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Abstract

This paper presents a technique for adapting existing motion of a
human-like character to have the desired features that are specified
by a set of constraints. This problem can be typically formulated as
a spacetime constraint problem. Our approach combines a hierar-
chical curve fitting technique with a new inverse kinematics solver.
Using the kinematics solver, we can adjust the configuration of an
articulated figure to meet the constraints in each frame. Through
the fitting technique, the motion displacement of every joint at each
constrained frame is interpolated and thus smoothly propagated to
frames. We are able to adaptively add motion details to satisfy the
constraints within a specified tolerance by adopting a multilevel B-
spline representation which also provides a speedup for the inter-
polation. The performance of our system is further enhanced by
the new inverse kinematics solver. We present a closed-form solu-
tion to compute the joint angles of a limb linkage. This analytical
method greatly reduces the burden of a numerical optimization to
find the solutions for full degrees of freedom of a human-like artic-
ulated figure. We demonstrate that the technique can be used for re-
targetting a motion to compensate for geometric variations caused
by both characters and environments. Furthermore, we can also
use this technique for directly manipulating a motion clip through
a graphical interface.

CR Categories: 1.3.7 [Computer Graphics]:  Three-
dimensional Graphics—Animation; G.1.2 [Numerical Analysis]:
Approximation—Spline and piecewise polynomial approximation

Keywords. Motion Editing, Motion Adaptation, Spacetime Con-
straints, Hierarchical Techniques, Inverse Kinematics

1 Introduction

Animating human-like characters is a recurring issue in computer
graphics. Recently, motion capture has become one of the most
promising technologies in character animation. Realistic motion
data can be captured by recording the movement of a real actor
with an optical or magnetic motion capture system. A motion li-
brary, that is an archive of reusable motion clips, is also commer-
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cially available. Much of the recent research in motion control
has been devoted to developing various kinds of editing tools to
produce a convincing motion from prerecorded motion clips. To
reuse motion-captured data, animators often adapt them to a dif-
ferent character, i.e., retargetting a motion from one character to
another [13], or to a different environment to compensate for geo-
metric variations [3, 37]. Animators also combine two motion clips
in such a way that the end of one motion is seamlessly connected to
the start of the other [28].

The core of the motion manipulation can be modeled as a space-
time constraint problem [12, 13, 28]. Each kinematic constraint
specifies the desired position or orientation of an end-effector, such
as a foot and a hand, of an articulated figure at a specific time. The
important features of the target motion are specified interactively
as constraints, and the captured motion is deformed to satisfy those
constraints.

Motion data consist of a bundle of motion signals. Each signal
represents a sequence of sampled values for each degree of free-
dom. Those signals are sampled at a sequence of discrete time in-
stances with a uniform interval to form a motion clip that consists
of a sequence of frames. In each frame, the sampled values from
the signals determine the configuration of an articulated figure at
that frame, and thus they are related to each other by kinematic
constraints. This structure yields two relationships among sampled
values: inter-frame and intra-frame relationships. Through the use
of an inverse kinematics solver, the intra-frame relationship, that
is, the configuration of an articulated figure within each frame can
be adjusted to meet the kinematic constraints. However, if each
frame is considered independently, then there could be an unde-
sirable jerkiness between consecutive frames. Therefore, we have
to take account of the inter-frame relationship as well. For this
purpose, we employ the multilevel B-spline fitting technique. We
also present an efficient inverse kinematics algorithm which is used
in conjunction with the fitting technique. Our approach is distin-
guished from the work of Gleicher [13] who addressed the same
problem. He provided a unified approach to fuse both relationships
into a very large non-linear optimization problem, which is cumber-
some to handle. Instead, we decouple the problem into manageable
subproblems each of which can be solved very efficiently.

Multilevel B-spline fitting techniques have been investigated to
design smooth surfaces which interpolate scattered features within
a specified tolerance [10, 20, 21, 34]. Among them, we extend
the technique presented by Lee et al. [21] for adapting a motion
to satisfy the constraints which are scattered over the frames. The
multilevel B-splines make use of a coarse-to-fine hierarchy of knot
sequences to generate a series of uniform cubic B-spline curves
whose sum approaches the desired function. At each level in the
hierarchy, the control points of the B-spline curve are computed
locally with a least-squares method which provides an interactive
performance. With this fitting technique, we cannot only manipu-
late a curve adaptively to satisfy a large set of constraints within a
specified error tolerance, but also edit a curve at any level of detail
to allow an arbitrary portion of the motion to be affected through
direct manipulation. Exploiting these favorable properties of the



multilevel B-spline curves, we conveniently derive a hierarchy of
displacement maps which are applied to the original motion data to
obtain a new, smoothly modified motion. Because of this displace-
ment mapping, the detail characteristics of the original motion can
be preserved [3, 37].

The performance of our approach is further enhanced by our new
inverse kinematics solver. It is commonplace to formulate the in-
verse kinematics with multiple targets as a constrained non-linear
optimization for which the computational cost is expensive [28, 38].
As noticed by Korein and Badler [19], we can find a closed-form
solution to the inverse kinematics problem for a limb linkage which
consists of three joints, for example, shoulder-elbow-wrist for the
arm and hip-knee-ankle for the leg. We combine this analytical
method with a numerical optimization technique to compute the
solutions for full degrees of freedom of a human-like articulated
figure. Our hybrid algorithm enables us to edit the motions of a 37
DOF articulated figure, interactively.

The remainder of the paper is organized as follows. After a re-
view of previous works, we give an introduction to the displacement
mapping and the multilevel B-spline fitting technique in Section 3.
In Section 4, we present our motion editing technique. In Section 5,
we describe two inverse kinematics algorithms: One is designed to
manipulate a general tree-structured articulated figure and the other
is specialized to a human-like figure with limb linkages. In Sec-
tion 6, we demonstrate how our technique can be used for inter-
active motion capture-based animation which includes adapting a
motion from one character to another, fitting a recorded walk onto
a rough terrain and performing seamless transitions among motion
clips. Finally, we conclude this paper in Section 7.

2 Previous Work

2.1 Motion Editing

There have been an abundance of research results to develop motion
editing tools. Bruderlin and Williams [3] showed that techniques
from the signal processing domain can be applied to manipulat-
ing animated motions. They introduced the idea of displacement
mapping to alter a motion clip. Witkin and Popovi¢ [37] presented
a motion warping technique for the same purpose. Bruderlin and
Williams also presented a multi-target interpolation with dynamic
time warping to blend two motions. Unuma et al. [33] used Fourier
analysis techniques to interpolate and extrapolate motion data in the
frequency domain. Wiley and Hahn [35] and Guo and Robergé [14]
investigated spatial domain techniques to linearly interpolate a set
of example motions. Rose et al. [27] adopted a multidimensional
interpolation technique to blend multiple motions all together.
Witkin and Kass [36] proposed a spacetime constraint technique
to produce the optimal motion which satisfies a set of user-specified
constraints. Brotman and Netravali [2] achieved a similar result by
employing optimal control techniques. The spacetime formulation
leads to a constrained non-linear optimization problem. Cohen [5]
developed a spacetime control system which allows a user to inter-
actively guide a numerical optimization process to find an accept-
able solution in a feasible time. Liu et al. [22] used a hierarchical
wavelet representation to automatically add motion details. Rose et
al. [28] adopted this approach to generate a smooth transition be-
tween motion clips. Gleicher [12] simplified the spacetime problem
by removing the physics-related aspects from the objective function
and constraints to achieve an interactive performance for motion
editing. He also applied this technique for motion retargetting [13].

2.2 Hierarchical Curve/Surface Manipulation

There is a vast amount of literature devoted to investigating hier-
archical representations of curves and surfaces. Schmitt et al. [29]

presented an adaptive subdivision method to produce a smooth sur-
face from sampled data. Forsey and Bartels [9] introduced a hier-
archical B-spline representation to enhance surface modeling capa-
bility. This representation allows details to be adaptively added to
the surface through local refinement. They also employed the hi-
erarchical representation for fitting a spline surface to the regular
data sampled at grid points [10]. Welch and Witkin [34] proposed a
variational approach to directly manipulate a B-spline surface with
scattered features, such as points and curves. Lee et al. [20, 21] sug-
gested an efficient method for interpolating scattered data points.
They also demonstrated that image warping applications can be cast
as a surface fitting problem by adopting the idea of displacement
mapping. Although authors used different terms, such as hierarchi-
cal and multilevel B-spline surfaces, to refer to their hierarchical
structures, their underlying ideas are the same, that is, a coarse-
to-fine hierarchy of control lattices. Another class of approaches
is due to multiresolution analysis and wavelets. Finkelstein and
Salesin [8] used B-spline wavelets for multiresolution editing of
curves. Many authors have investigated multiresolution analysis for
manipulating spline surfaces and polygonal meshes [4, 6, 23, 30].

2.3 Inverse Kinematics

Traditionally, inverse kinematics solvers can be divided into two
categories: analytic and numerical solvers. Most industrial ma-
nipulators are designed to have analytic solutions for efficient and
robust control. Kahan [16] and Paden [24] independently discussed
methods to solve an inverse kinematics problem by reducing it into
a series of simpler subproblems whose closed-form solutions are
known. Korein and Badler [19] showed that the inverse kinematics
problem of a human arm and leg allows an analytic solution. Actual
solutions are derived by Tolani and Badler [32].

A numerical method relies on an iterative process to obtain a so-
lution. Girard and Maciejewski [11] addressed the locomotion of a
legged figure using Jacobian matrix and its pseudo inverse. Koga
et al. [18] made use of results from neurophysiology to achieve an
“experimentally” good initial guess and then employed a numer-
ical procedure for fine tuning. Zhao and Badler [38] formulated
the inverse kinematics problem of a human figure as a constrained
non-linear optimization problem. Rose et al. [28] extended this for-
mulation to handle variational constraints that hold over an interval
of motion frames.

3 Preliminary

3.1 Displacement Mapping

The configuration of an articulated figure is specified by its joint
angles in addition to the position and orientation of the root seg-
ment. We will denote the position of the root by a 3-dimensional
vector and the others by unit quaternions. It is well-known that unit
quaternions can represent 3-dimensional orientations smoothly and
compactly without singularity [31]. This representation can also
describe a human joint conveniently.

A motion is a time-varying function which provides the con-
figuration of an articulated figure at a time. We denote a motion
by m(t) - (p(t)vql(t)7 e 7qn(t))T' where p(t) € Rg and
q'(t) € S? describe the translational and rotational motion of the
root segment, and q’(t) € S® gives the rotational motion of the
(i — 1)-th jointfor2 < i < n.

A displacement map (also called a warp function) describes
the difference between two motions [3, 37]. Gleicher [13] pro-
vided a good explanation to introduce this technique into a space-
time formulation. In our mathematical setting, the displace-
ment map is defined as d(¢) = m(t) © mo(t), where d(t) =
(VO(t), -, v™ ()T and v (t) € R® for 0 < i < n. Thus, a new



motion can be obtained by applying the displacement map to the
original motion as m(¢) = mo(t) & d(¢), that is,

P Po v0 po + v°
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Here, exp(v) denotes a 3-dimensional rotation about the axis
™ € R? by angle ||v|| € R We refer the readers to Kim et
al. [17] for details of quaternion algebra and the exponential map.
With the displacement mapping, we are able to deal with both po-
sition and orientation data in a uniform way; the displacement map
is a homogeneous array of 3-dimensional vectors, while the con-
figuration of an articulated figure is represented as a heterogeneous
array of a vector and unit quaternions.

3.2 Multilevel B-spline Approximation

Lee et al. [21] proposed a multilevel B-spline approximation tech-
nique for fitting a spline surface to scattered data points. In this
section, we give a brief summary to introduce their fitting tech-
nique. Since we need to manipulate a curve rather than a surface,
our derivation focuses on curve fitting.

Let @ = {t € R|0 <t < n} be a domain interval. Consider a
set of scattered data points P = {(t;, ;) } for t; € Q. To interpo-
late the data points, we formulate an approximation function f as
a B-spline function which is defined over a uniform knot sequence
overlaid on the domain Q. The function f(t) = Ei:O By (t —
[t])b|+)+x—1 can be described in terms of its control points and
uniform cubic B-spline basis functions By, 0 < k < 3. Here, b; is
the 4-th control point on the knot sequence for —1 < i < n + 1.
With this formulation, the problem of deriving function f is reduced
to that of finding the control points that best approximate the data
points in P.

Since each control point b; is influenced by the data points in its
neighborhood, we can define the proximity set P; = {(t;,z;) €
Plj — 2 < t; < j + 2} which affect the value of b;. Simple linear
algebra using pseudo inverse provides a least-squares solution

2
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which minimizes a local approximation error Z(ti@i)epj IIf(t:)—
z;||°. Here, wij = Bji1-|4,(ti — [t:]) comes from a B-spline
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the curve toward a data point (¢;, x;).

There is a trade-off between the shape smoothness and accuracy
of the approximation function. If the knot spacing of the approxi-
mation function is too coarse, it may leave large deviations at the
data points. Conversely, if the function is defined over an exces-
sively fine knot sequence, its shape would undulate through the data
points. Multilevel B-spline approximation uses a series of B-spline
functions with different knot spacings to achieve a smooth shape
while accurately approximating given data points in P. The func-
tion from the coarsest knot sequence provides a rough approxima-
tion, which is further refined in accuracy by the functions derived
from subsequent finer knot sequences.

A multilevel B-spline function is a sum of cubic B-spline func-
tions fo,---, fn which are defined over uniform knot sequences
overlaid on domain Q. The knot sequences yield a coarse-to-fine
hierarchy. Without loss of generality, we assume that the knot spac-
ing of f; is coarser than that of f; for any ¢ < j. The multilevel
B-spline approximation begins by determining the control points of

fo+fi+ f2

Figure 1: Hierarchical curve fitting to scattered data through multi-
level B-spline approximation

fo with Equation (2), which serves as a smooth initial approxima-
tion. fo may leave a deviation A'xz; = 2; — fo(t;) for each point
(t;,x;) in P. The next finer function f; is used to approximate
the difference D; = {Q(tu Alz;)}. Then, the sum fo + fi yields
a smaller deviation A®x; = x; — fo(t;) — f1(¢:) for each point
(ti, x;). At a level k of the hierarchy, function fj, is derived to ap-
proximate Dy, = {(t;, A*z;)} where AFz; = z; — Y770 fults).
By repeating this process to the finest level, we can incrementally
derive the final approximation function f = EZ:o Sr-

4 Hierarchical Motion Editing

4.1 Basic ldea

Given the original motion m and a set C of constraints, our prob-
lem is to derive a smooth displacement map d such that a target
motion m = my & d satisfies the constraints in C. Current motion
editing techniques represent the displacement map as an array of
spline curves defined over a common knot sequence [13, 37]. Each
spline curve gives the time-varying motion displacement of its cor-
responding joint. With a finer knot sequence, we can possibly find
a solution that accurately satisfies all the constraints in C. However,
we have to pay a higher computational cost for the accuracy due to
the finer knot sequence. ldeally, we wish to determine the density
of knots to yield just enough shape freedom for an exact solution.
However, the target motion is not known in advance and thus we
require the displacement map which allows details to be added by
adaptively refining the knot sequence.

We adopt the hierarchical structure [21] reviewed in Section 3.2
to perform this adaptive refinement. The multilevel B-spline ap-
proximation technique was employed to derive a warp function
for image morphing and geometry reconstruction. In our context,
we extend this technique to handle motion data. From the dis-
placement map d, we derive a series of successively finer submaps

dy,-- - ,dy, that give the corresponding series of incrementally re-
fined motions, my, - - - , my,.
my, = (- ((mo ®d1) ®da) @ --- @ dp). 3)

Here, dx, 1 < k < h, is represented by an array of cubic B-spline
curves in the 3-dimensional vector space. The component curves
of dj are defined over a common sequence 7, of knots that are
uniformly spaced. The knot sequences 7, 1 < k < h, form a
coarse-to-fine hierarchy. 7; is placed on the coarsest level in the
hierarchy and 7, is on the finest level. The motion m; = mo ® d;
provides a rough approximation to a target motion, which is further
refined by applying d to give a more accurate approximation ms.
By applying the submaps one by one, we can incrementally obtain
the final motion. Be aware that it is a very frequent mistake to have



d = 3""_ d, from an erroneous derivation, that is, to substitute
exp(v1) exp(vz) - - -exp(vy) forexp(vi+va+- - -+vy) in Equa-
tion (1) and (3). This derivation is not correct, since the quaternion
multiplication is not commutative.

4.2 Constraints

To specify the desired features of the target motion, two categories
of constraints are employed: The ones in the first category are used
to describe an articulated figure itself, such as a joint limit and an
anatomical relationship among joints. Those in the other category
are for placing end-effectors of the figure at particular positions and
orientations which are interactively specified by the user or auto-
matically derived from the interaction between the figure and its
environment. For example, we first specify the contact point be-
tween the foot and the ground through a graphical interface and au-
tomatically modify the point later in accordance with the geometric
variation of the ground. We assume that a constraint in either cate-
gory is defined at a particular instance of time. A variational con-
straint that holds over an interval of motion frames can be realized
by a sequence of constraints for the time interval. An ordered pair
(t;,C;) specifies the set C; of constraints at a frame ¢;.

4.3 Motion Fitting

In order to compute a displacement map, it is necessary to esti-
mate the motion displacement of each joint at every constrained
frame. The displacement of the joint at a particular frame is inter-
polated by the corresponding component curve of the displacement
map and thus smoothly propagated to the neighboring frames. Sup-
pose that we are now at the k-th level for 1 < k < h. Ateach
constrained frame ¢;, our inverse kinematics solver gives the con-
figuration m® of the character, that meets a given set of constraints
(t;,C5). Since there may exist many possible configurations that
satisfy all constraints in C;, we consistently choose the one that is
minimally deviated from the motion my,_; at the previous level.
That is, we minimize

1415 = lm" & my—1 (t)I]2 4)
P2
= aillv'I,
=0
0

where d% = (v°,- .-, v™). We can control the rigidity of an indi-
vidual joint by adjusting its weight value.

Combining the inverse kinematics solver with the hierarchical
structure given in Equation (3), we give the following motion fitting
algorithm:

Algorithm 1 Hierarchical motion fitting

INPUT : the original motion my, the set C of constraints
OUTPUT : a new motion m;,
1 for k:=1toh do
2 D:=0
3 for each (¢;,C;) € Cdo
4: mbi = |K_SO|VEI’(C]', mk_l(t]'))
5: dl ;= mb (&) mkfl(tj)
6
7
8

D:=DU (t;,d%)
end for
Compute dg, by curve fitting to D
9: my = my_1 Ddg
10: end for

This algorithm evaluates d, 1 < k < h, in the coarse-to-fine
order. At each level k in the hierarchy, we compute the motion
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Figure 2: A live-captured walking motion was interactively mod-
ified at the middle frame such that the character bent forward and
lowered the pelvis. The character is depicted at the modified frame.
The range of deformation is determined by the density of the knot
sequences. The knots in 7, are spaced every (top) 4, (middle) 6,
and (bottom) 12 frames.

displacement d% = m" © my_1(t;) for all (¢;,C;) in C using
the inverse kinematics solver (See lines 2-7). Here, my_ is ei-
ther the original motion (¢ = 1) or has been already obtained in
the previous level (k > 1). The newly computed displacements in
D = {(t;,d%)} are used as the keyframes for deriving the dis-
placement map dy(See line 8). Several techniques are available
for computing d, that interpolates the displacements. One possible
solution is to employ an iterative numerical method that may give
an optimal solution. However, we choose a curve fitting method
given in Equation (2) to achieve an interactive performance. Our
method is extremely fast, since the solution can be obtained analyt-
ically unlike the numerical method that normally requires a heavy
computational cost for iterations. In general, local curve fitting with
B-splines may have several drawbacks. The resulting curve may be
less accurate and could have undulations because of the lack of the
global propagation of a displacement. Fortunately, our hierarchical
structure can compensate for such drawbacks by globally propa-
gating the displacement at a coarse level and performing the later
tuning at fine levels.

4.4 Knot Spacing

For simplicity, our implementation doubles the density of a knot
sequence from one level to the next. Therefore, if 7, has (n + 3)
control points on it, then the next finer knot sequence 7541 will
have (2n + 3) control points. The density of a knot sequence 7,
1 < k < h, determines the range of influence of a constraint on
the displacement map at a level k. This is of great importance
for direct manipulation. For example, consider the situation that
we interactively adjust the configuration of an articulated figure by
dragging one of its segments at a certain frame through a graphi-
cal interface. The user input is interpreted as constraints which are
immediately added to the set of prescribed constraints. Then, our
system smoothly deforms a portion of the motion clip around this
modified frame. Here, the range of influence on the motion clip is
mainly dependent on the spacing of 7. The larger spacing between



Figure 3: A human-like figure that has explicit redundancies at its
limb linkages

knots yields the wider range of deformation (See Figure 2). There-
fore, the displacement map d., that is derived from the coarsest
sequence 71, has non-zero values over the widest range to smoothly
propagate the change of the motion. The subsequent finer displace-
ment maps dg, 2 < k < h, perform successive tunings to satisfy
the constraints.

The density of the finest knot sequence 7, controls the precision
of the final motion my,. If 7, is sufficiently fine to accommodate
the distribution of constraints in the time domain, m;, can exactly
satisfy all constraints. However, our algorithm may leave a small
deviation for each constraint in C even with several levels in the
hierarchy. In our experiments, we need just four or five levels for
visually pleasing results, that can be further enhanced to achieve an
exact interpolation by enforcing each constraint independently with
the inverse kinematics solver.

4.5 |Initial Guesses

For a spacetime problem, a good initial guess on the desired solu-
tion is very important to improve both the convergence of numerical
optimization and the quality of the result [13]. We obtain an initial
guess for motion fitting by shifting the position of the root segment
in the original motion. To motivate this, consider the walking mo-
tion that is adapted to the rough terrain as shown in Figures 5 (a)
and (b). The position of a stance foot, that touches the surface of the
terrain, is pulled upward at a small hill on the terrain, and thus the
character is unwantedly forced to squat. Even though the inverse
kinematics solver tries to minimize the deviation of joint angles, it
cannot prevent the knee bending completely. To reduce this artifact,
we change the position of the root segment due to the change of ge-
ometry. Specifically, we displace the root segment by the average
shift of the contact positions at each frame. The shift of the root
segment position at a frame can also be smoothly propagated to the
neighboring frames using the multilevel B-spline fitting method.

5 Inverse Kinematics

The most time consuming component in the motion fitting algo-
rithm is the inverse kinematics solver which is invoked very fre-
quently at each level of the fitting hierarchy. Therefore, the overall
performance of a hierarchical fitting critically depends on the per-
formance of the inverse kinematics solver. We describe, in this sec-
tion, two inverse kinematics algorithms. In Section 5.1, we intro-
duce an inverse kinematics algorithm for a general tree-structured
figure with spherical joints based on numerical optimization tech-
niques. In Section 5.2, we present a faster specialized algorithm for
a human-like figure with limb linkages. The latter algorithm com-
bines the numerical techniques with an analytical method illustrated
in Section 5.3.

5.1 A Numerical Approach

Our inverse kinematics solver is based on a constrained non-linear
optimization technique that minimizes the objective function sub-
ject to a set C of constraints. We have an additional burden to en-
force the unitariness of each quaternion parameter q = (w, , y, 2).
One possible solution would be to augment the set C' with a new
constraint w? + z? + y> + 2> — 1 = 0 for the unit quater-
nion parameter. We circumvent this extra constraint from the ob-
servation that every orientation q can be expressed as a rotation
exp(v) € S® from a fixed reference orientation qo € S, that is,
q = qo exp(v). Therefore, we can parameterize (p,q*,--- ,q")
by a simple vector x = (zo, - , Z3n4+2) € R**T3 using the dis-
placementd = (v°,--- ,v™) from a given reference configuration
(p07 qéa e 7q8) as follows:

p:p0+V07 and

q =qoexp(v’), 1<i<m, (5)

where v* = (z3;, T3i+1, T3i+2) for 0 < 4 < n. Letting the ref-
erence configuration be my_+(¢;) in Equation (4), we reduce the
objective function to a quadratic form of x. Accordingly, our con-
strained optimization problem is formulated as follows:

F) = 3x"Mix,
x) = 1 € Ne,
i € N,

minimize
subjectto  ¢;(x) =0
Ci(X) > 07

where M is a diagonal matrix that determines the rigidity of indi-
vidual parameters in x.

A typical approach to the constrained optimization is to trans-
form the constrained problem into an unconstrained version with
extra parameters (the Lagrange multipliers) or extra energy terms
(penalty functions). We avoid illegal configurations by employing
the penalty method that allows us to handle the equality and in-
equality constraints in a uniform way [25]. The objective function
for the unconstrained version is

g(x) = f(x) + Y wici(x)® + Y wi(min(ci(x),0))*, (6)

i€Ne ieN;

where w; weights each individual constraint. We adopt the conju-
gate gradient method to minimize this function [26].

5.2 A Hybrid Approach

The major difficulty of solving an inverse kinematics problem stems
from the excessive DOFs of an articulated figure. A reasonable hu-
man model may have about 40 DOFs for computer animation, while
we specify much fewer constraints for manipulating the figure. For
a figure of n DOFs, we can remove c of those DOFs with a set of
¢ independent constraints imposed on it. The remaining (n — ¢)
DOFs span the solution space of the problem.

A reduced-coordinate formulation parameterizes the redundant
DOFs with a reduced set of (n — ¢) variables. One explicit redun-
dancy in the human body is the “elbow circle” that was first men-
tioned in Korein and Badler [19]. Even though the shoulder and
the wrist are firmly planted, we can still afford to move the elbow
along a circle with its axis through the shoulder and the wrist (See
Figure 3). The human figure has four limbs, two from arms and
two from legs. The redundant DOF for the 4-th limb linkage can be
parameterized with a rotation angle 6;, 1 < i < 4, about the axis.

Without loss of generality, we assume that the positions and
orientations of hands and feet are fixed by constraints. If there
is a free hand or foot, the DOFs in the corresponding limb



are left unchanged. Let m = (p,q',---,q",q"™},---,q")
be the configuration of a human-like figure. Its rear part
(@"T',---,q™) denotes the DOFs for the limbs and the fore part
(p,q*,---,q") does the remaining DOFs. Since the constraints
restrain the DOFs in the limb linkages, the reduced set of parame-
ters (p,q*, -+ ,q", 61, - ,04) span all possible configurations of
the figure under the constraints.

Incorporating the idea of reduced-coordinate formulation into
the numerical optimization framework, we can solve an inverse
kinematics problem using a fewer number of optimization pa-

rameters X = (xo, -+ ,Z3r12,01,---,04) € R¥T7. Note
that we have replaced the rear part of x with the elbow circle
parameters 61, ---,04 for limb linkages. Whenever we evalu-

ate the objective function with new parameters %, the parameters
(p,q', - ,q") are computed first by Equation (5), and then the
others for (q"**,--- ,q") are uniquely determined by an analyti-
cal solver which takes (p,q',--- ,q")and 6;, 1 < i < 4, as input.
Then, we extract the unknown part (3,43, - , Z3n+2) 0f x from
(q"™',---,q™) to evaluate the objective function in Equation (6).
The reduced-coordinate formulation uses a fewer number of param-
eters to yield faster convergence and fewer iterations to enhance the
overall performance.

5.3 Arm and Leg Postures

Consider a limb linkage, for example, an arm linkage. Starting from
an initial configuration, we sequentially adjust the joint angles for
the elbow, the shoulder and the wrist of the arm linkage to place
the hand at the desired position and orientation. We assume that the
torso and the shoulder positions are given. Let l1, l2, 71, r2 and L
be defined as follows (See Figure 4(a)):

1 = the length of the upper arm,
l2 = the length of the fore arm,
r1 = the distance from the elbow rotation axis to the shoulder,

ro = the distance from the elbow rotation axis to the wrist, and
L = the distance between the shoulder and the wrist.

To place the wrist at a position distant from the shoulder by L (See
Figure 4(b)), the angle ¢ between upper and lower arms is given by
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as illustrated in the appendix. Then, we bring the wrist to the goal
position by adjusting the shoulder angles (See Figure 4(c)). In the
subsequent step, we rotate the wrist angles to coincide with the goal
orientation. Once one feasible solution is given, the other solutions
can be obtained by rotating the elbow about the axis that passes
through the shoulder and the wrist positions. Given 6;, we can de-
termine the arm posture uniquely (See Figure 4(d)). Similarly, we
can determine a leg posture.

If L is longer than the arm length, I; + 2, the elbow stretches as
far as possible. On the other hand, if L is too small, then the elbow
angle could violate its lower limit and thus is pulled back into the
allowable range. In both cases, we cannot place the wrist at the
exact position and thus the corresponding penalty function yields a
positive value for the given torso configuration.

6 Experimental Results

Our human model has 6 DOFs for the pelvis position and orienta-
tion, 3 DOFs for the (either rigid or flexible) spine, and 7 DOFs for
each limb to yield the total of 37 parameters for the inverse kine-
matics problem. Other parameters for the head, the neck, and the

goal position & orientation

D

(a) Initial configuration (b) Elbow rotation

(d) Redundancy (c) Shoulder & Wrist rotation

Figure 4: The process for adjusting the arm posture

fingers are not used for resolving kinematic constraints. Through
the reduced-coordinate formulation, we can remove 6 DOFs for
each limb and thus we have at most 13 DOFs to be computed by
a numerical optimization method. The motion clips for our experi-
ments have been sampled at the rate of 30 frames per second.

The walking motion of Figure 5(a) is produced by performing a
sequence of transitions among a set of motion-captured clips, which
include “walk straight”, “turn left”, “turn right”, “start”, and “stop”.
We interactively specify the moments of heel-strikes and toe-offs
for the motion clips. This information is used for establishing the
kinematic constraints that enforce the foot contacts for the entire
motion. The terrain of Figure 5(b) is represented as a NURBS sur-
face of which control points are placed on a regular grid with a spac-
ing of 80 % of the height of the character, and their y-coordinates
(heights) are randomly perturbed within 120 % of the height. To
adapt the motion onto the rough terrain with doorways, we first ad-
just the constraints such that the contact positions are shifted along
the y-axis to be placed on the terrain, and add new constraints to
bend the character under the doorways. Then, we use our motion
fitting algorithm to warp the motion to satisfy the constraints. The
original and the adapted motions are depicted in Figures 5(a) and
5(b), respectively.

The “climbing a rope” example in Figure 5(c) gives constraints
on both hands and feet. A physically simulated rope is used to ex-
plicitly illustrate the moments of grasping and releasing the rope by
a hand, which correspond to the initiation and termination, respec-
tively, of a variational constraint for that hand. We adapt this mo-
tion to a different character with longer legs and a shorter body and
arms. For the character morphing example shown in Figure 5(d),
the size of a character smoothly changes to have extremely long
legs and a short body, and then to have extremely short legs and a
long body. The original walking motion is warped to preserve its
uniform stride against the change of character size.

Our motion fitting method is also useful for generating a smooth
transition between motion clips. Figure 5(e) shows the transitions
from walking to sneaking and from sneaking to walking. The basic
approach is very similar to the one presented by Rose et al. [27]
We seamlessly connect the motion data by fading one out while
fading the other in. Over the fading duration, Hermite interpola-
tion and time warping techniques are used to smoothly blend the
joint parameters of the motion data. Since joint parameter blending
may cause foot sliding, we enforce foot contact constraints with the
motion fitting method.
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Table 1 gives a performance summary of the examples. Tim-
ing information is obtained on a SGI Indigo2 workstation with an
R10000 195 MHz processor. The execution time for each example
is not only influenced by quantitative factors such as the number
of frames, constraints and parameters, but also by qualitative fac-
tors such as the difficulty of achieving desired features specified by
constraints and the quality of initial estimates. In particular, well-
chosen initial estimates provide great speedups for most of exam-
ples. One promising observation is that both execution times and
maximum errors rapidly decrease level by level. This implies that
the performance of our algorithm is not critically dependent on the
error tolerance. In all examples, every constraint is satisfied within
or slightly over 1 % of the height of the character by the hierarchical
fitting of four levels. A few more levels may result in a more accu-
rate solution. As shown in experimental data, we can anticipate that
the computation cost for an additional level is much cheaper than
the cost for the prior level.

Our prototype system is implemented in C++ on top of X-
windows/MOTIF™ and Open Inventor™ that facilitates develop-
ing interactive 3D user interfaces. In particular, Open Inventor™
provides convenient toolkits to support direct manipulation in the
3D space. With the toolkits, an animator can interactively modify
the pose of a character by dragging one of its segments. Our user
interface allows the user to edit a desired portion of the motion by
adjusting the spacing of knots over which the displacement map is
defined. Since we use cubic B-splines to represent the displacement
map, the change of the pose at a frame could affect the poses at the
neighboring frames covered by seven knots at the current level in
the hierarchy [1, 7].

7 Discussion

In this section, we compare our motion fitting algorithm to the pre-
vious approaches at several viewpoints.

Interpolating splines vs. Multilevel B-splines: An inter-
polating spline is a possible choice to represent the displacement
map [3, 37]. However, the interpolating spline could undulate
rapidly for a dense distribution of constraints so that it often fails
to preserve the detail characteristics of the original motion. Instead,
we use a series of uniform B-splines that form a hierarchy of mo-
tion displacements. Since uniform B-splines approximate different

details of displacements according to knot spacings, we are able to
edit the motion at any level of detail; fitting at the coarsest level
makes a gross deformation and then fine details are incrementally
added at the finer levels.

Global vs. Local least-squares: Fitting a B-spline curve
to scattered data points can be formulated as a least-squares ap-
proximation problem for solving an over-determined or under-
determined system of linear equations [26]. To obtain the optimal
solution in the least-squares sense, we can use the pseudo inverse of
a large matrix that accommodates the data points all together [15].
However, this global method often suffers from over-shooting that
may give an undesirable curve shape. lronically, the less accurate
local method in Equation (2) is preferred in a hierarchical frame-
work. Since approximation errors at one level are incrementally
canceled out in the later levels, the accuracy at each level is not
critical. This local method is much more efficient and less prone to
over-shooting than the global method.

Single large optimization vs. Many small optimizations:
Gleicher [13] cast motion retargetting as a large optimization prob-
lem. Based on the “divide-and-conquer” strategy, however, we par-
tition his optimization problem into many smaller inverse kinemat-
ics optimizations and then solve each of them very efficiently by
adopting specialized techniques such as the hybrid inverse kine-
matics solver. Finally, we combine the poses at constrained frames
employing the hierarchical curve fitting technique. This divide-and-
conquer approach provides a noticeable speedup to satisfy the per-
formance requirement of our interactive motion editing system.

Limitation of our approach: Our motion fitting algorithm re-
quires additional work to handle an inter-frame constraint that en-
forces the relationship among parameters scattered over multiple
frames. This kind of constraints are used for avoiding foot sliding
between the heel-strike of a foot and its toe-off while allowing the
absolute coordinates of the foot to be altered. We address this prob-
lem by incorpolating the intra-frame inverse kinematics constraints
at those co-related frames into a larger optimization problem that
includes inter-frame constraints among those frames as well. In the
extreme case where all frames are related to each other, this ap-
proach is reduced to Gleicher’s so that we have to solve one large
optimization problem to derive the displacement map at each level
in the hierarchy.

8 Conclusion

We have presented a new approach to adapting existing motion of a
human-like character to have desired features that are specified by
a set of constraints. The key idea of our approach is to introduce a
hierarchical motion representation by which we cannot only manip-
ulate a motion adaptively to satisfy a large set of constraints within
a specified error tolerance, but also edit an arbitrary portion of the
motion through direct manipulation.

The performance of our algorithm is greatly improved by em-
ploying a curve fitting technique that minimizes a local approxima-
tion error. The hierarchical structure compensates for the possible
drawbacks of the local approximation method by globally propagat-
ing the displacement at a coarse level and later tuning at fine levels.
Further performance gain is achieved by the new inverse kinemat-
ics solver. Our hybrid algorithm performs much faster than a pure
numerical algorithm. We also present a simple yet effective for-
mulation to optimize orientation parameters without yielding extra
constraints.



Table 1: Performance data. # of parameters counts the DOFs of a character used for resolving kinematic constraints. A number in () indicates
that of reduced parameters. The maximum error is measured in percentages of the height of the character.

walking on rough terrain climbing a rope
# of parameters 20 (8) 37 (13)
# of frames 464 275
# of constraints (except joint limits) 5568 5898
preprocessing time (CPU sec.) 0.17 0.21
level st 2nd 3rd 4th 1st 2nd 3rd 4th
# of frames/knot 16 8 4 2 16 8 4 2
execution time (CPU sec.) 2.50 | 1.67 | 1.31 | 1.10 6.50 | 3.51 | 1.32 | 0.70
maximum error (%) 14.31 | 9.24 | 3.48 | 1.06 | 11.09 | 7.51 | 3.57 | 1.11
character morphing transition
# of parameters 20 (8) 20 (8)
# of frames 62 119
# of constraints (except joint limits) 420 834
preprocessing time (CPU sec.) 0.02 .
level 1st 2nd | 3rd 4th 1st 2nd | 3rd 4th
# of frames/knot 16 8 4 2 16 8 4 2
execution time (CPU sec.) 0.18 | 0.13 | 0.09 | 0.06 0.18 | 0.15 | 0.15 | 0.14
maximum error (%) 6.98 | 5.35 | 3.08 | 1.10 717 | 471 | 2.14 | 0.74
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Appendix: Derivation for Equation (7)
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To identify the angle between the upper and fore arms, we project
the joint positions onto a plane perpendicular to the elbow rotation
axis. Then, the projections for the shoulder and the wrist are placed
on two concentric circles whose center coincides with the projec-
tion for the elbow. The distance r between the projections is given
in terms of r1, 2 and the angle ¢ between them.

2 2 2
r° =1r] 415 — 2ri7r2 COS O.

Letting s1 = 4/12 — 72 and s2 = /12 — rZ, respectively, the dis-

tance L between the shoulder and the wrist positions is

L? = (s1+ 52)2 42

=0 +0B+24/13 =133 =12 =17 — 15 + 1
=15+ 13+ 24/13 — r34/13 — 73 — 2r172 cos(Lr172).
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