
Fast and Accurate Collision Detection for Virtual Environments

Ming C. Lin

Department of Computer Science

University of North Carolina at Chapel Hill

lin@cs.unc.edu

Abstract

A realistic simulation system, which couples geome-

try and physics, can provide a useful toolkit for virtual

environments. Interactions among moving objects in

the virtual worlds are modeled by dynamic constraints

and contact analysis. In order to portray the geometric

interaction in a dynamical system or to simulate phys-

ical behaviors of entities in the virtual environments,

it is essential to perform collision detection at inter-

active rate with minimal computation possible. In this

paper, we present e�cient algorithms for contact deter-

mination and interference detection between geometric

models undergoing rigid motion. The set of models in-

cludes polyhedra and surfaces described by B-splines.

The algorithms make use of temporal and spatial coher-

ence between successive instances to reduce the number

of pairwise tests and hierarchical data structures for

checking overlaps between a pair of objects. Their run-

ning time is a function of the motion between successive

instances. The main characteristics of these algorithms

are their simplicity and e�ciency. They have been im-

plemented. A subset of these implementations, includ-

ing I-Collide, RAPID and V-Collide are available as

part of the collision detection packages at the UNC-CH

website.

1 Introduction

Over the last few years there has been a great deal of in-
terest in collision detection for interactive 3D graphics.
A physics simulation engine takes in the geometry of
the objects in the environment, their moving parts and
physical properties to mimic their physical behaviors.
Moving entities and avatars need to behave like the real
ones as in the physical world, in order to enhance the
degree of realism. However, real time dynamic simu-
lation has been unattainable till recently, due to the
absence of e�cient, practical collision detection algo-
rithms and fast, accurate dynamics computations.

Other than virtual environments, a real-time colli-

sion detection system is also an integral part of robotics
and automation, engineering simulation and analysis,
molecular modeling and drug design, and electronic
prototyping. We will �rst give an overview of the
state of the art. Then, we will present several colli-
sion detection algorithms that utilize a wide range of
geometric techniques, including hierarchical data struc-
ture, coherence and locality. Concepts from computa-
tional geometry and geometric modeling are incorpo-
rated to design geometric algorithms for solving the col-
lision detection problems among all geometric models
in real time for most of the cases. These algorithms are
generally applicable, but especially suited to dynamic
domains where objects are moving at small, discrete
steps. We'll also discuss the advantages and shortcom-
ings of these methods. Next, we'll present techniques in
reducing the number of pairwise intersection tests for
a computer simulated environment consisting of multi-
ple static or moving entities. We will also provide sev-
eral online resources where a number of public domain
packages for collision detection can be easily obtained.

The rest of the paper is organized as follows. In Sec-
tion 2, we discuss problem domain speci�cation based
on di�erent classi�cation. In Section 3, we review some
of the previous work in collision detection. Section 4

gives an overview on our collision detection systems.
We describe our novel approaches to the problem of col-
lision detection in Section 5 and brie
y discuss collision
response in Section 6 respectively. Next, we demon-
strate our experimental results on several applications
in Section 7. Section 8 provides a list of public domain
libraries. We conclude with several future research di-
rections.

2 Problem Domain Speci�cation

A wide range of techniques, including hierarchical rep-
resentation, geometric reasoning, algebraic formula-
tions, spatial partitioning, analytical methods, and op-
timization methods, have been proposed. Algorithm
design depends on the model representation, the de-



sired query types, and the simulation environment.

2.1 Model Representation

There are many types of model representations used
in CAD/CAM and 3D graphics. Polygonal objects are
the most commonly used models in computer graph-
ics. They have a simple representation. They are ver-
satile. Hardware-accelerated rendering of polygon is
widely available. The most general class of polygonal
model is the polygon soup, which is a collection of poly-
gons that are not geometrically connected and has no
topology information available. If the polygons form a
closed manifold, then the model has a well-de�ned in-
side and outside { it is a proper solid. Some geometric
algorithms rely on this structure. If the object de�ned
by the closed manifold is convex, then this additional
structure can be exploited in the design of collision de-
tection algorithms.

Constructive Solid Geometry or CSG forms ob-
jects from primitives such as blocks, spheres, cylinders,
cones, and tori, by combining them with set theoretic
operations such as union, intersection, and set di�er-
ence [18]. One strength of the CSG representation is
that it enables an intuitive design process of building
shapes by means of cutting (intersection and set di�er-
ence) and joining (union) simple shapes to form more
complex ones. The di�culty with CSG is that certain
operations, such as rounding an edge or �lleting a join,
are di�cult to describe with CSG operations. Further-
more, an accurate boundary or surface representation,
useful for rendering or interference computations, can
be hard to compute from CSG representations [18].

Implicit surfaces are de�ned using implicit functions,
with mappings from 3D space to the real numbers,
f : R3

! R, and the implicit surfaces are the loci
of points where f(x; y; z) = 0. Such a function de�nes
unambiguously what is inside the model, f(x; y; z) < 0

and what is outside, f(x; y; z) > 0. Consequently, im-
plicit surfaces are generically closed manifolds.

Parametric surfaces are mappings from some subset
of the 2D plane to 3D space, f : R2

! R3. Unlike
implicit surfaces, parametric surfaces are not generally
closed manifolds. Hence, unlike CSG and implicit sur-
faces, they do not represent a complete solid model,
but rather a description of surface boundary.

2.2 Di�erent Types of Queries

In the simplest case, we want to know whether two
models touch. Sometimes, we must �nd which parts (if
any) touch, i.e. �nd their intersection. Sometimes we
want to know their separation: if two objects are dis-
joint, what is the minimumEuclidean distance between

them? If they penetrate, what is the minimum transla-
tional distance required to separate them [8]? Finally,
if we know the objects' placements and motions, when
will be their next collision? This is ETA computation,
borrowing from the phrase, estimated time of arrival.

Di�erent applications need di�erent queries. Dis-
tance information is useful for computing interaction
force and penalty functions in robot motion planning
[27] and dynamic simulation [28, 37]. Intersection com-
putation is important for physically-based modeling
and animation systems which must know all contacts
in order to compute the collision response. The ETA
solution permits us to control the time step in a simu-
lation [28, 31].

2.3 Simulation environments

Special characteristics of each simulation are often con-
sidered in designing and choosing the most appropriate
algorithm for collision detection. Here we examine a
few common cases.

� Pair Processing vs. Nbody Processing

If the problem involves only a pair of models, we
call it pair processing. If we have many di�erent parts,
we call it Nbody processing, in reference to the classic
problem in celestial mechanics (many bodies moving
under mutual gravitational in
uence).

� Motions: Static vs. Dynamic

Queries are often executed repeatedly on the same
models in the same environment, as the objects rotate
and translate (or possibly subject to non-rigid trans-
formations) at successive time steps. In these dynamic
environments, the geometric relationship may only dif-
fer slightly from that of the previous step, if the motion
between steps is relatively small. Algorithms that can
capitalize on this property are said to exploit coherence.

In order to exploit coherence, some algorithms re-
quire bounds [28, 31] on the motion of the objects (e.g.
objects' velocities or accelerations). Other algorithms,
such as the ones based on interval arithmetic, need a
closed-form expression of the motion as a function of
time. Some algorithms demand no information on the
motion, but need only the placements of the objects at
successive time steps.

Sometimes the problem involves objects that are not
in motion. For example, given a model of an entire
power-plant, design engineers may be interested in per-
forming static interference checks among components
of the entire plant for tolerance veri�cation and access
clearance.



� Rigid Bodies vs. Deformable Models

When the component of time is introduced, there is
also the possibility that the models deform over time.
Assuming that the deformations between time steps
are small, some algorithms may be able to exploit co-
herence in this case as well.

3 Brief Survey On State Of Art

There is a rich body of literature in both analyzing the
geometric contacts of moving objects and the motion
dynamics of rigid bodies. Collision detection has been a
fundamental problem in robotics, computational geom-
etry, animation and simulation, physical-based model-
ing. One of major bottlenecks in building real-time
dynamic simulators is �nding a practical, e�cient and
simple collision detection algorithm [17]. We will limit
the scope of the discussion in this paper to mostly rigid
polygonal models, though some of the techniques are
applicable to other domains and model representation
as well.

3.1 Collision Detection for Polygonal

Models

Most of the earlier work in collision detection has fo-
cused on algorithms for convex polytopes. A number
of algorithms with good asymptotic performance have
been proposed in the computational geometry litera-
ture. Using hierarchical representations, an O(log2n)
algorithm is given in [DK90] for polytope-polytope
overlap problem, where n is the number of vertices.
This elegant approach has not been robustly imple-
mented in 3D, however.

Good theoretical and practical approaches based on
linear complexity of the linear programming problem
are known [35, 44]. Minkowski di�erence and convex
optimization techniques are used in [14] to compute
the distance between convex polytopes by �nding the
closest points.

In applications involving rigid motion, geometric co-
herence has been exploited to design algorithms for
convex polyhedra based on local features [2, 29, 28].
These algorithms exploit the spatial and temporal co-
herence between successive queries and work well in
practice.

A number of hierarchies have been used for colli-
sion detection between general polygonal models. Typ-
ical examples of bounding volumes include axis-aligned
boxes (cubes are a special case) and spheres, and they
are chosen for their fast overlap tests. Other struc-
tures include cone trees, k-d trees and octrees [43],
sphere trees [19, 41], trees based on S-bounds [6],

etc. Binary space partitions (BSP) [39] and extensions
to multi-space partitions [4], and spatial partitionings
based on space-time bounds or four-dimensional testing
[5, 9, 13, 19] have been used. All of these hierarchical
methods do very well in performing \rejection tests"
whenever two objects are far apart. However, when
the two objects are in close proximity and can have
multiple contacts, these algorithms either use subdivi-
sion techniques or check very large number of bounding
volume pairs for potential contacts. In such cases, their
performance slows down considerably.

More recent work seems to have focused on tighter-
�tting bounding volumes. Gottschalk et al. [15] have
presented a fast algorithmand a system, called RAPID,
for interference detection based on oriented bounding
boxes, which approximate geometry better than do
axis-aligned bounding boxes. Barequet et al. [3] have
also used oriented bounding boxes for computing hier-
archical representations of surfaces for performing col-
lision detection. Klosowski et al. [21, 22] have used dis-
crete orientation polytopes (k-dops), which also are su-
perior approximations to bounded geometry. Krishnas
et. al. [25, 23] have proposed a higher order bounding
volume, designed to match curvature of the underlying
3D geometry, especially suited for B�ezier patches and
NURBS.

3.2 Algorithms for Non-Polygonal Ob-

jects

In geometric and solid modeling, the problem of
computing the intersection of surfaces represented as
splines or algebraic surfaces has received a great deal
of attention [18]. Given two surfaces, the problem cor-
responds to computing all components of the intersec-
tion curve, robustly and accurately. It includes work
on curves and surface intersections [18, 33, 34, 24]. All

these algorithms have focussed on accurate computa-
tion of the intersection set for static models. However,
for collision detection we are actually dealing with a
restricted version of this problem. That is, given two
surfaces we want to know whether they intersect. Fur-
thermore, we are interested in dynamic environments
composed of moving objects.

In general, given two spline surfaces, there is no good
and quick solution to the problem of whether they in-
tersect or have a common geometric contact. The sim-
plest solution is based on using subdivision and check-
ing the control polytopes or convex bounding boxes
for collision. For a more complete state-of-art report,
please refer to a recent survey [30].



4 Multi-Level Approach

Our proposal takes a multi-level approach to the prob-
lem of collision detection. This technique has been
incorporated into the design of I-COLLIDE and V-
COLLIDE library [10, 20].

4.1 System Overview

In this section, we brie
y describe the system architec-
ture of our collision detection systems. A quick conser-
vative approximation �nds potentially-colliding pairs of
objects among the entire database (using the n-body
sweep-and-prune algorithm to be described next), after
which a pairwise test (using those to be described in
Section 5) determines whether two objects marked as
overlapping actually collided.

Our collision detection algorithms utilize hierarchi-
cal data structures and whenever it is appropriate we
also exploit the properties of locality and coherence.
Several concepts from computational geometry and ge-
ometric modeling are incorporated to solve the collision
detection problems among all geometric models in real
time, for most of the cases. The algorithms are gener-
ally applicable, but especially well suited to dynamic
domains where objects are moving at small, discrete
steps.

The performance of our low-level collision detection
algorithms for convex polyhedral models is indepen-
dent of the model complexity and is a function of the
object motion. The run time for checking interference
between non-convex objects and curved models (such
as NURBS, algebraic surfaces) is output sensitive. At
the top-level, we use a scheduling scheme or sweep and

prune technique to reduce the quadratic number of
pairwise interference tests in large, interactive virtual
environments, or scheduling scheme for dynamic simu-
lation. Next, we will describe them in details.

4.2 Scheduling Scheme For Dynamic

Simulation

In a dynamic simulation, where the motion is sub-
ject to dynamic constraints or external forces and
cannot typically be expressed as a closed form func-
tion of time, various algorithms have been proposed
[1, 2, 9, 5, 19, 28]. Di�erent methods have also been
proposed to overcome the bottleneck of O(N2) pair-

wise tests for N moving objects in an environment. The
simplest of these are based on spatial subdivision. An-
other approach operates directly on four-dimensional
volumes swept out by object motion over time [5].
None of these approaches adequately address the issue

of real-time, exact collision detection for simulated en-
vironments, which requires performance at interactive
rates for thousands of moving objects.

In order to avoid unnecessary computations and to
speed up the run time, we use a scheduling scheme to
reduce the frequency of collision detection. The algo-
rithm maintains a priority queue (implemented as a
heap) of all pairs of objects that might collide. They
are sorted by estimated time to collision; with the one
most likely to collide appearing at the top of the heap.
The approximation is a lower bound on the time to col-
lision and is calculated adaptively, so no collisions are
missed. Non-convex objects, which are represented as
hierarchy trees are treated as single objects from the
point of view of the queue. More detail of the algo-
rithm is given in [28, 31]. This scheduling scheme has
been used successfully in the Impulse dynamic simula-
tion system developed at Berkeley [37].

4.3 N-Body Algorithm Using Sweep

and Prune

However, in an interactive virtual environment, we of-
ten cannot establish an upper bound on acceleration
a priori. We propose to use a sweep and prune tech-
nique to cull out objects which are far apart, based
on their geometry and position, in an interactive en-
vironment where the motion of the objects is unpre-
dictable or unconstrained. This method is simple and
e�cient. It is output sensitive and its running time
is linearly dependent on the number of objects in the
environment instead of quadratic dependence. We use

dynamic bounding boxes, linear-time sweep and prune,
and geometric coherence to quickly reject the object
pairs that are unlikely to collide within the next frame.
This mechanism has reduced the number of pairwise
tests dramatically, especially in a large simulated envi-
ronment.

Sorting the bounding boxes surrounding the objects
is the key to our sweep and prune approach [10]. It
is not intuitively obvious how to sort bounding boxes
in 3-space to determine overlaps. We use a dimension

reduction approach. If two bounding boxes overlap in
3-D, then their orthogonal projections on the x�, y�,
and z� axes must overlap. The sweep and prune al-
gorithm begins by projecting each 3-D bounding box
surrounding an object onto the x�, y�, and z� axes.
Since the bounding boxes are axially-aligned, project-
ing them onto the coordinate axes results in intervals.
We are only interested in overlaps among these inter-
vals, because a pair of bounding boxes can overlap if
and only if their intervals overlap in all three dimen-
sions.



We construct three lists, one for each dimension.
Each list contains the values of the endpoints of the
intervals in each corresponding dimension. By sorting
these lists, we can determine which intervals overlap.
In the general case, such a sort would take O(NlogN )
time, where N is the number of objects. We can re-
duce this time bound by keeping the sorted lists from
the previous frame, updating only the interval end-
points. In environments where the objects make rel-
atively small movements between frames, the lists will
be nearly sorted, so we can re-sort using insertion sort
in expected linear time.

5 Exact Collision Detection

In most computer simulation systems, interactions
among objects are generated by modeling contact con-
straints and impact dynamics. Since prompt recogni-
tion of possible impacts is a key to successful response
to collisions in a timely fashion, a simple and e�cient
algorithm for collision detection is necessary to fast and
realistic simulation of moving objects. In contrast to
previous work, where accuracy is sacri�ced for speed
in a virtual environment, here we describe algorithms
that run at interactive rate and can compute the geo-
metric contacts to the accuracy of input models.

5.1 Collision Detection Between Con-

vex Polyhedra

The heart of our collision detection algorithm for con-
vex polyhedra with topological information is a simple
and fast incremental method [29, 28] to compute the
distance between them. It utilizes convexity to estab-
lish local applicability criteria by using Voronoi regions
to verify the closest feature pairs. As the objects travel
through space, the algorithm takes advantage of coher-
ence to keep track of the closest feature pairs (a combi-
nation of vertex, edge, or face) between them to update
their spatial relation.

Each convex polytope is pre-processed into a modi-
�ed boundary representation. The polytope data struc-
ture has �elds for its features (faces, edges, and ver-
tices) and corresponding Voronoi regions. Each fea-
ture is described with its geometric parameters and
its neighboring features, i.e. the topological informa-
tion of incidences and adjacencies. This preprocessing
procedure is also used to guarantee expected constant
time performance when checking for contacts in a dy-
namic environment. Next, well describe an important
geometric concept that forms the basis of our algorithm
for computing distance between two convex objects via
tracking the closest feature pair.

De�nition: A Voronoi region associated with a fea-
ture is a set of points closer to that feature than any
other [PS85].

The Voronoi regions form a partition of the space
outside the polytope, and form the generalized Voronoi
diagram of the polytope. Note that the generalized
Voronoi diagram of a convex polytope has linear num-
ber of features and consists of polyhedral regions. A
cell is the data structure for a Voronoi region of a single
feature. It has a set of constraint planes which bound
the Voronoi region with pointers to the neighboring
cells (which share a constraint plane with it) in its data
structure. If a point lies on a constraint plane, then it
is equi-distant from the two features which share this
constraint plane in their Voronoi regions. For more de-
tails on the construction and properties, please refer to
[29, 28].

Tracking Closest Features: Our method for �nd-
ing closest feature pairs is based on Voronoi regions. It
hinges upon a fact that each nearest point on the pair of

closest features between two convex polytopes must lie

within the Voronoi region of the other closest feature.

We start with a candidate pair of features, one from
each polytope, and check whether the closest points lie
on these features. Since the polytopes and their faces
are convex, this is a local test involving only the neigh-
boring features of the current candidate features. If
either feature fails the test, we step to a neighboring
feature of one or both candidates, and try again. As the
Euclidean distance between feature pairs must always
decrease when a switch is made, cycling is impossible
for non-penetrating objects [29, 28]. An implementa-
tion with linear programming code is available as part
of the I-COLLIDE at the UNC-CH website.

To handle penetration, internal pseudo Voronoi re-
gions can be constructed as well to detect penetration
[32]. This can also help reducing the amount of \walk-
ing" on the polyhedral surfaces by \tunneling" through
the internal of the objects, where the motion of the ob-
jects is abrupt and large. In addition, this modi�cation
makes the original algorithmmuch more robust and ef-
�cient.

5.2 Interference Tests Between General

Polygonal Models

� Sub-Part Hierarchy

As for non-convex objects, we can assume that each
non-convex object is given as a union of convex polyhe-
dra or is composed of several non-convex subparts, each
of these can be further represented as a union of convex
polyhedra or a union of concave subparts. With such
an assumption, we propose to use a sub-part hierar-



chy tree to represent each non-convex object. At each
time step, we examine the possible interference using
Lin-Canny algorithm [29, 28] described above between
two convex parts. If the parents of the sub-part hi-
erarchy collide, the algorithm is applied recursively to
their children. The algorithmwill only signal a collision
if there is actually an impact between the sub-parts of
two objects; otherwise, there is no collision between the
two objects. This approach guarantees that we �nd the
earliest collision between concave objects while reduc-
ing computation costs.

However, in general, such a hierarchy is only possi-
ble to construct if we have the object hierarchy or we
construct the object hierarchy by hand ourselves. This
may be a reasonable assumption for simple virtual en-
vironments, but unrealistic for many virtual environ-
ments of CAD models or massive spatial structures. In
many CAD models, there may be no topological con-
nectivity or object hierarchy that can be easily and au-
tomatically extracted. Therefore, we suggest the use
of the hierarchical bounding volumes to address the
problem of interactive collision detection.

�Hierarchy of Oriented Bounding Boxes (OBB-

Trees)

A bounding volume (BV) is often used to bound or
contain sets of geometric primitives, such as triangles,
polygons, NURBS, etc. In a bounding volume hierar-
chy (BVH), BVs are stored at the internal nodes of a
tree structure. The root BV contains all the primitives
of a model, and children BVs each contain separate par-
titions of the primitives enclosed by the parent. Leaf
node BVs typically contain one primitive. In some vari-
ations, one may place several primitives at a leaf node,
or use several volumes to contain a single primitive [41].

Two models are compared using a tandem recursive
traversal of their BVHs. Each recursive call is made
with BVs A and B, say one from each hierarchy, and
must determine if A and B overlap. If A and B are

not overlapping, the recursion stops at that level. But
if A and B are overlapping, the enclosed primitives
may overlap and the algorithm is applied recursively
to their children. If A and B are both leaf nodes, the
primitives within them are compared directly.

We propose a data structure called OBBTrees [15]
and an algorithm for e�cient and exact interference de-
tection amongst complex models undergoing rigid mo-
tion. The algorithm is applicable to all general polyg-
onal models. It pre-computes a hierarchical represen-
tation of models using tight-�tting oriented bounding
box trees (OBBTrees) using top-down tree construc-
tion. At runtime, the algorithm traverses two such
trees and tests for overlaps between oriented bound-

ing boxes based on a separating axis theorem, which
takes less than 200 operations in practice. This test is
about one order of magnitude faster compared to ear-
lier algorithms for checking overlap between oriented
bounding boxes.

The tree construction has two components: �rst is
the placement of a tight �tting OBB around a collec-
tion of polygons, and second is the grouping of nested
OBB's into a tree hierarchy. We want to approximate
the collection of polygons with an OBB of similar di-
mensions and orientation. We triangulate all polygons
composed of more than three edges. The OBB com-
putation algorithmmakes use of �rst and second order
statistics summarizing the vertex coordinates. They
are the mean and the covariance matrix respectively.
The eigenvectors of a symmetric matrix, such as the
covariance matrix, are mutually orthogonal. After nor-
malizing them, they are used as a basis. We �nd the
extremal vertices along each axis of this basis, and size
the bounding box, oriented with the basis vectors, to
bound those extremal vertices. Two of the three eigen-
vectors of the covariance matrix are the axes of max-
imum and of minimum variance, so they will tend to
align the box with the geometry of a tube or a 
at sur-
face patch. The exact formula and construction details
are available in [15].

Given an algorithm to compute tight-�tting OBBs
around a group of polygons, we need to represent
them hierarchically. Most methods for building hierar-
chies fall into two categories: bottom-up and top-down.
Bottom-up methods begin with a bounding volume for
each polygon and merge volumes into larger volumes
until the tree is complete. Top-down methods begin
with a group of all polygons, and recursively subdivide
until all leaf nodes are indivisible. In our current imple-
mentation, we have used a simple top-down approach.

Our subdivision rule is to split the longest axis of
a box with a plane orthogonal to one of its axes, par-
titioning the polygons according to which side of the
plane their center point lies on. The subdivision co-
ordinate along that axis was chosen to be that of the
mean point of the vertices. If the longest axis cannot
not be subdivided, the second longest axis is chosen.
Otherwise, the shortest one is used. If the group of
polygons cannot be partitioned along any axis by this
criterion, then the group is considered indivisible.

Given OBBTrees of two objects, the interference al-
gorithm typically spends most of its time testing pairs
of OBBs for overlap. A simple algorithm for testing
the overlap status for two OBB's performs 144 edge-
face tests. In practice, it is an expensive test. OBBs
are convex polytopes and therefore, algorithms based
on linear programming and closest features computa-



tion can be applied to check for overlap. However, they
are relatively expensive compared to the overlap tests
between a pair of spheres or between a pair of axis-
aligned bounding boxes.

One trivial test for disjointness is to project the
boxes onto some axis (not necessarily a coordinate axis)
in space. This is an axial projection. Under this pro-
jection, each box forms an interval on the axis. If the
intervals don't overlap, then the axis is called a sepa-

rating axis for the boxes, and the boxes must then be
disjoint. If the intervals do overlap, then the boxes may
or may not be disjoint{ further tests may be required.
We make use of the separating axis theorem presented
in [15] to check for overlaps. According to it, two con-
vex polytopes in 3-D are disjoint if and only if there
exists a separating axis orthogonal to a face of either
polytope or orthogonal to an edge from each polytope.
Each box has 3 unique face orientations, and 3 unique
edge directions. This leads to 15 potential separating
axes to test (3 faces from one box, 3 faces from the
other box, and 9 pairwise combinations of edges). If
the are overlapping, then clearly no separating axis ex-
ists. So, testing the 15 given axes is a su�cient test for
determining overlap status of two OBBs.

This algorithm has been implemented and we com-
pare its performance with other hierarchical data struc-
tures such as trees of spheres and axis-aligned bound-
ing boxes. We found superior performance using OBB-
Trees on parallel close proximity con�guration or near
contact situation, which are the most challenging sce-
narios for any collision detection algorithm in dynamic
simulation and virtual prototyping applications. It can
robustly and accurately detect all the contacts between
large complex geometry composed of hundreds of thou-
sands of polygons at interactive rates.

5.3 Contact Determination Between

Spline Models

We introduce hierarchies based on spherical shells

[25, 23] and use them for proximity queries. A spherical
shell corresponds to a portion of the volume between
two concentric spheres and encloses the underlying ge-
ometry. We devise e�cient algorithms to compute such
volumes and fast overlap tests between two shells. The
overlap test is only slower by a small factor (2 or 3
times as compared to the overlap test between two
OBB's). Their main advantage comes from the fact

that they provide local cubic convergence to the under-
lying geometry. By cubic convergence we mean that the
bounding volume approximates the surface accurately
up to the second order (if the surface is expressed as
a Taylor's series). Therefore, there are fewer false pos-

itives in terms of overlap tests between the bounding
volumes and the underlying primitives. This results
in improved overall performance for proximity queries
between two objects in close proximity con�gurations
or between two objects with high-curvature surfaces.
However, our results show that the local cubic conver-
gence is restricted to elliptic (unlike hyperbolic) regions
of the surface.

6 Collision Response

Given the ability to detect collisions at interactive rate,
the application need to generate a suitable collision re-
sponse. The central problem in collision response is the
computation of collision impulses [42]. Accurate com-
putation of impulses arising between colliding, sliding,
rolling bodies is critical to the physical accuracy of the
impact response.

There are two major approaches in computing col-
lision impulses: the constraint-based method and the
impulse-based scheme. Each has its own advantages.
Constraint-based approach [1, 2, 48] is suited to model
the motion constraints imposed by other contacting
bodies. A perfect example is modeling a hinge joint
or linkage bodies (such as human motion dynamics).
On the other hand, impulse-based method is simple
and easy to implement. In addition, impulse-based ap-
proach does not need to keep track of contact states
(resting, rolling, sliding, colliding, etc.) and it presents
a uni�ed computational model for computing the col-
lision impulses for impact response.

Impulse-based dynamics [17, 37] assumes no explicit
constraints on con�guration of the moving objects.
When the objects are not in contact, they are trav-
eling in ballistic trajectory. Otherwise, all modes of
contacts are modeled via series of impulses applied to
the objects, whether they are bouncing around, sliding
through or resting on top of each other. Obviously,
this approach is very collision intensive, i.e. the simu-
lator will need to check for possible contacts frequently.
However, because of our extremely e�cient algorithms
for collision detection, it is now possible to compute
the motion dynamics of rigid bodies in nearly real time
on current personal PCs or graphics workstations [37].

7 Application Demonstration

We have tested the collision detection algorithms on
numerous cases including: interaction with architec-
ture walkthrough and mechanical CAD model of a
power plant, dynamics of threaded screw insertion, in-
terlocked toridal chain motion, bowling, non-holonomic



motion of a ball on a spinning platter, etc. In such
a large-scale environment, we have thousands, even
millions of complex objects and we need to simula-
tion interaction among the user and the virtual world.
The complexity of mega models poses a grant chal-
lenge to real-time collision detection and dynamic sim-
ulation. We have been collaborating with the Walk-
through Group at UNC Chapel Hill to integrate the
system into their architecture walkthrough, a multi-
body simulation environment and walkthrough of a
coal-�red powerplant. The preliminary results have
shown great promises in achieving interactive collision
detection on the current personal computer and graph-
ics workstations. For more information and demonstra-
tion of our algorithms and systems, please refer to

http://www.cs.unc.edu/~geom/collide.html

for a catalog of videos, examples, and technical reports.

8 Public Domain Software Pack-

ages

Most of public domain systems are applicable to polyg-
onal models and some are also applicable to large en-
vironments composed of multiple moving objects. It is
nearly impossible to compare di�erent algorithms and
systems fairly, since their performance varies, depend-
ing on the simulation environments (models, varieties
of contacts, query types, motion description, etc.) and
other factors. Here we only list them in the chrono-
logical order of their release and brie
y describe their
special characteristics.

I-COLLIDE is an interactive and exact collision-
detection library for environments composed of many
convex polyhedra or union of convex pieces, based on
the expected constant time, incremental distance com-
putation algorithm [29, 28], linear programming and
sweep and prune technique to check for collision be-
tween multiple moving objects [10]. It is available at

http://www.cs.unc.edu/~geom/I COLLIDE.html

RAPID is a robust and accurate polygon interference
detection library for pairs of unstructured polygonal
models. It is applicable to polygon soups, i.e. mod-
els that contain no adjacency information and obey
no topological constraints. It is most suitable for
close proximity con�gurations between highly tessel-
lated smooth surfaces [15] and available at

http://www.cs.unc.edu/~geom/OBB/OBBT.html

V-COLLIDE is a collision detection library for large
dynamic environments [20], and unites the nbody pro-
cessing algorithm of I-COLLIDE and the pair process-
ing algorithm of RAPID. It is designed to operate on
large numbers of static or moving polygonal objects to
allow dynamic addition or deletion of objects between
time steps and available at

http://www.cs.unc.edu/~geom/V COLLIDE

Distance Computation between Convex Poly-

topes is an enhanced and dynamic version [7] of
the distance routine of Gilbert, Johnson and Keerthi
(GJK), which allows the tracking of the distance be-
tween a pair of convex polyhedra. It requires a list of
all the edges in each convex polyhedra for best perfor-
mance. Its performance is comparable to Lin-Canny
[29, 28] convex polytope overlap test. It is available at

www.comlab.ox.ac.uk/oucl/users/stephen.cameron/

SOLID is a library for interference detection of mul-
tiple three-dimensional polygonal objects (including
polygon soups) undergoing rigid motion and deforma-
tion speci�ed by vertex arrays. Its performance is
slightly slower based on some benchmarks that we have

tested on and its applicability is comparable to that of
V-COLLIDE. It is available at

http://www.win.tue.nl/cs/tt/gino/solid/

V-Clip, or the Voronoi Clip, algorithm is a low-level
collision detection algorithm for polyhedral objects [36]
{ an improvement of the closest-feature tracking algo-
rithm using Voronoi regions [29, 28]. It operates on a
pair of convex polyhedra, or nonconvex hierarchies of
convex pieces. In addition to distance computation, it
can also report estimated penetration points and esti-
mated penetration distance between overlapping mod-
els. It is available at

http://www.merl.com/people/mirtich/vclip.html

QuickCD is a general-purpose collision detection li-
brary, capable of performing fast and exact collision
detection on highly complex models. QuickCD can
handle unstructured inputs consisting of a soup of poly-
gons. It is based on hierarchies of k-dops [21, 22] and
available at

http://www.ams.sunysb.edu/ jklosow/quickcd/

PQP is a library for performing three types of prox-
imity queries on a pair of geometric models consisting
of polygon soups, using OBBTreees and a family of
bounding volumes called swept sphere volumes. The
queries are collision detection, distance computation
and tolerance veri�cation [26]. It is available at

http://www.cs.unc.edu/~geom/SSV



9 Future Work

Despite abundant wealth of the literature in collision
detection, there are several open research issues. Much
remains to be done on detecting contacts between de-
formable models accurately and e�ciently. Although
an algorithm based on bounding volume hierarchies
can be used to check for collision between two de-
formablemodels by recomputing the bounding volumes
given modi�ed vertex coordinates; it is, however, un-
clear if such an approach is the most e�cient and suit-
able for large deformation. Many applications call for
the development of algorithms for fast distance compu-
tation between general geometric models, possibly by
utilizing pre-computed bounding volume hierarchies or
adaptive hybrid hierarchies which consist of di�erent
types of bounding volumes [26]. In dynamic simula-
tion, computing collision response requires robust and
interactive computation of the closest features or con-
tact points between general geometric models, as well
as rapid calculation of penetration distance. This prob-
lem is especially di�cult for those models with smooth
surfaces and many concavities. Integration of geomet-
ric, numerical and analytical methods is probably nec-
essary to design solutions to address these problems.
There are also new challenges in applying collision de-
tection algorithms to haptic rendering [16] or proximity
queries on massive models [47], which consist of mil-
lions of primitives and are often too large to �t in the
main memory. These may include developing external
memory algorithms, dynamic pre-fetching techniques,
SIMD implementation or parallel computing methods
for collision detection.

Acknowledgments

We would like to thank Dinesh Manocha, John
Canny, Jonathan Cohen, Stefan Gottschalk, Shankar
Krishnan, Gopi Meenakshi, Brian Mirtich, Amol Pat-

tekar, Krish Ponamagi and the Walkthrough Group at
the University of North Carolina, Chapel Hill for their
collaboration and the architecture model for demon-
stration. We are also grateful to ARO, DARPA, Ford,
Honda, Intel Corporation, NSF, ONR, Sloan Founda-
tion and University of North Carolina at Chapel Hill
for their research funding support over the years.

References

[1] Bara�, D. (1989). Analytical Methods for Dynamic Sim-
ulation of Non-Penetrating Rigid Bodies, ACM Computer
Graphics, 23 (3): pp. 223-232, July 1989.

[2] Bara�, D. (1990). Curved Surfaces and Coherence for
Non-Penetrating Rigid Body Simulation, ACM Computer
Graphics, 24 (4): pp. 19-28, 1990.

[3] Barequet, G., Chazelle, B. Guibas, L, Mitchell, J. and Tal.
A (1996). Boxtree: A hierarchical representationof surfaces
in 3d. in the Proceedings of Eurographics'96.

[4] Bouma, W. and Vanecek, G. (1991). Collision detection
and analysis in a physically based simulation, in the Pro-
ceedings of Eurographics workshop on animation and sim-
ulation, pages 191{203, 1991.

[5] Cameron, S. (1990). Collision detection by four-
dimensional intersection testing, in the Proceedings of
IEEE International Conference on Robotics and Automa-
tion, pages 291{302, 1990.

[6] Cameron, S. (1991). Approximation hierarchies and s-
bounds, in the Proceedings of ACM Symposium on Solid
Modeling Foundationsand CAD/CAM Applications, pages
129{137, Austin, TX, 1991.

[7] Cameron, S. (1997). A comparison of two fast algo-
rithms for computing the distance between convex poly-
hedra, IEEE Transactions on Robotics and Automation,
13(6):915{920, December 1997.

[8] Cameron, S. and Culley, R. K. (1986). Determining the
minimum translational distance between two convex poly-
hedra, in the Proceedingsof IEEE InternationalConference
on Robotics and Automation, pages 591{596, 1986.

[9] Canny, J. F. (1986) Collision detection for moving polyhe-
dra, IEEE Transactions on PAMI, 8:200{209, 1986.

[10] Cohen, J., Lin, M., Manocha, D. and Ponamgi, M. (1995).
I-Collide: An interactive and exact collision Detection sys-
tem for large-scale environments, in the Proceedings of
ACM Interactive 3D Graphics Conference, pages 189{196.

[11] Cremer, J. F. and Stewart, A. J. (1994). The Architecture
of Newton, A General Purposed Dynamic Simulator, Pro-
ceedings of the IEEE International Conference on Robotics
and Automation, May 1994.

[12] Dobkin, D. P. and Kirkpatrick, D. G. (1990). Determin-
ing the separation of preprocessed polyhedra { A uni�ed
approach, in the Proceedings of the 17th Internat. Col-
loq. Automata Lang. Program., V. 443 of Lecture Notes in
Computer Sciences, pages 400{413. Springer-Verlag.

[13] Garcia-Alonso, A., Serrano, N., and Flaquer, J. (1994).
Solving the Collision Detection Problem, IEEE Computer
Graphics and Applications, 13 (3): pp. 36-43, 1994.

[14] Gilbert, E. G., Johnson, D. W. and Keerthi, S. S. (1988). A
fast procedure for computing the distance between objects
in three-dimensional space, IEEE J. Robotics and Automa-
tion, Vol RA-4:193{203.

[15] Gottschalk, S., Lin, M. and Manocha, D. (1996). OBB-
Tree: A Hierarchical Structure for Rapid Interference De-
tection, the Proceedings of ACM SIGGRAPH'96, pp. 171-
180, New Orlean, LA, 1996.

[16] Gregory, A. Lin, M. Gottschalk, S. and Taylor, R. (1999).
H-COLLIDE: A Framework for Fast andAccurate Collision
Detection for Haptic Interaction, the Proceedings of IEEE
VR'99, pp. pp. 38-45, March 1999.



[17] Hahn, J.K. (1988). Realistic Animation of Rigid Bodies,
ACM Computer Graphics, 22 (4): pp. 299-308, 1988.

[18] Ho�mann, C. M. (1989). Geometric and Solid Modeling,
Morgan Kaufmann, San Mateo, California.

[19] Hubbard, P.M. (1993). InteractiveCollisionDetection, Pro-
ceedings of IEEE Symposium on Research Frontier in Vir-
tual Reality, October 1993.

[20] Hudson, T., Lin, M., Cohen, J., Gottschalk, S., and
Manocha, D. (1997). V-collide: Accelerated collision de-
tection for VRML. In the Proceedings of ACM Symposium
on VRML, pages 119{125, 1997.

[21] Klosowski, J., Held, M. and Mitchell, J. S. B. (1996). Real-
Time Collision Detection for Motion Simulation within
Complex Environments, ACM SIGGRAPH Visual Pro-
ceedings, p.151, 1996.

[22] Klosowski, J., Held, M., Mitchell, J. S. B., Sowizral, H.
and Zikan, K. (1998). E�cient Collision Detection Using
Bounding Volume Hierarchies of k-DOPs, IEEE Trans. on
Visualization and Computer Graphics, v. 4-1: p. 21-37,
1998.

[23] Krishnan, S., Gopi, M., Lin, M. C., Manocha, D. and Pat-
tekar, A. (1998). Rapid and Accurate Contact Determina-
tion between Spline Models using ShellTrees, in the Pro-
ceedings of Eurographics'98, 1998.

[24] Krishnan, S. and Manocha, D. (1997). An e�cient sur-
face intersection algorithm based on the lower dimensional
formulation, ACM Transactions on Graphics, 16(1): p.74{
106, 1997.

[25] Krishnan, S., Pattekar, A., Lin, M. and Manocha, D.
(1998). Spherical shell: A higher order bounding volume for
fast proximity queries, Proceedings of the Third Interna-
tional Workshop on Algorithmic Foundations of Robotics,
1998.

[26] Larsen, E., Gottschalk, S., Lin, M. and Manocha, D.
(1999). Fast Proximity Queries with Swept Sphere Vol-
umes, Technical report TR99-018, Department of Com-
puter Science, University of N. Carolina, Chapel Hill, 1999.

[27] Latombe, J.-C. (1991). Robot Motion Planning, Kluwer
Academic Publishers.

[28] Lin, Ming C. (1993). E�cient Collision Detection for Ani-
mation and Robotics, Ph.D. Thesis, Department of Electri-
cal Engineering and Computer Science, University of Cali-
fornia, Berkeley, 1993.

[29] Lin, Ming C. and Canny, J. (1991). E�cient algorithms
for incremental distance computation, Proceedings of the
IEEE International Conference on Robotics and Automa-
tion, pp. 1008{1014, May 1991.

[30] Lin, M. C. and Gottschalk, S (1998). Collision Detection
between Geometric Models: A Survey, in the Proceedings
of IMA Conference on Mathematics of Surfaces.

[31] Lin, M. C. and Manocha, D. (1995). Fast interference de-
tection between geometric models, the Visual Computer,
11(10): pp. 542{561, 1995.

[32] Lin, M. C., Manocha, D. and Ponamgi, K. (1994). Fast
contact determination between general polyhedral models,
in the Proceedings of IEEE International Conference on
Robotics and Automation, Vol. 4, pp. 602-208, May 1994.

[33] Manocha, D. and Demmel, J. (1994). Algorithms for in-
tersecting parametric and algebraic curves I: simple inter-
sections, ACM Transactions on Graphics, 13(1): p.73{100,
1994.

[34] Manocha, D. and Demmel, J. (1994). Algorithms for inter-
secting parametric and algebraic curves II: multiple inter-
sections, Computer Vision, Graphics and Image Process-
ing: Graphical Models and Image Processing, pages 81{
100, 1995.

[35] Megiddo, N. (1983). Linear-time algorithms for linear pro-
gramming in R3 and related problems, SIAM J. Comput-
ing, 12:pp. 759{776, 1983.

[36] Mirtich, B. (1998). V-Clip: Fast and Robust Polyhedral
Collision Detection, ACM Transactions on Graphics, 17(3),
pp. 177{208, 1998.

[37] Mirtich, B. and Canny, J. (1995). Impulse-Based Simula-
tion of Rigid Bodies, ACM Symposium on Interactive 3D
Graphics, pp.181-188, 1995.

[38] Moore, M. and Wilhelms J. (1988). Collision Detection
and Response for Computer Animation, ACM Computer
Graphics, 22 (4): pp. 289-298, 1988.

[39] Naylor, B., Amanatides, J. and Thibault,W. (1990). Merg-
ing BSP trees yield polyhedral modeling results, in Pro-
ceedings of ACM SIGGRAPH, 1990, pp. 115{124.

[40] Preparata, F.P. and Shamos, M.I. (1985). Computational
Geometry, Springer-Verlag, New York.

[41] Quinlan, S. (1994). E�cient distance computation between
non-convex object, in the Proceedings of IEEE Interna-
tional Conference on Robotics and Automation, pp. 3324{
3329, 1994.

[42] Routh, E. J. (1905). Elementary Rigid Dynamics.

[43] Samet, H. (1989). Spatial Data Structures: Quadtree, Oc-
trees and Other Hierarchical Methods, Addison Wesley.

[44] Seidel, R. (1990). Linear programming and convex hulls
made easy, in the Proceedings of 6th Ann. ACM Conf. on
Computational Geometry, p.211{215.

[45] Thibault, W. and Naylor, B (1987). Set Operations on
Polyhedra Using Binary Space Partitioning Trees, ACM
Computer Graphics, 4, 1987.

[46] Wang, Y. and Mason, M. (1987). Modeling Impact Dy-
namics for Robot Operations, Proceedings of the IEEE In-
ternational Conference on Robotics and Automation, pp.
678-685, May 1987.

[47] Wilson, A. Larsen, E. Manocha, D. and Lin, M. (1999).
Partitioning and Handling Massive Models for Interac-
tive Collision Detection, in the Computer Graphics Forum,
September 1999.

[48] Witkin, A., Gleicher,M., andWelch, W. (1990). Interactive
Dynamics, ACM Computer Graphics, 24 (2): pp. 11-22,
March 1990.


