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Abstract

We present processalledmulti-weightenvelopingfor deforming
theskin geometryof thebodyof adigital creaturearoundits skele-
ton. It is basedon a deformationequationwhosecoeficientswe
computeusinga statisticalfit to aninputtraining exercise In this
input, the skeletonandthe skin move togetherby arbitraryexternal
meansthrougha rangeof motionrepresentate of whatthe crea-
ture is expectedto achieve in practice. The input canalsocome
from existing piecesof handcraftedskin animation. Using a mod-
ified least-squarefitting technique,we computethe coeficients,
or “weights”, of the deformationequation. The resultis that the
equationgeneralizeghe skin movementso thatit applieswell to
othersequencesf animation.The multi-weightdeformatiorequa-
tion is computationallyefficient to evaluate;oncethetraining pro-
cesss completegvencreaturesvith highlevelsof geometriadetail
canmove atinteractve framesrateswith alook thatapproximates
that of anatomical physically-baseanodels. We demonstratéhe
techniqguein a featurefilm productionenvironment,on a human
modelwhoseinputposesaresculptedby handandananimalmodel
whoseinput posescomefrom the outputof ananatomically-based
dynamicsimulation.

CR Categories: 1.3.5 [Computer Graphics]: Computational
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jectrepresentationd;3.6 [ComputerGraphics]:Methodologyand
Technigues—Interactiotechniques;l.3.7 [Computer Graphics]:
Three-DimensiondbraphicsandRealism—AnimationG.1.2[Nu-

merical Analysis]: Approximation—Linearapproximation;G.1.1
[NumericalAnalysis]: Interpolation—Smoothing
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1 Introduction

In theanimationof digital creaturesthe movementof theskin s of
utmostimportance.Thisis true of all computergraphiccharacters,
but nowhereis it moretrue thanin the animationof photorealis-
tic animalsandhumansbecausehey mustcorvey atrue senseof
musculatur@ndtissueunderneattheskin. Theproblemof finding
computationallyefficient and userfriendly techniquedor moving
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theskinin arealistic-lookingway is the subjectof enormousffort
by researcherandpractitionersalike.

In practice thetechniqueshatproducehemostvisuallyimpres-
sive resultsare anatomically-drren, physically-basesgimulations
thatcomputethedynamiceffectsof muscle tissueandbonesinter-
actingwith eachother[Cinefex 20002001], but thesetechniques
comewith a cost. For charactersvith the level of geometricdetail
requiredfor high-endfeaturefilm production theseiechniquegien-
erally are not capableof achieving interactive framerates,which
dramaticallycomplicatesthe animationprocessbecausehey re-
quirealengthysimulationphasebeforetheanimatorcanseeatrue
representatioof the movementof the charactes skin.

Many physically-basedanatomically-diien simulation meth-
odsoperateby addinginertial effectsand musclecollisionsto an
underlying explicit deformationtechnique. Therefore,such sys-
temsrequirea robust underlyingdeformationthat putsthe skin in
approximatelythe properplacewhereit canthenshale andjiggle
andcollide with underlyingmusclesandbones.

Often, high-qualitycharactemnimationinvolvesasmuchart as
science.Sometimedganciful characterdbehae in a non-physically
achiezable manner andthis canbe very difficult to describewith
a systemof musclesandbones.Therefore thereis significantmo-
tivation to find fastand explicit alternatvesto full-scale dynamic
simulationtechniqueswhich still producesimilar-looking results.

In a featurefilm productionenvironment, the desiredlook of
a charactes skin mustbe achieved by whatever meansare avail-
able. Whennot usingphysically-basedimulationtechniquesthis
frequentlymeangediousanddifficult touching-upor sculptingby
hand, sometimeson a frame-by-framebasis. This type of work
oftenmustbe repeatedver andover againfrom one pieceof ani-
mationto anotheecauséheby-handfixesarenot general.

Becauseof all of this, we desirea skin deformationtechnique
which satisfieghesegoals:

o |t shouldhandlefanciful creaturesvhosemotioncannotread-
ily bedescribedvith musclesandbones.

e [t shouldbe ableto approximatehelook of ananatomically-
basedsimulationsystembput at interactive displayrates.

e |t shouldbe ableto sene asthe underlyingdeformationon
top of which a physically-basedimulation systemcan add
inertial effectsof jiggling andshaking.

e |t shouldbe ableto “learn” from existing good examplesof
how the skin shouldmove.

1.1 Pose-Based Approach

A pose-basedpproactto skin animationtakesasinput a seriesof
posesandgeneratesnotionthatis consistentvith the poses.Each
poseis a configurationof the skeletontogetherwith the accompa-
nying shapeof the skin. Sucha systemhasthe very nice quality
of beingdirect,working from the desiredresultsbackwards,asop-
posedto systemsthat requirethe indirect constructionof muscle
abstractions.
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Figure 1: The multi-weight erveloping skinning processsolvesfor a setof weightsthat approximatethe movementof skin in a training
exercise.Theresultis thatthe skin movementin thetraining exerciseis generalizedo thatit applieswell to othersequencesf animation.
1-a shavs someexampleposedrom atrainingexercise.1-b shavs someframesfrom a new animationsequence.

A pose-basedpproacmeednot specifywherethe posescome
from. In practice therearea variety of sourcesfrom bothartand
science,including hand sculpting, proceduraltechniquedik e dy-
namicsimulation,or even 3D scanningor motion capture.

Building a goodsequencef posesby handcanbe quite a bur-
denon an artist, who is understandablynotivatedto producethe
minimal numberof posegsequired.But becauseéheposespaceof a
skeletonis ratherdifficult concepto visualize designingaminimal
setof posess likely to beanerrorproneprocesdor theartist,and
theresultis likely to leave portionsof the posespaceunexplored.

Our particulartechniqueis designedto alleviate this problem
by leveragingexisting sequencesf hand-tweakd animationasa
sourceof posesusingevery frameof theanimationasa pose.How-
ever, this meansthat the systemshould be able to handlemary,
possiblyhundredsof poseswith the expectationthatmary will be
redundanbr evenconflicting.

1.2 A Fitting Solution

Oneway of computingpose-basedotionis to usescattered-data
interpolationtechniquesTwo notableexamplesarethe Lewis etal.
pose-spaceleformation[2000], andthe Sloanet al. shapeby ex-
ample[2001], whichwe describén Section2. Thesescatterediata
interpolationtechniquesold theinput posesasanintegral compo-
nentof the motion representationwhich meanghe compl«ity of
representatiogrows with thenumberof poses.

We chooseinsteadto use approximationtechniquestogether
with anexplicit deformationequation.Our new deformationequa-
tion is a generalizatiorof an old and commondeformationtech-
niqueoccasionallyreferredto asernveloping[Softimagel1992],de-
scribedwith its limitationsin Section2.1. This techniquedefines
the position of a point on the skin as a weightedcombinationof
several skeletal coordinateframes. Our multi-weighterveloping
(MWE) equation,presentedn full detail in Section3, replaces
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eachweightedtermin thesimplercasewith severalauxiliaryterms,
hencethe name"multi-weight”.

Thisnew equationis afunctionof theskeletalcoordinatérames.
We have foundit to be very powerful, andin practiceit canrepre-
sentfairly sophisticatednotion of the skin, far beyond that of the
original erveloping equation. The multi-weight enveloping equa-
tion alsohasthe adwantageof beingmathematicallywery concise.
Becausaet is linear in its input variables,we can use a modified
linear least-squaresolutionto derive the weightsfrom the input
poses.

We recognizethat somefidelity may be lost becausave usean
approximatiortechniquethatdoesnotrequirethe solutionto inter-
polatetheinputposesHowever, thisapproachs betterequippedo
handleposeghatareclosetogetherin posespacebecausef what
mightbetermed‘usererror”. In practice thisis quitehardto avoid.
Anotherthe advantageof our motion representatioiis thatit does
not getmore comple with moreposes.It canhandlehundredsor
eventhousand®f posesat the expenseof alongersolutiontime,
but the amountof memoryrequiredto hold the coeficients of the
equations the same andthe subsequergvaluationof deformation
equationat runtimeremainsunafectedby the numberof poses.

1.3 Applications

With ary techniqueusedin a commercial film productionsetting,
thereis atrade-of betweentiime spentupfrontto build modelscare-
fully andongoingfixesmadeaftertheinitial setupis complete.Our
techniqueis designedio accommodatdoth extremes. The ideal
initial phaseanvolvescarefullybuilding atraining exercisethatcar
riesthe skeletonandskin throughthe completerangeof motionit
is expectedto ever achieve, capturingall the extremes. The alter
native approachis to simply produceseveral sequencesf anima-
tion usingothertechniqueswithout specificallydesigninghemfor
usewith themulti-weightervelopingprocessandthenprovide the



multi-weightsasa betterbehaing andlessfinicky alternatve that
eventuallytakesover asthe deformatiorntechniqueof choice.
Thefitting processcanin theoryoperateon ary sourceof input
posesput we focuson two specificapplications.The first, asmo-
tivatedabove, is datageneratedhroughsimplerdeformationtech-
niquesaugmentedy hand-tweakingoy an artist. The secondis
datageneratedvith a full-scaleanatomically-dren dynamicsim-
ulation. In both of thesecasespur techniqueis ableto generalize
inputandapplyit to new sequencesf animation.Figure1 shavs
someexamplesof the multi-weightskinninginputandoutput.
Although this training processcan be quite involved, oncethe
coeficients of the deformationequationhave beencomputedthe
fitting processs left behind,andtheresultingrepresentationf mo-
tion of thecharactes skinis quite simpleandcomputationallyeffi-
cient,makingit idealfor ary kind of interactive application suchas
characteanimation,aswell asgamesandvirtual reality systems.

1.4 Overview

In Section2, we give anoverview of skin deformationtechniques,
someanatomicallybasedandsomenot. In Section2.1,we describe
the single-weighternvelopingtechniquethat our deformationequa-
tion is generalizedrom. In Section3, we describehe multi-weight
envelopingdeformatiorfunction. Section4 presentshefitting pro-
cessijncludingtherequirementsf theinput aswell asthe numeri-
cal techniquegor computinga solutionthatgeneralizesvell. Sec-
tion 5 describeshe overall multi-weightskinningprocessn detail.
In Section6, we discusssomeexamplesof hawv we have usedthis
technique Finally, we discussuturework in Section?.

2 Background

Techniquesfor skin deformationscan be characterizecby how
muchandwhattype of abstractiorexists betweerthe skin andthe
underlyinganatomy Mary interestingapproachegsvolve detailed
representationsf muscleanatomy([Scheepert al. 1997] [Wil-
helmsand Gelder1997] [Ng-Thow-Hing and Fiume 1997][Chen
andZeltzer1992][Leeetal. 1995][NedelandThalmann1998]).

Othertechniquegroceedvith lessattentionto anatomicatigor.
Sederbay introducedheideaof afree-formdeformationFFD), or
rectilinearlattice [Sederbeg andParry 1986]. The control vertices
of the lattice actlike a 3-dimensionakplinevolume, and deform-
ing pointsinsidethelatticearegiven normalizedcoordinateslong
eachaxis. [MacCraclen and Joy 1996]. someof the The lattice
is thusan abstractiorfor underlyingtissue. Techniquesxtended
from FFD remainanactive areaof researct{{MacCraclenandJoy
1996][Chadwicketal. 1989][SinghandKokkevis 2000]).

Oneof thedifficultiesof anatomically-basesystemss thatthey
areindirect. Achieving a particularlook in the skin requiresdeter
miningwhatlayoutof musclesunderneatfivould producat. Hsuet
al. developeda directmanipulationschemehatworkswith FFDs
andallows the userto tug directly on the surface,usingnumerical
pseudo-imersetechniquego determinewherethe control vertices
have to go to yield sucha pose[Hsu et al. 1992]. Our approachs
similarin flavor, in termsof fitting a desiredresultto anunderlying
equation but our problemdomainandunderlyingformulationare
different.

Many populardeformatiortechniquesnvolve no anatomicahb-
stractionat all andsimply representhe skin asa shell that moves
as an explicit function of the skeleton. Magnenat-Thalmanmet
al. introducedthe idea of “joint-dependentlocal deformations”
[Magnenat-Thalmanet al. 1988], which are specificlocal defor
mationoperatordasedn the natureof thejoints.

Shapeinterpolationis a populartechniquefor representingb-
jectdeformationshput it is difficult to applyto anarticulatedskele-
ton, although Lewis et al. introducedpose space deformations
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(PSD)[2000] asa hybrid methodof shapenterpolationandskele-
ton driven skin animation. It employs scattered-datanterpolation
with a Gaussiamadial basisfunction,usingthe differencebetween
the joint configurationsasthe distancemeasurementThe falloff
parametersre left asanimatorcontrols. As the numberof pose
controlsandthe numberof posegyetlarge, thesefalloff parameters
canbe difficult to tuneto achieve the desiredposeblending. One
setof falloff parametersnay work well with onesetof poseshut
whenmore posesare added,the sameparameteimayscausetoo
muchoverlapamongall theposes Thistechniquevorksbestwhen
theposesareevenly distributedin posespaceput theinterpolation
becomesnoreproblematiaf posesareunevenly spacedespecially
whenposesarevery closetogether Lewis etal. discardduplicate
posesasusererror.

Sloanet al. describedanotherway to use shapeinterpolation
for skin deformation:shapeby example(SBE)[2001]. As in PSD,
SBEtakesasetof posegexamples)sinputandinterpolateghem.
It combinegadialbasisfunctionsandlinearpolynomialsto imple-
mentshapeblendingin combinationwith transformblending(sim-
ilar to single-weighterveloping)to deformthegeometry All input
posesaretransformedo arestconfiguratiorfor the skeletonwhere
shapeblendingoccurs andtheblendedshapés subsequentlyrans-
formedto the skeletonconfigurationfor the newv pose. SBE per
forms the interpolationin an abstractspacedefinedby adjectves
suchasgender age,andbendingof a joint. The artistmustasso-
ciateavectordefinedin this abstracspaceo acorrespondingnput
pose. This procesf assigningabstracijualitiesandsettingtheir
valuesfor eachposecanbe a lot of work for the whole body of a
comple creature.

In comparingour MWE techniqueto SBE and PSD, all three
techniquegake a setof posesor exampleasinput. However, our
methoddiffersfrom SBEandPSDin thefollowing regards:

e Both SBEandPSDrequireall theinput posego beknown at
runtime. Thememoryspaceandevaluationtimebothincrease
as the numberof posesgrow. For MWE, only the setsof
weightsareneededat runtime. The memoryspaceandevalu-
ationtime remainconstantasthe numberof poseschange.

e For the whole body animation,the numberof posecontrols
for PSDandthe dimensionof the abstractspacein SBE can
belarge. Asthenumberof posedsncreaseadjustinghefalloff
parameterén PSDandsettingthe valuesfor all adjectivesin
the abstractspacefor eachinput posein SBE canbecomea
largeamountof work. Thismake it difficult for bothPSDand
SBE to make useof substantiaportionsof an animationse-
guencdor acomple creatureplacingagreateburdenonthe
userto properlyselectrepresentate poses MWE gracefully
handleslarge numbersof poses,duplicateposes,and poses
closetogetherin posespace.

e SBEandPSDareboth shapeinterpolationtechniquesvhich
interpolateall the input posesandthe posesarethemselesa
partof themotionrepresentatiolMWE doesnotguarante¢o
reproduceheinput posesxactly becausef theleast-squares
approximatiortechniquewe emplg over all theinput poses.
Butin practice we have foundthatour new deformatiorfunc-
tion is pawerful enoughto capturethesignificantdetailsof the
skin deformationsn theinput poses.

Theuseof trainingtechniquesn compute@nimationis certainly
notnew, andonetechniquewith asomeavhatsimilarflavor to oursis
Grzeszczuletal’'sNeuroAnimato{2001],althoughthisapplication
involvestrainingaskeletoninsteadf theskin. TheNeuroAnimator
usesaneuralnetto trainarigid objector skeletonto move by giving
it mary examplesof how suchobjectsmove.

Anothersimilar paradigmis Brands voicepuppetry{1999]. The
voice puppetusesa Hidden Markov Model to learnthe mapping
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3-b: SWEframe2
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Figure3: This exampleillustratesatight-fitting shirtwith stripesaroundthe shouldermndupperarmarea.Fromleft to right thearmis rotated
up andtwistedtoward the front. 3-a to 3-d is the SWE deformationbasedon Equation(1): 3-d exhibits typical collapsingproblemaround
theshoulderareaandthe “candy-wrapper’problemaroundthe middle of theupperarm. 3-e to 3-h is the MWE deformationcomputedrom
only two poses:3-e and3-h areposegrovided by theartistand3-f and3-g arethe MWE resultsappliedon new poses.

from audiosignalsto facial expressiorfrom trainingvideoandau-
dio. This mappingcanthen be appliedto a newv audio track to
generateppropriatdacial expressioronthe spealer.

2.1 Single-W eight Enveloping

In practice,oneof the mostcommonskin deformationtechniques
goesby a variety of names,including “enveloping” [Softimage
1992], “skinning” [Alias|Wavefront 1998], and“skeletal subspace
deformation”by Lewis etal. [2000]. We will referto it assingle-
weightenveloping(SWE)to bein contrasto MWE. Thisalgorithm
definesthe positionof a point on a surfaceasa linearcombination
of the reststateof the point projectedinto several moving coordi-
nateframes,or bones.

If apointp is ervelopedto abonewhosecoordinatérameis By,
let Pe, bep in B, 'sframeof reference:

ka = ka71

Thenletp,’ be Pg, carriedalongwith B, asB, movesfromits rest
to its animatedpositionB,”:

P =PB, "B =pM,

whereM, is the ervelopingmatrix for bonek. M, is a transfor
mationmatrix that transformsbonek from its restto its animated
frame. Thefinal ervelopedpositionp’ is givenby aweightedsum
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of thep,’ for thebonesto which p is enveloped:
n
p'= z W, PMy (1)
K=1

Thew, arethesingle-weightervelopingweights,1 < k <n, where
nis thenumberof boneghatp is envelopedto. Thevaluesof w, are
left asartistcontrols. A large value of w, meansp’ follows bone
k closely; a small value of w, meansthe bonehaslittle influence
on the point. Figure?2 (on the color plate page)shavs the SWE
geometricallywith two bones.

This equationhaslimited ability to describeskin-like behaior.
For example,in Figure2 (on the color platepage),no matterhow
theartistadjustsw; andw,, thepointp’ is restrictedto move along
theline formedby p,’ andp,’. In particular SWE suffers a col-
lapsingproblem,in which a bendingtubelosesvolumeinsteadof
creasing(Figure 3-d aroundthe shoulderarea),which is common
aroundelbowns and shoulders. A similar anomalyis the “candy-
wrapper’problem(Figure3-d aroundthe middle of theupperarm),
in which a twisting tubecollapsessompletelyat rotationsnear180
degrees.In generaljt is very difficult to make the skin look right at
variousboneconfigurationsy tweakingthe singleweighton each
bone.Onesetof weightsmay work for oneboneconfigurationby
notfor another



3  Multi-W eight Enveloping

The multi-weight enveloping equationis an extensionof Equa-
tion (1) in which eachentry in the erveloping matrix M, getsits
own weight. If the envelopingmatrix from Equation(1) is written
outas:

oo
M :B —1BI: 1q< llk 12k 2
k k Pk My My My 0 2)
My, Mgy, My 1
thenthe multi-weightervelopingequationis:
) WogMog,  Wo1, Moy, Woz Mha, 8
r_ Wig Mg, Wig, My Wip Mo 3
PP | g Wy wpmgy 0| O
Waq Mg~ Wag Mgy Wz Mgy 1

wheren is the numberof bonesthatp is ernvelopedto, andthewij

arethemulti-weightervelopingweightsfor bonek, 1 < k<n,0<
i<3ando<j<2.

Evaluatingthis equationfor a single point requires21 multipli-
cationsand9 additionsperbonethe pointis ervelopedto. Thisis
in additionto thecomputatiorof the M, matrix, whichis astraight-
forward calculationfrom the bonetransformatiormatrices aspre-
scribedby Equation(2).

The enveloping matrix M, representshe transformatiorthat a
pointundegoeswith respecto bonek. By giving aweightto each
entry in this matrix, we provide the ability to modify the rotation,
translation scaleandshearof M,. This allows the skin pointto be
expressedvith non-rigidaswell asrigid transformationsThe skin
point is no longerrestrictedto the subspacelefinedonly by rigid
transformation®f therelevantbonesasin the SWE case Figure3
shaws a simpleexampleof how MWE is capableof capturingthe
skin-like behaior givenonly two input poses.

We have designeda new deformationfunction with a high di-
mensionalinput space: 12 dimensionsfor every relevant bone,
to provide the enveloping matrix with the maximumflexibility to
transformthe skin pointsto bestapproximatetheir desiredposi-
tions in the training poses. However, given a setof input poses,
theremayexist mary dependencieamongthesenputdimensions.
Performinga principal componentnalysis(PCA) removescorre-
lationsamongthesedimensionsandproducesa setof independent
basisvectorsfor the training of weights. Detailsare discussedn
Sectiord.3.

An adwantageof usingthe matrix componentaisthevariablesis
thattheresultingequationis linear, eventhoughthe generaimove-
mentof the coordinateframesin the skeletonis non-lineay sinceit
is the productof rotations. The trigonometrictermsinvolving the
rotationareessentiallysubsumedhto thevariablesve usein thefit-
ting processThe matrix formulationprovidesa way of dispensing
with messierforms of rotations,like euleranglesandquaternions,
whenrepresenteih a transformatiommatrix. Eventhoughquater
nionsbehae smoothly the resultingequationis non-linearwhich
would dramaticallycomplicatethefitting process.

4 The Weight-Solving Process

A collectionof posegepresentsampleshatpair valuesof p’ with
correspondingaluesof m, Usingthesewe solve for theweights

Wi, in Equation(3) usingmodifiedleast-squareftting techniques
describedn Section4.4. We solve eachpoint independently For
eachpoint, we first determinethe subsetof bonesthat affect it,
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througha processdescribedbelov in Section4.1. We canthen
extract from the input training exerciseeachposes datafor that
bone. If a point hasduplicateposes,.e. poseswith very similar
m; ., we averagethe posepositionsp’. This ensureghatduplicate
posesdo not weightthe least-squaresolutionunduly For thefol-
lowing discussionlet therebe muniqueposesandn relevantbones
for aparticularpoint.

We can solve eachdimensionindependentlysincex, y, andz
are unrelated. The multi-weight enveloping equationfor the j-th
dimension,

n
I _
P = 2 Poo, M, +PaViy, My, PV, My, + W My (4)

is theresultof insertingp = [p, p; P, 1] into Equation(3), with j as
0, 1, or 2 correspondingo theX, y, or zdimensionrespectiely.
Eachposeyields oneequationin the W variables.If the point

k
p is envelopedto n bonesandtherearem posesin the input, then
thematrix form of them equationdor thej-th dimensionis:

Aw=b (5)

or

wherethe matrix of coeficientsA is givenby:

My u rnojkl my; KL rnzjkl My oo My ni
A= : :
rnol im T rrlojkm mlj km m2jkm rnsj km o rr-‘Sjnm

Matrix A hasm rows (oneper pose)and4n columns(4 perbone).
Theright-handvectorb, of dimensionm, representshe locationof
thepointp’ in eachof the posesw is the vectorof variablesbeing
solved, of dimensiondn.

The standardeast-squareprocessninimizestheerror:

£=|/Aw—D||3 (6)

¢ isthesquared®-normof the component-wiselifferencebetween
thesolvedlocationof thepointandits positionin eachof theposes.
However, minimizing € aloneis not practicalfor severalnumerical
andheuristicreasonsFirst, matrix A cancontaincorrelateccolumn
vectors,which makesit anill-conditioned matrix that is unstable
and difficult to solve. Second,we have to avoid overfitting, i.e.,

computingweightsthatfit theinput posedrom thetrainingexercise
well (tight fit with smalle), but behae poorly whenappliedto nen

posesin the new animationsequencegpoor generalization).We

discusghesessuedurtherin Sectiond.3andSection4.4.

4.1 Localiz ed Effects from Global Poses

For the input poseswe would like ary good pairing betweenthe
skin andthe skeletonto be a candidategvenif it represents pose



of theentirecreaturenotjusta portionof it. Thisway, we canuse
ary pieceof animationasa sourceof poses.

If thetraining exerciseis truly representate of the entirerange
of motion of the skeleton,the naturalcorrelationbetweenrthe skin
and nearbyboneswill fall out automatically but in practicethis
would requirea very large, prohibitively extensve setof training
poses. For example, eachposeof the fingerswould have to be
pairedwith mary posesf thetoesin orderto determinethatthere
is no correlationbetweerthetwo. In atypical animalskeleton,the
skin is fairly localizedso thatits positiondependnly on nearby
bones.

In orderto interpreteachposein thetraining exerciseasa com-
plete poseof the entireskin andskeleton,we requirean additional
input that definesfor eachsurface point the subsetof bonesthat
affectit. This ensureghatthe dimensionof the A matrixin Equa-
tion (3) is not the entire numberof bonesin the skeleton, but is
restrictedto the subsebf the bonesthatareinterestingto a partic-
ular point. This map viewed from the point of view of the bone
defineswhatsurfacepointsthe boneaffects.

As describedn thenext section therearefurtherbenefitdo hav-
ing a scalarfield that definesthe extent of the influenceof each
bone,so we requirean influencemapto accompan eachbonein
the input. The influenceof a particularboneincludesall surface
pointswheretheinfluencemapis non-zero.

Providing thesemapsis left up to the user Sincethe infor-
mationthey corvey canreadily be visualizedas scalarfields on
the surface, the interfacewe rely on is a 3D painting technique,
similar to texture map painting. Theseinfluencemapsare similar
to single-weighterveloping weights. Figure4 (on the color plate
page)shavs an exampleof two influencemapspaintedon an ani-
mal. Thesemapscanbe paintedquite loosely; their purposeis to
distinguishthe relevantbonesfrom theirrelevantones. The edges
of thesemapsshouldbe smoothto prevent discontinuitiesin the
skin deformation.

4.2 Pose and Bone Influences

In the matrix formulationin Equation(5), we canscalethe rows
and the columnsof A to achieve certaindesirableeffects. First,
the boneinfluencemapscanbe usedto scalethe columnsof A to
modulatethe influenceof a particularboneon a point. For each
point, the influencefrom bonek, i, is multiplied into the matrix
prior to solvingthe equationsothatmatrix A becomes:

HaMy,, HnMy;

ulmojlm “nrnsjnm

The p, s arethenfolded into the resultingweightsafterwards. A
small value of y, gives a bonelesseffect on the error in Equa-
tion (6); alargevaluegivesit greatereffect. Smoothboneinfluence
mapsprovide smoothfalloffs of the effectsof the bonesfrom one
skin pointto the next.

It is also possibleto increasethe influenceof the ith poseby
multiplying the ith row of the matrix A andtheith entry of b in
Equation(5) by a constantscalar 1 <i < m. The resultis that
the correspondingposecontribtutesmoreto the error thatis being
minimized. This providesthe userwith a way of insistingthatthe
solutionfit a particularposemorecloselythanthe otherposes.

4.3 Principal Component Analysis on Input Data

For theinput datamatrix A, notethatit usesl2 entriesof the bone
envelopingmatrix, while abonehasfewerthan12independentle-
greesof freedom. This meansthat the column vectorsof matrix
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A may very well be correlatedto oneanothey not to mentionthat
differentbonesinfluencingthe samepoint may have their matrix
entriescorrelatedvith oneanother To projectthe setof correlated
variablesinto a setof moreindependentariableswe apply PCA.
It is acommonpracticeto usePCAto remove thecorrelationin the
inputdata[Dean1988].

We apply the PCA methodasfollows. Computethe eigervec-
tors of the variance-ceariancematrix of A: e, ...e,, listedin the
orderof decreasingigevalues.Thene, is thefirst principalcom-
ponentof A and representghe direction that hasthe maximum
variance. Specify an eigetvalue thresholdwhich choose9 (with
p < 4n) eigervectorsto correspondvith the p largesteigemvalues.
We projecttheinput matrix A ontoits principalcomponent®y set-
ting C = AE, with E = [e, ... gp]. Matrix C hasp columnvectors,
which areorthogonalto eachother By choosingonly p mostsig-
nificanteigervectorsto transformA into C, we getaninput matrix
C that hasfewer dimensionsyet still represents high proportion
of thevarianceof theoriginal input datain A.

UsingPCA, insteadof solving Equation(5), we solve w¢ in

Cwe=Db @)

Thefinalw canbecomputedromw = Ew,. Thisisbecaus€w; =
b = Aw from Equation(5) and(7), and C = AE, which givesus
AEwW; = Aw.

4.4 Local Ridge Regression

To computea setof weightsfrom the training posesthat general-
ize well to nev animation,we needa way to control the magni-
tude of the resultingweights. The effect of large weightscanbe
seenby takingthe partialderrivativesof Equation(4), for example,
L If i I thensmallchangesn thebone
am, ~ pwy, - If wy is verylarge, g
transformationj.e. m;, cancausdarge displacementsf the out-
put point, p]-’. This will not producea smoothdeformationof the
skin whenbonesmave away from their training poses.Insteadthe
skin pointswill fly away from their desiredpositions. Figure 5-a
demonstratethis kind of overfitting problemasthe weightscom-
putedfrom theinput posesare appliedto a new pose:the skin de-
formsbadly

5-a: Overfitting. Largeweightsdeform
skin badlyon anew pose.

5-b: Fixed. Smoothemweightsare
computedrom local ridgeregression.

Figure5: Overfitting Fixed by Local RidgeRegression

In orderto achieve a smoothinterpolationfunction, we usea
techniquecalled local ridge regression[Orr 1995], which offers
a trade-of betweentight fitting and good generalization. It is a
modifiedleast-squarefitting techniqueandis an extensionof the
regular ridge regression. The standardleast-squaresolution of
Equation(7) is to minimize the costfunction ||Cw, — b||3, which

is equivalentto solving CTCw; = C'b, referredto asthe standard



normalequation.This canbederivedthroughsettingthe derivative

of thecostfunctionto 0 [Kahaneretal. 1989]. Theridgeregression
techniqguewasdevelopedby Hoerl andKennard[1970] to regular

ize ill-conditioned problemswherethe inverseof CTC is unstable
(when||CTC|| is closeto 0). It solvesfor (CTC+Al)w, = CTb.

Theglobal A is usedasatrade-of parametefor tight fitting (small
A) versusstability (large A) in theregularridgeregression.

We find that one global regularizationparameteidoesnot suit
our needs.We requirea regularizationparametethat changesac-
cordingto how extensve thetrainingdatais in eachdimension.In
particular if oneinputdimensionis notchangingatall in thetrain-
ing exercise, it implies we do not have ary information how the
surfacepointwill move whenthis input dimensionstartsto change
in thenew animation.In this specialcasewhenthevarianceonone
input dimensionis 0, we wantthe weightcomputedn this dimen-
sionto be 0. In generalwe wantthis penaltytermto be inversely
proportionalto the varianceon theinput coeficient.

The local ridge regressiondevelopedby Orr [1995] assignsa
penaltyterm Ay, to eachw, : the h-th variablein vectorwe, with
1< h<p. It solvesfor

(CTC+ A Hwe=C'b (8)

which minimizesthe new costfunction:
) p
ICwe—bl+ 5 Ay,

The larger we choose),, the smallerthe value of We, will come
out. In theextremecasewe canmale we, = 0 by settingA, = c.
Therearevariousheuristicshatcanbeusedto computethereg-
ularizationparameted,,, someof which areiterative methodssuch
asthe one presentedby Orr [1995]. We introducea nenv way of
computingA,, which works well for our technique. It is basedon
thevariancerelateddiscussiorwe have madeabove:

3
A=1 5@

whereg, is thehth columnvectorof matrixC, O’(Ch) isits variance,
ands; is auserprovidedscaleparameteto controloverfitting. The

ideais thatif the coeficient of we, is not changingmuchfrom the
training data,it impliesthatwe do not have enoughinformationto
computethe wg, thatwould generalizewell andwe shouldadda
biggerpenaltyto its magnitude.

Finally, we use singular value decompositionto solve Equa-
tion (8), wherethe usercanadjustadditionalparameters$o control
thesmoothnessf the solutionby remaving smallsingularvalues.

9)

if o(c,) >0
if 0(g,)=0

4.5 Space of Computation

For reasonsimilarto thosediscusse@bove for computingweights
with smallvalues,our experiencehasbeenthatthe approximation
behaesbetterif we solve for weightsthat measurehe difference
betweenthe poseand the skin rigidly transformedby the skele-
ton, or evenbetter deformedby anothemunderlyingsystemsuchas
SBE.This changeshe spaceof the computatiorfrom thelocal co-
ordinateof theskin point, p’, to adeltabetweerits desiredposition
andthe position determinedby the underlyingsystem,Ap’. This
underlyingsystemcanbearigid transformatiorby the skeletonor
single-weightenvelopingor ary otherapproache.g.,lattice-based,
that makesthe skin roughly follow the bones. The goalis to cap-
ture asmuch as possibleof the rigid transformatiorthat the skin
undegoeswith the underlyingsystem leaving the MWE solution
procesgo capturetherefinement.To make this computatiorspace
changesimplyreplacethep’ with Ap’ in Equation(3), (4) and(5).
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5 The MWE Skinning Process
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Figure6: Flow Chartof the MWE SkinningProcess

With the new formulationand the statisticalapproachof auto-
matically computingthe weight coeficients, the skinning process
is summarizedn Figure6. In Section6, we presentresultswith
two differentapplicationsof the technique. In the first example,
anartisthand-sculptedsolatedframesof a trainingexercise,using
general-purposgeometrianodelingsoftware.In thesecondexam-
ple, adynamicsimulationprocessgeneratedhe desiredposesfor
thetraining, which wasthenaugmentedy additionalsequencesf
animation.

Theskinningprocesawith sculptingby handis asfollows:

1. Animate a training exercise,capturingall extremesthat are
likely to occurin practice. This animationis a sequencef
poseswithout having ary in-betweens.

2. Paint a boneinfluencemap for eachbonein the skeleton,
looselybasedon anatomy

w

. Hand-sculpthe extremeposes.This may or may notinvolve
makinguseof anunderlyingsingle-weightervelope.

4. Solwve for the multi-weights, choosingan appropriates; pa-

rameterin Equation(9) to control the balancebetweertight
fitting andgoodgeneralization.

5. Validatethe MWE solution at the input poses. If the fit is
nottight enough,adjustthe s in Equation(9) to be smaller
If somebonemovementdoesnot affect particularpartsof the
skinwhereit should,extendits influencein theinfluencemap.

6. Validatethe MWE solutionwith testdata,i.e. new animation
sequenceslf skin deformsbadly dueto poor generalization,
e.g.,pointsoscillateabouttheir desiredpositions,adjustthe
& in Equation(9) to belarger.

7. Wherethe MWE solutionfails to produceaestheticallysatis-
fying interpolationor extrapolationon the new poseshand-
sculptthe failing pose,andaddit backinto the training set,
andrepeatsteps4-7.



The skinningprocesswith simulationasinputis asfollows:
1. Animate a training exercise,capturingall extremesthat are
likely to occurin practice.This animationmustbe structured
sothatthemotionis physicallyachiezableby thecreaturej.e.

attentionmustbe paidto whatthe simulationprocesswill do

betweerthe extremes.

. Paint a bone influencemap for eachbonein the skeleton
looselybasedn anatomy

. Runthedynamicsimulationon the animation.

. Solvefor themulti-weightsusingeveryframeof thesimulated
trainingexercise.

It is desirablefor the input posesto be taken at static equilibrium
sothatthey provide bulgesandcreaseshut do notincludedynamic
effectssuchasjiggling. If theposegloincludejiggling, theweight-
solving processdescribedn Section4 averageshe differentskin
pointpositionsin identicalposesandapproximateheir positionsin
similar poseshy minimizing theerrorin Equation(6).

6 Results

We have implementedthe multi-weight erveloping processand
usedit in a featurefilm productionenvironment. Herewe present
theresultson two creatureswith differentanatomy- a humanand
an animal creature. The humans$ posesare sculptedby hand,on
top of anSWE,andtheanimal’s posesaredonethrougha dynamic
muscleandfleshsimulation.

The humanfigure wasbuilt from scanneddataand consistsof
approximately300,000spline control verticesand has59 skeletal
bones Eachpointis influencedby up to 6 bones.Figure7-ashavs
afew extremeposesfrom thetraining exerciseof the humancrea-
ture. Thetraining exerciseconsistof 14 posesandthe procesf
solving for the multi-weightstook 6 minuteson an SGI O2 work-
station.Oncethe multi-weightsweresolved, we applythemto new
sequencesf animationwherethe skin deformsinteractiely with
the skeleton. This allowed artiststo visualizerealistic skin move-
mentasthey adjustthe skeleton.

Figure7-b presentone frameof the MWE resulton a new an-
imation sequencewith the multi-weightscomputedrom the orig-
inal training posesandrefinedby two additionalposes.Thesetwo
poseswvereaddedwhenthe artistswere not satisfiedby the initial
MWE interpolationon two new posesandperformedstep?7 asde-
scribedin Section5. As more poseswereaddedinto the training,
the multi-weightsproducedbettermappingsrom bonemavement
to skin deformation. Figures7-c and 7-d shav a comparisorbe-
tweenthe SWE and MWE resultsaroundthe shoulderarea. SWE
exhibits typical collapsingand crunchingartifacts, while MWE
shawvs a smoothshouldemwith propervolume. This kind of differ-
encecanbeseenthroughouthe entiresequencef theanimation.

Figure 8 lists a seriesof training posesof the animal creature.
This creaturemodelconsistof approximately200,000splinecon-
trol vertices,and it has55 skeletal bones. Each surfacepoint is
influencedby up to 12 bones. Someof theseposesare from the
initial training exercise,on which we rana dynamicmusclesimu-
lation, and othersare from somesequencesf animationthat had
alreadybeensimulated,demonstratinghatit is possibleto make
useof ary existing exampleof how the skin is supposedo move.
Theposedrom theinitial training exercisearetaken at staticequi-
librium, while the onesfrom the alreadysimulatedsequenceson-
tain somejiggling. Thetotal trainingsetconsistof 344 posesand
computingthe multi-weightstook 40 minuteson an SGI Octane.
Figure9-aand9-b (onthecolor platepage)presenthe MWE result
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7-b: Multi-Weighton A New Animation Sequencéframe9)

Wl ¥

7-c: Single-Weight. It exhibits typical
collapsingandcrunchingartifacts.

7-d: Multi-Weight. It shovsasmooth
shouldewith propervolume.

Figure7: Multi-weight Skinningon the HumanCreature



Figure 8: Exampleof Training Posesfor the Animal Creature.
Someposesarefrom thetraining exerciseandsomearefrom addi-
tional traininganimationsequences.

on posesfrom two new animationsequenceslt shavs that multi-
weightsgeneralizewell to new posesand have capturedthe nice
muscledefinition underthe chestand the bulging volume around
theshoulderandfront arm.

For both creaturesFigure 10 compareghe MWE resultswith
someinput poses Figure10-ais oneof the 16 equallyweightedin-
put posedor the humancreatureandFigure10-cis oneof the 344
equallyweightedinput posesfor the animalcreature.Figure 10-b
and 10-d shaw thatthe MWE approximateghe input posesrea-
sonablywell, missingonly a few small details. For example,the
wrinkles on the shirt in Figure 10-b are not as pronouncedasin
Figure10-aandthe musculaturen the upperleg in Figure10-dis
slightly lessdefinedthanin Figure10-c.

7 Conclusion and Future Work

Themulti-weightenvelopingequatioroffersapowerful but concise
representatiofior skin movement,andthe weight-solvingprocess
offers a practicalway of harnessingainstakingwork performed
on one piece of animationfor useon another The multi-weight
envelopingprocesdits well into afilm productionervironmentbe-
causeit makes useof the ability to get one speciallyconstructed
animationlooking right by ary meansnecessaryincluding hand
tweaking. It is particularusefulfor afilm with mary differentani-
mationsequencemvolving the samecreaturepecaus¢he amount
of time spentpreparinghetrainingexerciseis amortizedover mary
shots.

The techniqueholds up well with large numbersof posesand
the resultingrepresentationf the deformationdoesnot get more
comple asthenumberof posesncreases.

The techniquealsohasapplicationsfor gamesandvirtual real-
ity, where creaturemodelsmustdeformin real-timebut still be-
have in an anatomicallyacceptablevay. The gamedevelopment
stagewould requireconstructingthe training dataand solving for
theweights,but oncethisis done ,whenthe creatureappearsn the
game,it will have only its multi-weightsdescribingts motion.

The multi-weight enveloping equationis simple enoughthat it

137

10-a: Oneof the 16 Input Poses 10-b: Multi-Weighton This Pose

10-c: Oneof the 344 Input Poses

10-d: Multi-Weighton This Pose

Figure10: Multi-weight Approximateshe Input Poses

would lend itself well to hardware acceleration. Game engines
couldprovide this asa primitive operation.

As we have mentioned,the training datacan come from ary
numberof sources,and motion captureis a particularly promis-
ing one. If surfacedataandskeletalinformationcouldbe captured
from real models,the multi-weight processcould be usedto auto-
maticallygenerataleformingcreatures.
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Multi-Weight Enveloping:
Least-Squares Approximation Techniques for Skin Animation
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Figure2: Single-Weight Enveloping. The top figure shavs Figure4: Color codedinfluencesmapsfrom two boneson
two skin surfaces(red) ernvelopedto two coordinateframes, the animal creature. The yellow areafor the upperleg and
B, andB,, at the restposition. The bottom figure shavs theredareafor thelowerleg. Thedarkertheareathesmaller
how the skin (red) deformsasthe anglebetweenB; andB, theinfluence.

changeswith w; =w, = 0.5.

9-a: Multi-Weighton A New Animation Sequencéframe42) 9-b: Multi-Weighton AnotherNew Animation Sequencéframe17)

Figure9: Multi-weight Skinningon the Animal Creature
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