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Abstract

Optimization is an appealing way to compute the motion of an an-
imated character because it allows the user to specify the desired
motion in a sparse, intuitive way. The difficulty of solving this
problem for complex characters such as humans is due in part to the
high dimensionality of the search space. The dimensionality is an
artifact of the problem representation because most dynamic human
behaviors are intrinsically low dimensional with, for example, legs
and arms operating in a coordinated way. We describe a method
that exploits this observation to create an optimization problem that
is easier to solve. Our method utilizes an existing motion capture
database to find a low-dimensional space that captures the proper-
ties of the desired behavior. We show that when the optimization
problem is solved within this low-dimensional subspace, a sparse
sketch can be used as an initial guess and full physics constraints
can be enabled. We demonstrate the power of our approach with
examples of forward, vertical, and turning jumps; with running and
walking; and with several acrobatic flips.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation, G.1.6 [Numerical Analysis]:
Optimization—Constrained Optimization

Keywords: physically based animation, optimization, motion cap-
ture

1 Introduction

Optimization methods are an easy and intuitive way to generate re-
alistic motion. The user specifies a rough initial sketch of the mo-
tion and a set of constraints, such as start and end poses of the char-
acter or foot constraints. The optimizer then automatically finds a
motion that “best” satisfies the user-specified constraints while pre-
serving the physical validity of the motion.

Despite much research progress, this technique has not yet been
shown practical for creating appealing animations when characters
have a large number of degrees of freedom (DOF), when the mo-
tion must be physically correct, and when the initial guess is only
a rough sketch. We are able to achieve this goal by exploiting
the observation that most dynamic human motions are intrinsically
low dimensional because they show a high degree of coordination.
For example, six to eight dimensions adequately represent a human
jump that appears quite similar to the original jump. This significant
reduction in dimensionality is possible because the motion is coor-
dinated; the legs and arms work together to generate the required
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Figure 1: Synthesized motions: walking, running, jumping between
stepping stones and a back flip.

velocity and control the landing and can therefore be represented as
simple functions of just a few driving signals.

We solve the optimization problem in a low-dimensional space
by representing each frame of the desired motion as a linear com-
bination of six to ten basis vectors. A simple dimensionality re-
duction technique, such as Principal Component Analysis (PCA),
can be used to find this basis from examples of motions with sim-
ilar behavior. Optimization is then used to find the linear coeffi-
cients that relate these vectors and produce the desired motion. The
optimization problem is solved in the low-dimensional space, but
the linear coefficients specify a physically valid motion for a full
60 DOF character. The solution often contains natural coordination
patterns, an objective that is difficult to describe mathematically and
that is usually not achieved when optimizing in the full-dimensional
space.

Although optimization in the lower-dimensional space makes the
problem tractable, constraints such as foot contact cannot always
be satisfied exactly in this space. We solve this problem by using
inverse kinematics to meet the constraints exactly while including
a term in the optimization function that keeps the motion close to
the low-dimensional basis. The optimizer then solves for a motion
that is very close to the low-dimensional space, satisfies all the user-
specified and physics constraints and minimizes such user-specified
criteria as energy expenditure. We demonstrate the power of this
approach through a number of different examples (Figure 1) and
compare them to ground truth motion capture data.

One limitation of this approach is that a suitable set of motions
must be selected to create the basis that will represent the optimized
motion. We explore the effect of this choice on the ability to recon-
struct a desired motion in Section 3 and explore the flexibility of a
given basis set in Section 5.

2 Background

Constrained optimization techniques were first introduced to the
graphics community by Witkin and Kass [1988]. They demon-
strated the viability of this approach with a jumping Luxo lamp;



its motion was quite compelling as it crouched in anticipation of a
jump and compressed to absorb the impact. The user specified the
start pose, end pose, and a physically based objective function; the
optimizer computed the details of the motion. Despite this promis-
ing beginning, optimization has proven difficult for complex artic-
ulated characters, and subsequent research has focused on ways to
make the approach viable for these more complex systems. Al-
though no systematic studies have yet been published, the problem
appears to be made more difficult by higher degree-of-freedom sys-
tems, physics constraints, torque-based optimization functions, and
longer animations while domain knowledge in the form of existing
control laws or motion data makes the problem more tractable.

One way to keep the problem tractable is to reduce the number of
degrees of freedom. Popović and his colleagues [2000] developed
a interactive system that gave the animator fine control over the
motion of a single rigid body. Their system was able to produce
a wonderful example of a hat spinning as it was tossed onto a hat
rack. A number of researchers have shown that the freefall portion
of a dive can be efficiently optimized for a simplified character [Liu
and Cohen 1994; Crawford and Sastry 1995; Albro et al. 2000].
Huang and his colleagues [2000] computed the motion of characters
of similar complexity performing such actions as weight lifting and
pushups.

Simplifying a complex character also simplifies the problem:
Popovíc and Witkin [1999] showed that significant changes to mo-
tion capture data can be made by manually reducing the character
to the degrees of freedom most important for the task. The opti-
mized motion was then mapped back up to the full character. Our
approach is similar in that we also perform the optimization in a
lower degree of freedom space, but we find that representation au-
tomatically and the motion we compute is physically correct for the
full 60 DOF character.

Human motion with many degrees of freedom can be optimized
when the animator provides closely spaced keyframes without ex-
act timing information [Liu and Cohen 1995]. A related problem is
dynamic filtering where an existing motion is optimized to make it
physically realistic. In this formulation, the original motion can be
thought of as a very closely spaced set of keyframes that function as
soft constraints [Dasgupta and Nakamura 1999; Yamane and Naka-
mura 2000; Pollard and Reitsma 2001]. Short segments of motion
can be computed for characters with many degrees of freedom as
Rose and his colleagues [1996] demonstrated when they computed
optimal transitions between human motion segments that began and
ended with different but similar poses.

Physics constraints and an optimization function based on torque
often make the problem more difficult to optimize. In contrast,
purely kinematic techniques give the animator interactive control
for making significant changes to the motion [Gleicher 1997; Lee
and Shin 1999]. Simplified physical constraints also create tractable
problems. Liu and Popović [2002] show that some dynamic effects
can be preserved by enforcing patterns of linear and angular mo-
mentum that do not require the computation of such dynamic pa-
rameters as contact forces and joint torques.

If the dynamics of the system can be made more efficient,
the search process also becomes more efficient. Fang and Pol-
lard [2003] derived an algorithm for efficiently computing first
derivatives of a broad range of physics constraints. Because their
system never computed torques, they used a sum of weighted,
squared accelerations as an optimization function. Grzeszczuk and
his colleagues [1998] developed a neural network approximation of
dynamics for a number of systems and used that approximation in
the optimization step to reduce the computational cost of the gradi-
ent search. Outside of character animation, reduced order models
of dynamics have been explored extensively in computer graphics
and other fields (e.g., [Pentland and Williams 1989] [James and Fa-
tahalian 2003] [Lall et al. 2003]), including for their use in speed-

ing up optimization (e.g., [Ravindran 2000]). In our work, we do
not simplify our representation of the dynamics of the system (in-
verse dynamics calculations are performed in the high-dimensional
space); instead we reduce the dimensionality of the configuration
space of the character that is explored during optimization. Simpli-
fication of dynamics could be added to our system with the goal of
improving computation times still further.

One exception to the rule that higher-dimensional problems
are intractable is the work of Pandy and Anderson [Anderson and
Pandy 1999; Pandy and Anderson 2000]. Using months of com-
puter time on a supercomputer, they found a pattern of muscle ac-
tivations that minimized the metabolic energy consumed per unit
distance travelled by the center of mass of the lower body for a sin-
gle step of walking. Their human model had 10 segments and 23
degrees of freedom and was actuated by 54 muscles. The optimized
motion provided an impressive match to muscle activation patterns
recorded from human motion subjects.

In work done in parallel with that reported here, Sulej-
manpǎsić [2004] showed that adaptation of ballistic motions with
full physics is possible for high DOF characters if careful attention
is paid to details such as proper variable scaling and initialization.
Sulejmanpǎsić also explored using PCA on one or two captured
motions to reduce the dimensionality of the search space, but did
not find it to be effective, in part because reducing dimensionality
below 16 DOF made it difficult to satisfy constraints during opti-
mization. In the current paper, we show that by constructing a basis
set from multiple examples of a behavior and by adding IK to the
optimization process, a smaller number of DOF can be used suc-
cessfully even without a good initial guess. We speculate that our
use of PCA was successful while theirs was not because we used
several examples of the desired behavior to create the basis while
they used only one.

Finally, we note that many researchers in computer graphics,
robotics, computer graphics, computer vision, machine learning
and biomechanics have also explored the use of dimensionality re-
duction techniques to aid in clustering, modelling, and other pro-
cessing of motion (see, e.g., [Jenkins and Mataric 2002] [Santello
et al. 2002] [De la Torre and Black 2003] [Brand and Hertzmann
2000] [Li et al. 2002]).

3 Motivation

The algorithm proposed in this paper is based on two observations.
First, many dynamic human motions can be adequately represented
with only five to ten degrees of freedom. Second, motions with
similar behavior can be used to construct a low-dimensional space
that can represent well other examples of the same behavior.

Fifty to sixty dimensions are often used to represent a high qual-
ity human motion. For many behaviors, however, the movements of
the joints are highly correlated. For example, during a walk cycle,
the arms, legs and torso tend to move in a similar oscillatory pattern.
As a result, the dimensionality of motions can be greatly reduced
by an application of a simple dimensionality reduction technique
such as PCA. Figure 2 shows the error between a number of motion
sets and their projections onto optimal low-dimensional linear sub-
spaces obtained using PCA. For the common human behaviors that
we have tested, the error becomes small for representations with
more than five to ten dimensions.

Figure 3 compares the error of representing forward jump mo-
tions in six different low-dimensional spaces. The error is averaged
over twenty different jumping motions of varying height and length.
The low-dimensional space computed from the motion that is being
represented, (a), naturally provides the best representation. During
the synthesis process, however, the desired motion is not known and
thus this space cannot be computed. The low-dimensional space
constructed from the motions of the same behavior (whether it is



Figure 2: Error between a full-dimensional motion and the corre-
spondingk-dimensional representation for a number of behaviors:
running, walking, jumping, climbing, stretching, boxing, drinking,
playing football, lifting objects, sitting down and getting up. The
error was averaged over ten to twenty motions within each behav-
ior. Each motion was represented as a collection of poses. The
k-dimensional representation was computed by first using PCA to
compute principal components for the set of full-dimensional poses
and then projecting each full-dimensional pose onto thek compo-
nents with the most variation in the data. The error is computed as
an average squared error between the angles of the full-dimensional
motion and itsk-dimensional representation. The curve color gives
an approximate measure of the visual quality: green indicates mo-
tions that look nearly indistinguishable from the full-dimensional
motion; blue indicates motions that look very similar to the full-
dimensional motion except for some sliding of the feet; and red
indicates motions with large visual artifacts.

just three similar motions as in (b) or a set of twenty motions as
in (c)) can represent the motion quite well with seven dimensions.
The low-dimensional space computed from one example of a given
behavior, (d), requires higher dimensionality because it does not
have enough generality to represent other motions well. When we
incorporate motions with different behaviors, the required dimen-
sionality of the space increases. A general mix of 150 motions, (e),
however, provides a better representation than a behavior-specific
representation for the wrong behavior, (f). Figure 3 illustrates the
results of dimensionality reduction for forward jumping, but we
have obtained similar results for other behaviors such as running
and walking.

A seven-dimensional space constructed from several motions of
the same behavior generally represents the desired motion well.
When visual artifacts remain in this representation, they are usually
the result of contacts. For example, during a forward jump, both
feet are planted on the ground which constrains the relationship be-
tween the hip, knee, and ankle angles. This constraint may not be
represented with sufficient accuracy in the low-dimensional space
even though that space does model the basic fore/aft swinging of
the arms and legs. We incorporate inverse kinematics as part of our
optimization approach to reduce artifacts caused by this limitation
(Section 4.2).

In Section 5, we demonstrate that a low-dimensional space con-
structed from a few motions of a particular behavior, such as spaces
(b) and (c), can be used to synthesize physically realistic, natural-
looking motions of same behavior but with quite different parame-
ters (e.g., length, height or degree of turn for jumping or step length
for running). A low-dimensional space constructed from one exam-
ple of a particular behavior, such as space (d), may produce unnat-
ural motions. A low-dimensional space constructed from motions
with different behaviors (such as spaces (e) and (f) in Figure 3)
requires solving an optimization problem of higher dimensional-

Figure 3: Motion representation error of a full-dimensional motion
in a k-dimensional space averaged over twenty different jumping
motions of varying height and length. Foreachof the motions the
k-dimensional space is spanned byk principal components that are
computed from: (a) the motion that is being represented, (b) three
jumping motions that are visually similar to the motion being rep-
resented, (c) a set of twenty jumping motions, (d) a single mid-
range jumping motion, (e) a mix of 150 behaviors (walking, run-
ning, jumping, climbing, punching, dribbling a basketball, lifting,
drinking and other common human activities) and (f) twenty run-
ning motions. The sets of motions used for constructing spaces (c-f)
are the same for each of the twenty motions. As in Figure 2, each
curve is colored to indicate the visual quality.

ity which in our experience does not produce reliable results. In a
higher-dimensional space, the problem is harder to solve and more
dependent on having a “good” optimization criterion, something
that is difficult to define mathematically.

4 Low-dimensional Optimization

To use our system, the animator specifies a rough sketch of the
desired motion,Ms, and the constraints that should be enforced.
The animator also selects the motions used to define the low-
dimensional space for the desired motion. Constrained optimiza-
tion is then used to automatically find a motion that minimizes
some objective function subject to satisfying the user-specified and
physics constraints (Figure 4).

We formulate the optimization problem by solving for the char-
acter’s motionM(t) as opposed to solving for a force functionT(t)
whereT(t) = {τ1(t) . . .τn(t)} andτi(t) is the torque applied to joint
i at time t. Inverse dynamics equations are used to compute the
force functionT(t) at any given timet. A number of constraints
must be set on the force function to preserve physical validity. The
constraints are enforced at discrete times. The motion may be phys-
ically infeasible in between these points, but these constraints are
enough to generate visually pleasing motion.

Because the unknown of the optimization problem,M(t), is ex-
pressed in a low-dimensional space, it is easy to make this formu-
lation of the optimization problem low-dimensional. Computing a
reasonable initial guess for a motionM(t) from an animator sketch
is also easier than computing a reasonable torque functionT(t).
Finally, inverse dynamics is usually easier to solve than forward
dynamics [Featherstone 1987, page 79].

4.1 Low-dimensional Problem Representation

Each motion M consists of a sequence of framesM(t) =
{p(t),Q(t)}, whereQ(t) = {q1(t) . . .qn(t)} are the angles of all of



Figure 4: Synthesizing a vertical jump with a 360o turn. (Top row) Motion capture data used to compute the low-dimensional space for the
optimization: a forward jump, a forward jump with a 90o turn, and a vertical jump with a 180o turn. (Second row) Initial guess. Constraints
were set on the first and the last pose of the motion and on the position of the feet during the stance phases. The duration of each stance phase
and the desired height of the jump were also specified. (Third row) Synthesized motion. (Last row) Motion capture data of a similar motion
for comparison.

the joints (including the root orientation) andp(t) is the position of
the root segment.Q(t) is a point in ann-dimensional space. Let us
consider ad-dimensional linear sub-space of the original space that
is spanned by unit length orthogonal vectors,B1 . . .Bd, with origin
Qm = (1/T)∑T

i=1Q(ti), whereT is the number of time samples.
Then, we can approximateQ(t) by a linear combination of the ba-
sis vectorsB1 . . .Bd using onlyd scalar coefficientsA1(t) . . .Ad(t),
as:

Q′(t) = Qm+B1A1(t)+B2A2(t)+ . . .+BdAd(t). (1)

Principal Component Analysis (PCA) is a technique that finds
B1 . . .Bd so that the errorE = ∑T

i=1 (Q(ti)−Q′(ti))2 is minimized
[Jolliffe 1986].

Given motionsMB1 . . .MBK, selected by an animator, we use
PCA to find thed-dimensional sub-space,L, that represents them
with the smallest errorE. If we now use Equation 1 for the repre-
sentation ofM(t), then the unknowns of the optimization are root
positionp(t), the mean of the joint anglesQm, and the coefficients
A1(t) . . .Ad(t). We follow a standard approach of representing each
Ai(t) andp(t) using cubic B-splines. The root positionp(t) is only
unknown during the stance phase; during the flight phase the posi-
tion of the center of mass (COM) of the character can be computed
from the lift-off velocity, andp(t) can then be computed from the
COM position and the angles of the character.

The lower-dimensional space reduces the complexity of the opti-
mization problem considerably. LetK be a number of control points
in a B-spline curve used to approximatep(t) and eitherqi(t) or
Ai(t). The full space has about(n+3)K unknowns (wheren≈ 60
for a human character), while the reduced dimensional space has
(d + 3)K + n unknowns, with 7< d < 9 for the examples in this
paper. Therefore, the number of unknowns is reduced by a factor
of six to seven, which in our experience results in faster and more
stable convergence of the optimization problem. In many cases, the
mean of the joint angles,Qm, can also be computed from example
motions and excluded from the optimization function, further re-
ducing the number of the unknowns. However, we keptQm as an
unknown in the examples reported here.

Because we include root orientation in the dimensionality reduc-
tion analysis, we first preprocess all the motions by rotating them so
that the character starts facing the positive Z direction. Keeping the
root orientation in the basis worked well in the examples we tried,
but for some motions with significant change in yaw orientation it
may be better to treat root orientation as an additional variable and
add 3K extra parameters to the optimization problem.

To estimate the dimensionality,d, of the linear sub-spaceL we
use a standard heuristic [Fukunaga 1989]. We choose the smallest
d such that:

Er =
∑d

i=1 λi

∑n
i=1 λi

≥ 0.9 (2)

whereλi , i = 1. . .n, are the eigenvalues computed by PCA and
sorted in decreasing order. Because the variance along thei-th prin-
cipal component is given by thei-th eigenvalue,Er is an indicator
of how much information is retained when all data is represented in
the optimald-dimensional linear sub-space.

4.2 Inverse Kinematics for Limbs in Contact

In a low-dimensional space, the constraints that relate two or more
points on the character’s body may not be satisfied exactly. Con-
sider, for example, the contact constraints on the character’s feet
during the double support phase of a jump. The low-dimensional
space may not include a pose that would exactly satisfy constraints
for both feet (or the pose may be unnatural). We address these
problems by using inverse kinematics (IK) to transform the degrees
of freedom in the optimization to a set that can be independently
specified while maintaining constraints. IK is used to represent the
angles for the arms or legs that are in contact with the environment.
Intuitively, this allows an optimizer to satisfy contact constraints
exactly by allowing the resulting motion to move slightly outside
the space specified by the basis.

Consider a human arm consisting of three limb segments: upper
arm, lower arm and hand. It can be represented by a seven DOF
kinematic chain with one spherical (three DOF) joint at the shoul-
der, one at the wrist, and one revolute (one DOF) joint at the elbow.



When an arm is in contact with the environment (the position and
the orientation of the hand segment is fixed) and the location of the
shoulder joint is known there is a one DOF redundancy in the seven
DOF kinematic chain representing the arm. As was pointed out by
Korein and Badler [1982] and later by Lee and Shin [1999], this re-
dundancy is in the “elbow circle” of the arm; the elbow can rotate
even when the hand is in contact and the position of the shoulder
joint is fixed. In this case all seven angles for the arm linkage can be
analytically expressed through only one parameter,P, representing
the elbow rotation (see [Tolani et al. 2000] for details).

Let Qu(t) = {q1(t)...qk(t)} be all the angles of the character
joints excluding the joints that belong to the arms and legs that are
in contact with the environment. As before, we represent these an-
gles using ad-dimensional representation:

Qu(t) = Qm+B1A1(t)+B2A2(t)+ . . .+BdAd(t) (3)

We represent the angles for all limbs (e.g., arms and legs) that are in
contact with an environment,Qk(t) = {qk+1(t)...qn(t)} using IK:

Qk(t) = F(P1(t), ...,Pr (t)) (4)

where r is the number of limbs in contact,F is the IK function
andP1(t)...Pr (t) are free parameters that define angles for the limbs
in contact. Because there are four limbs (two arms and two legs),
we are adding at most 4K unknowns to the optimization problem.
When we use IK to compute some of the angles, the motion is no
longer constrained to the low-dimensional space. To compensate
for this, we add an additional term to the optimization function that
favors poses in the low-dimensional space (see Section 4.4).

The model we use of the human leg (upper leg, lower leg, foot
and toe segments) is similar in degrees of freedom to that of the arm
except for the addition of the toe joint. If both toe and foot segments
are constrained then the orientation of the foot segment needed for
IK is known. If only the toe segment is constrained, then the angle
between the toe and the foot segments is treated as part ofQu(t)
and the foot segment orientation can be computed from this angle
and the contact information given for the toe segment.

4.3 Constraints

Our system includes two types of constraints: user-defined con-
straints that allow the animator to control the resulting motion and
constraints that ensure physical validity of the motion.

The most common user-specified constraints are pose con-
straints, contact constraints, and time constraints. We used pose
constraints to fix initial, final, and key postures, such as a particu-
lar pose during a back flip. The constraint poses are specified in the
full-dimensional space and then projected onto the low-dimensional
space. We used contact constraints to specify foot configurations
for ground contact, and time constraints were used to specify the
durations of various phases of the motion. Some high-level user
controls, such as height or length of a jump, speed of a walk or
height of a back flip were also provided. If time was not provided
and could not be computed from other constraints (e.g. height of a
jump), then it was set as an additional variable in the optimization.

Constraints on the physical validity of the motion are added au-
tomatically by the system and are designed to preserve physical va-
lidity of the motion. They include joint angle limits, torque limits,
and constraints on aggregate force. Joint angle limits are straight-
forward. Aggregate force constraints are set as in Fang and Pol-
lard [2003], and include constraints for conservation of momentum
during flight, as well as constraints on ground contact forces. For
torque constraints, inverse dynamics allows us to compute torques
for the character with a single point of contact with the environ-
ment. For the closed loop formed during multiple support phases,
however, the problem is undetermined. We use the approximation
method proposed by Ko and Badler [1996].

During implementation we found it beneficial to run the opti-
mization problem in two steps: first, with no constraints on torque
limits and aggregate forces; second, with these constraints added.

4.4 Objective Function

In our implementation, the objective function,G(M), is a weighted
sum of three components:

G(M) = wTGT(M)+wAGA(M)+wPGP(M) (5)

The componentGT(M) minimizes the sum of squared torques:

GT(M) =
∫ n

∑
i=1

(τ2
i (t))dt (6)

The componentGA(M) ensures smoothness of the joint angle tra-
jectories and root trajectory over time. It minimizes the sum of
squared joint accelerations and sum of squared root accelerations:

GA(M) =
∫

(p̈2(t)+
n

∑
i=1

q̈2
i (t))dt (7)

The componentGP(M) ensures that the resulting motion has cor-
relations between the angles and a distribution of poses around the
mean pose similar to the ones found in the motions used to con-
struct the basis. When we run PCA on motionsMB1 . . .MBK, se-
lected by an animator, we obtain both the principal components of
thed-dimensional linear sub-spaceL, as well as the variance of the
data points in these motions along the principal components, given
by corresponding eigenvalues. TheGP(M) component penalizes
the deviation of coefficients from zero in inverse proportion to the
standard deviation along the corresponding principal component:

GP(M) =
∫ d

∑
i=1

(A2
i (t)/λi)dt (8)

From our experience, increasing the weight of theGT(M) com-
ponent results in a more realistic motion, but the optimization prob-
lem takes longer to converge. Increasing the weight of theGA(M)
component results in a faster convergence of the optimization prob-
lem, but the motion may not be energy efficient and as a result
may not look as good. Increasing the weight of theGP(M) com-
ponent results in a solution that more closely resembles the basis
motions. DecreasingwP, on the other hand, usually results in a so-
lution that minimizes the sums of squared torques and accelerations
better. The solution, however, may often look unrealistic (see Sec-
tion 5). Optimizing in a low-dimensional space as well as using the
GP(M) term results in natural coordination patterns.

4.5 Implementation Details

In our implementation we used a sequential quadratic program-
ming package, SNOPT [1997], a commercially available library
that solves general nonlinear constrained optimization problems.
We also used a modeling language, AMPL [1989], that allows the
user to easily formulate linear and nonlinear optimization problems
in mathematical terms and automatically generates code appropri-
ate for various solvers.

AMPL uses automatic differentiation to compute derivatives for
the optimization function and the constraints. Automatic differen-
tiation takes as input a section of code that computes the value of
a function and outputs a new piece of code that computes analyt-
ical derivatives for that function. Unlike numerical differentiation
methods, automatic differentiation is based on the chain rule com-
putation of derivatives and is therefore considered an analytical dif-
ferentiation method. It yields exact derivatives within machine ac-
curacy.



Figure 5: A forward run and a run across stepping stones.

5 Experimental Results

In this section we analyze the performance of our algorithm and
show a number of motions generated for a human character with 60
degrees of freedom using our approach. For each example, an ani-
mator specified the start and end poses for the motion, the contact
information and the timing for the stance and flight phases. The an-
imator also selected a few motions from the database that contained
similar behaviors to the desired motion. Our system then auto-
matically found a motion that minimized the optimization function
G(M) (Equation 5) and satisfied the user-specified and the physics
constraints. For all examples, the initial guess was a linear inter-
polation of the parameters (angles, position, IK parameters) for the
starting and ending poses.

Each optimization took from three to sixty minutes to converge.
The timing depends on many parameters: the length of the motion,
the dimensionality of the low-dimensional space, the weighting on
the energy component of the optimization function,GT(M), and the
intrinsic parameters set for the optimizer (e.g., the number of major
iterations, which we set to 1500). For example, when the prob-
lem was represented in a seven-dimensional space all the jumping
motions took less than ten minutes to converge with equal weight
set for both energy and smoothness components of the optimization
function. Each jump was about two seconds in length. All the ex-
periments were run on a 3GHz Pentium 4 computer with 1GB of
RAM.

The bias toward “realistically” looking motions. We found
that optimizing in a low-dimensional space as well as adding the
GP(M) component to the optimization function biases the solu-
tion towards natural-looking motions. Optimizations run in higher-
dimensional spaces with the weight on theGP(M) component set to
zero usually result in a solution that minimizes the sum of squared
torques and accelerations (GT(M) andGA(M) components) better,
but has unnatural visual artifacts.

We generated the same forward jump three times: first, by rep-
resenting the problem in a six-dimensional space with non-zero
weight on theGP(M) component; second, by representing the prob-
lem in a twenty-dimensional space with the same weight onGP(M)
component; third, by representing the problem in the same twenty-
dimensional space with zero weight onGP(M) component. The
solution that we obtained in the first and the second cases was natu-
ral looking, although running the optimization in higher dimensions
was less reliable in general. The solution in the third case did not
look natural, despite the fact that it was more optimal with respect
to the GT(M) component. We observed similar results for other
experiments.

The generality of the low-dimensional space.The same low-
dimensional subspace can be used to synthesize a variety of mo-
tions. To demonstrate this, we used three different jumps to find a

basis: a forward jump, a forward jump with a 90o turn and a vertical
jump with 180o turn (Figure 4). We then synthesized a number of
different jumps using that basis, varying the length of the jump and
the size of the turn. The synthesized motion of the arms and legs
is natural, and as the distance of the jump increases it appears as if
the character tries harder. We were also able to synthesize a high
vertical jump with a 360o turn (Figure 4) although the basis only
contained a low vertical jump with a 180o turn. In a separate set
of experiments, we also combined twenty forward jumps (the same
jumps as were used in Figure 3) to compute a basis. According to
equation 2 the dimensionality of the basis was eight. Jumps with
varying height and length could also be synthesized in this space.

If the basis does not adequately represent the desired motion, the
optimizer will produce a result that looks unnatural or violates the
physics constraints. For example, we synthesized a long jump using
a basis computed from a very short jump. The resulting motion
looked physically realistic, but the arm motion was restricted in
an unnatural way because the low-dimensional space did not allow
sufficient arm motion. Synthesizing a jump using a basis computed
from twenty running motions did not converge to a physically valid
solution.

Other motions. We demonstrate the generality of our ap-
proach by synthesizing additional behaviors: running, running
across stones, walking, and an acrobatic back flip.

Running(Figure 5). We used eight forward running motions and
one motion of running across stepping stones to find the basis. We
then synthesized three running motions with different step lengths,
three motions that ran across stepping stones with varying place-
ment and speeds and one running motion with a jump over water.

Walking(Figure 6). We used seven forward walking motions and
one walking motion with the step over an obstacle to compute the
basis. We synthesized three walks with different step lengths, in-
cluding an exaggerated walk with a very large step length. We also
synthesized two motions that stepped over obstacles of different
heights.

Acrobatic Back Flip(Figure 7). We used one acrobatic back
flip motion to compute the basis and synthesized two back flips of
different distances and heights.

User Control. The optimizer finds a motion that minimizes a
given objective criterion and is physically valid. Specifying addi-
tional constraints on the motion allows finer control over the details
of the motion. We synthesized a back flip with straight legs in the
middle of the flip by specifying a middle pose for the flip. We syn-
thesized a run with a jump over water where the user controls the
spread of the legs by adding a straddle pose in the middle of the
jump. We also modified the style of the run over stepping stones by
specifying two additional poses to generate a run where the feet are
raised higher.



Figure 6: A normal walk, a walk with an exaggerated step length, and motion capture data of a walk with an exaggerated step length for
comparison.

6 Discussion

The key insights in this paper are that optimization of human mo-
tion can occur much more effectively in a lower-dimensional space
and that such a space can be easily created from motion capture
clips of similar behaviors. The low-dimensional space allows us
to generate natural-looking and physically valid motion for charac-
ters that have 60 degrees of freedom and only a rough sketch as the
initial guess. This approach has proven to be effective for a wide va-
riety of different human motions, both highly dynamic (back flip)
and less dynamic (walking). The approach is quite robust to the
choice of motion clips that are used to form the lower-dimensional
space as long as they are not overly restrictive (e.g., a basis from
just a single motion) and are similar behaviors to the desired behav-
ior. It provides good control for the animator, allowing him or her
to specify the location of the footfalls for a path of stepping stones
or to specify an intermediate pose for the flight phase of a back flip.

Solving the optimization problem in an appropriate lower-
dimensional space makes it not only more likely that the optimizer
will converge to a feasible solution but also more likely that it will
converge to a solution that matches the strategy a human would
have used to perform that task. This feature of our approach reduces
the burden on the animator because fewer constraints are required to
guide the optimizer. To generate a walk motion, for example, Hardt
and his colleagues had to specify symmetry and anti-symmetry con-
straints for human joint angles and contact forces [Hardt 1999]. The
in- and out-of-phase motion of the walk was captured by our ba-
sis automatically, allowing us to generate a walk without explicitly
specifying these constraints.

In the examples presented here, the animator selected the mo-
tions for the basis. This task was not burdensome and only required
a few minutes of browsing a reasonably sized database (such as
the publicly available database at mocap.cs.cmu.edu). However, it
should be possible to search a database automatically for appro-
priate motions based on the constraints on the desired motion pro-
vided by the animator. Liu and Popović [2002] solved a related
problem; their system searched a motion capture database for tran-
sition poses that separated constrained and unconstrained phases.
They used the following training parameters: flight distance, flight
height, previous flight distance, takeoff angle, landing angle, spin
angle, foot speed at takeoff and landing, and the average horizontal
speed. We believe that a similar technique could be used to search
the database for the motions required to find the low-dimensional
space. We have implemented a simpler algorithm that looks only at
contact information and the overall direction of the motion to select
motions from the database. We found that even this very simple
approach generally selected appropriate motions.
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