraints on the node positions are
nearly trivial to implement. Collision response requires
more sophistication but still is conceptually straightfor-
ward. Unfortunately, applying these same constraints in
the modal basis requires moving between the node po-
sitions and modal coordinates which can be unintuitive.
Matters are further complicated because if we have dis-
carded any modes then the transformations will be unin-
vertible.

3.4.1 Interactive Manipulation

If we wish to include continual constraints on part of
the system, the optimal way to do so is to remove those
degrees of freedom prior to performing the modal de-
composition. An example demonstrating this approach
can be seen in James and Pai’s modal method for mod-
eling tissue deformation [9]. Using this approach for
dynamic constraints, however, would require recomput-
ing the eigendecomposition each time a constraint was
added or removed from the system. James and Pai ac-
complished something similar for a boundary element
method using Sherman-Morrison-Woodbury updates but
we do not know of any corresponding incremental update
scheme for an eigensystem [8].

Instead we apply manipulation constraints to the de-
composed system. Letψ be the set of degrees of freedom
in the original system that we wish to constrain, and let
φ be the places where we are willing to apply forces in
order to enforce the constraints. For a manipulation task
were a point on the object is being dragged we would
typically haveφ = ψ but we will not require it. Letdψ
or fφ denote the displacement or force vectors where all
but for the elements corresponding toφ or ψ have been
removed. Similarly, letW̄ ψ be W̄ where all the rows

not inψ have been removed and let̄W
T
φ beW̄

T
where

all the columns but for those inφ have been removed. Fi-
nally, let d̈

∗
ψ be the desired accelerations at the constraint

locations. By combining̈d = W̄ z̈, g = W̄
T
f and a bit

of manipulation we obtain:

d̈
∗
ψ = W̄ ψ(z̈ + W̄

T
φfφ) . (12)
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Solving forfφ yields:

fφ =
(
W̄ ψW̄

T
φ

)−P (
d̈
∗
ψ − W̄ ψz̈

)
, (13)

where·−P denotes a pseudoinverse. Velocity constraints
only differ in thatfφ gets replaced by an impulse,e.g.
∆tfφ and we have:

fφ =
1

∆t

(
W̄ ψW̄

T
φ

)−P (
ḋ
∗
ψ − W̄ ψż

)
. (14)

Position constraints can be enforced in a similar fashion
so long as we adjust for how each mode will evolve over
the interval while the force is applied:

fφ =
2

∆t2
(
W̄ ψSW̄

T
φ

)−P (
d∗ψ − W̄ ψz

)
, (15)

whereS the diagonal compensation matrix with compo-
nents given by

sii =
e∆tω

+
i − e∆tω

−
i

|
√

(α1λi + α2)2 − 4λi|
. (16)

3.4.2 Dynamics Simulation
Implementing a deformable dynamics simulator for free
bodies using modal analysis can be accomplished by
combining the modal simulation with a standard rigid-
body dynamics simulator. The modal system is embed-
ded in a rigid-body reference frame, and both systems
evolve over time. The two systems interact with each
other though inertial effects. The modal system should
experience centrifugal and coriolis forces as the rigid-
body moves, and the inertial moments of the rigid-body
will change as the modal system deforms. Unless the ob-
ject is rotating rapidly, neither effect will be significant
so we omit them. They could be included at an additional
computational cost. Inertial effects due to translational
and rotational acceleration of the rigid-body frame do not
need to be modeled explicitly so long as the forces gen-
erating those accelerations are also applied to the modal
system.

Because we are modeling deformable objects, a colli-
sion detection method optimized for use with rigid-body
simulations requires some modification because precom-
puted data structures will become invalid as the object de-
forms. The method we are using employs a hierarchy of
axis-aligned bounding boxes to efficiently find potential
collisions. The tree is initially constructed based on the
undeformed shape of the object. Each leaf node in the
tree corresponds to one of the primitives that makes up
the object, and the bounding box at that node encloses the
primitive. The bounding boxes of interior nodes encom-
pass the union of their children. The tree’s topology is

chosen to minimize the overlap among the interior nodes.
Once the object deforms the tree will become invalid, but
recomputing the tree’s topology every time-step would be
prohibitively expensive. Instead we use an update scheme
similar to one described by van den Bergen [23]. After
each time-step the bounding boxes are updated, but the
tree’s topology does not change. If we expected arbitrary
deformation, this could result in a very poorly structured
tree, but because the extent of deformation is limited we
have found this approach to work quite well.

Using these trees the collision system can efficiently
determine contact points and a normal for each contact.
For collisions between an object and a ground plane, the
collision normal is simply the plane’s normal. For colli-
sions between objects, we look at involved tetrahedra to
determine a normal based on their overlap [15]. We have
found that each physical contact site may produce several
pairs of colliding primitives. To reduce the computation
when using constraint-based collisions we cluster nearby
collision points and treat each cluster as a single collision
point.

We have implemented collision response using both
a penalty-based method and using constraints. As
one would expect, the penalty methods require less
work per time-step, achieving real-time performance, but
stiff penalty coefficients can lead to instability. The
constraint-based method requires more work per time-
step, but it is more stable. Because the modal system will
allow arbitrarily large time-steps in the absence of exter-
nal influences we prefer the constraint-based methods.

Implementing penalty methods is nearly trivial. When
a point on a surface violates one of the penalty con-
straints, a force proportional to the magnitude of the vio-
lation is applied at that point. Transforming the forces
to modal coordinates and then applying the force to
the modal system is done as described previously. The
penalty force should be applied to both the modal and the
rigid-body systems.

Constraint-based collisions require a more complex
implementation, but we find that they produce better re-
sults. First, when collisions occurs, the simulation is
backed up to the point during the time-step when the ob-
jects first came into contact. Then contact forces are cal-
culated as the minimal outward normal force to ensure
that the objects will not continue to penetrate. These are
determined by solving a linear programing problem for
the normal forces at all contact points. Baraff details an
efficient method for solving for the required forces [1].

Constraint methods are used in traditional rigid-body
simulations only to solve for resting contact, while im-
pulses are used to calculate elastic response. Elastic com-
ponents of the responce can be handled differently in
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our modal simulation, because the elastic behavior of the
modal system models them directly. We first enforce a
velocity constraint that solves for an impulse to ensure
that none of the contact velocities are negative, then sec-
ondly it enforces an acceleration constraint that solves for
a force to ensure that none of the contact accelerations
are negative. The derivation of these methods requires
equations relating the change in velocity and acceleration
with respect to an applied impulse and acceleration, re-
spectively.

Let pl be the location of a contact point on an object
expressed in the local coordinate frame of the rigid body.
This location will be a linear function of the modal coor-
dinates so that:

pl = UWz , (17)

whereU is a matrix that averages the appropriate node
locations based on the barycentric location ofp in one of
the surface triangles. The location in world coordinates
is given by

pw = t + Rpl , (18)

wheret andR are the translation and rotation matrices
for the rigid-body frame. Differentiating with respect to
time to obtain the world velocity and acceleration ofp
yields:

ṗw = ṫ + R[ω]pl + Rṗl , (19)

p̈w = ẗ+R[ω][ω]pl+R[α]pl+2R[ω]ṗl+Rp̈l , (20)

where ω and α are the rigid-body’s angular velocity
and acceleration2. The notation[a] denotes the skew-
symmetric matrix such that[a]b = a× b = −[b]a.

Differentiating equation (19) with respect to an applied
impulse allows us to obtain the change in velocity gener-
ated by a constraint force over a time interval:

∆ṗw = ∆t
(

1
m

fw + R[H−1τ l]pl + RUWW̄
T
f l

)
(21)

whereH is the object’s inertia matrix andτ is the torque
generated byf . Differentiating equation (20) with re-
spect to an applied force produces a similar result for the
change in acceleration at the contact point. These equa-
tions are linear inf , and can be used similarly to solve
for position, joint, and collision constraints. Position con-
straints require that a point’s velocity and acceleration are
zero. Joint constraints require relative velocities and ac-
celerations are zero, merely requiring a subtraction of the
proper terms. Collision constraints require the normal
components of relative velocities and accelerations are

2In order to adhere to common convention we are reusingω and
α, that were previously used for the modal frequencies and Rayleigh
damping coefficients. The indented meaning should be clear from con-
text and the presence/absence of bold notation.

Figure 5: These images shows how constraints can be
used to deform objects. The object on the left of each im-
age shows the object prior to deformation, and the right
object shows the results after the red constraint points
have been moved.

Figure 6: These images are screen shots from an applica-
tion running natively on a Sony PlayStation2. The yellow
circle highlights the cursor that the user is using to poke
and pull an elastic figure.

nonnegative, and only solve for the nonnegative normal
force magnitude. All constraints are solved simultane-
ously as a linear program. Solving cannot always be done
in real-time if there is a large number of contact points,
although system response does remain interactive.

We model friction at the contacts using a simplified
Coulomb friction model. The system computes a force
opposite the tangential velocity at the contact points. The
magnitude of the force equals the magnitude of the nor-
mal force multiplied by a friction coefficient. If the fric-
tion force causes the predicted tangential velocity to be
reversed then it is limited to the force that would cause no
slipping. If interactivity can be sacrificed, a more precise
method would be to add an additional no-slip constraint
to be re-solved with the other constraints. We find that
our heuristic reasonable for producing plausible friction
effects.

4 Results

We have implemented a system that models deformable
objects using a hybrid formulation that combines rigid-
body motion with deformation computed using modal
analysis. Objects may be manipulated by the user in
real-time with both penalty forces and displacement con-
straints. The modal objects may collide with each other
and with the environment, and the collisions can be
treated with either penalty forces or constraints. Objects
may also be attached together using joint constraints.
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Figure 7: This image sequence shows frames from an animation of a pair of objects colliding with each other. Each
object is a hybrid simulation that incorporates a rigid and a deformable (modal) component.

The brain model in figure1 demonstrates pulling and
pushing using force application. Force vectors are pro-
jected into the modal basis, modifying the modal state,
and then are projected out, resulting in realistic defor-
mation. The constraint figures in figure5 and figure6
show pulling and pushing using manipulation constraints.
Typically, up to around 10 points on the model can be
constrained in real-time on a moderate speed computer
(300 mHz Pentium II or Sony Playstation2). A limit is
reached because the solutions to equation (13) and equa-
tion (15) require a relatively expensive computation of
singular value decompositions, which cannot be calcu-
lated in real-time once the matrices become too large.

We have created several animations demonstrating this
system, each simulated interactively moderately complex
objects. The results appear realistic, and resemble anima-
tions that might be simulated using more straightforward
but more computationally expensive methods. The bot-
tlenecks in hybrid modal/rigid-body simulation are col-
lision detection and solving the linear program for the
constraints. To reduce the computation used in solving
the linear program, the extent of collision pair- clustering
may be tweaked to sacrifice accuracy for speed.

As in other methods based on tetrahedral finite ele-
ments, we can embed high-resolution or non-manifold
surfaces inside a tetrahedral volume model. The other
benefit of this technique is that the surface shading and
texturing can be specified independently from the dynam-
ics, and poorly constructed “polygon-soup” models may
be used. The brain model in figure1, an extremely com-
plex object, and ”dodo” model in figure7, a non-manifold
object, are modeled in this way.

5 Conclusions

Modal analysis has been shown to be a useful tool in in-
teractively producing realistic simulations of elastic de-
formation. Both the analytic calculation of modal ampli-
tudes using complex oscillators and the removal of high-
frequency modes have a stabilizing effect on simulations,
allowing for large time steps to be taken. This is a very
attractive option for deformable objects in applications
such as video games or animation design, where physical
accuracy can be approximated by linearity.

Despite the approximation of linearity in modal anal-
ysis, the simulation results are quite plausible for most
objects. The exceptions are long, thin, or highly de-
formable objects, where nonlinear behavior dominates
the expected behavior. Despite these specific drawbacks,
most objects can be manipulated quite efficiently and re-
alistically using modal models.

The already small costs of modal analysis can be re-
duced even further by leveraging graphics hardware, as
shown by James and Pai [9] or our own implementation
on the Sony PlayStation2. Using such hardware, CPU
costs can be reduced to modifying mode amplitudes dur-
ing evolution of time steps, projection of forces, or appli-
cation of manipulation constraints.
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