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Abstract

Motion capture data is useful to an animator because
it captures the exact style of a particular individual’s
movements and has a life-like quality. However, of-
ten the data is not exactly what the animator needs.
We demonstrate a method for using motion capture
data as a starting point for creating synthetic motion
data that addresses this problem by allowing the an-
imator to specify hard constraints such as where the
feet should contact the floor. The method captures
the style of the motion as well as the life-like qual-
ity. It begins with an analysis phase, in which the
data is divided into features such as frequency bands
and correlations among joint angles, and represented
with multidimensional kernel-based probability dis-
tributions. These distributions are then sampled in
a synthesis phase, and optimized to yield the final
animation.

1 Introduction

As the power of computers has increased and graph-
ics techniques have become more advanced, it has be-
come possible to create characters and scenes that are
photorealistic. However, the ability to automatically
generate motion data has not reached such levels. So
far the best way to create truly life-like animations
is to either hire an extremely skilled animator or use
motion capture data.

Recently, there has been more and more interest
in using motion capture data, as the technology re-
quired has improved and the availability of such data
has increased. However, the drawback of live motion
data is the lack of control; once the data has been col-

lected, the animator may find it is not exactly what
he or she needs. For example, perhaps the character
needs to take short small steps and walk in a cir-
cle, but the actor took large steps and walked in a
straight line. To overcome these problems, there has
been a large amount of work to develop methods to
manipulate the data.

One of the benefits of using motion capture data
is that it captures every detail of the motion. Often,
the fine details are what are of the most interest to
the animator, because they are what truly give life
and personality to an animation. For example, if you
ask two different people to perform the same action,
the resulting motion will be similar but not identical;
every individual has his or her own signature way
of moving. We call this concept of a person’s style
or personality of motion a “ motion texture”. Just
as a piece of fabric has a certain texture defined by
its look and feel, so does each individual’s way of
moving. The goal of this project is to be able to
extract the texture from motion capture data, and
use it to synthesize motion data that not only has
accurate motion, but maintains the texture of it.

In this work, we focus on cyclic motions, such as
walking. We felt that walking motions would be a
good test ground for our methods, because it is such
a familiar motion that a large amount of information
about mood and personality is conveyed by exactly
how the character is moving. We were also interested
in the cyclic nature of walking. When using motion
capture data for a cyclic motion, it is common prac-
tice to cyclify the motion. In other words, the ani-
mator uses one step of the walk cycle and repeats it
over and over again. However, in real life people do
not repeat the same step over and over again; each
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is slightly different, due to variations inherent in the
way a live being moves. Some steps may be slightly
shorter or longer, the head and upper body usually
move around differently with each step. The loss of
these variations during cyclification may cause the
resulting animation to lose some of the life-like qual-
ity that motion capture should reflect. In fact, we
consider these variations to be part of the texture we
wish to capture in our synthesis method.

Many researchers before us have created useful
methods for manipulation motion capture data. For
example, motion signal processing, motion editing,
and motion retargeting techniques [BW95, Gle98] al-
low an animator to adapt the movements to different
environments and skeleton dimensions while keeping
the essence of the original motions intact. In other
interesting work, machine learning techniques were
applied to large, highly varied data-bases of motion
and used to synthesize motions and alter the style of
an existing animation. [BH00]

However, the animations that result from these
methods may sometimes be lacking some of the life-
like quality, the texture, present in the original mo-
tion capture data. The optimization process in a
constraint-based method or generalization of the data
as a mixture of Gaussians may smooth over some of
the fine detail and nuance in the motion, since this
detail is not modeled in the process. Also, neither one
specifically models the variations within the motion.

We propose a new method for creating animations
that addresses these issues. We use the motion cap-
ture data as a source of“soft” constraints that de-
termine the personality texture of the motion. The
animator then specifies “hard” constraints, such as
places the foot should contact the floor, or other in-
termediate positions. Given this information, our al-
gorithm can synthesize motions that will both cap-
ture the style of the original motion capture data and
perform the exact actions that the animator desires.
To achieve such a result, we analyze the motion cap-
ture data by noting that it can be characterized by
features such as correlations among joint angles, the
frequency spectrum of each joint angle and transla-
tion, and the hard constraints present in the original
data. We use these facts to create statistical probabil-
ity distributions that represent the data, and which

can be sampled to generate new animations to the
specifications of the animator. The remainder of this
paper describes the details of the method.

2 Related Work

There has been a great deal of past research in a num-
ber of different areas that are related to our project.
We divide this work into four main categories that
are described below.

2.1 Variations in Animation

Many other researchers before us have made the ob-
servation that part of what gives a texture its dis-
tinctive look, be it in cloth or in motion, are varia-
tions within the texture. These variations are often
referred to as noise, and one of the earliest papers
to address this topic was in texture synthesis, where
random variability was added to textures with the
Perlin-noise function [Per85]. These ideas were later
applied to animations [PG96]. Other researchers
have created motion of humans running using dynam-
ical simulations [HWBO95] and applied hand crafted
noise functions [BSH99]. Our work with variations
in motion differs from the above in that we extract
the variation from the data itself rather than trying
to develop an artificial noise function that must be
tuned and added to the animation.

2.2 Signal Processing

There are a number of earlier studies in which re-
searchers in both texture synthesis and motion stud-
ies have found it to be useful to look at their data in
frequency space. In texture synthesis, one of the ear-
liest such approaches divided the data into multi-level
Laplacian pyramids, and synthetic data were created
by a histogram matching technique [HB95]. This
work was further developed by DeBonet [Bon97], in
which the synthesis takes into account the fact that
the higher frequency bands tend to be conditionally
dependent upon the lower frequency bands. We in-
corporate a similar approach, but applied to motion
data. In animation, Unuma et al. [UAT95] use
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fourier analysis to manipulate motion data by per-
forming interpolation, extrapolation, and transitional
tasks, as well as to alter the style. Bruderlin and
Williams [BW95] apply a number of different signal
processing techniques to motion data to allow edit-
ing. Our work relates to these animation papers in
that we also use frequency bands as a useful feature
of the data, but we use them to synthesize motion
data.

2.3 Motion Editing

Many techniques have been proposed that start with
existing motions, often obtained from motion cap-
ture data, and vary the motions to adapt to differ-
ent constraints while preserving the style of the orig-
inal motion. Witkin and Popovic [WP95] developed
a method in which the motion data is warped be-
tween keyframe-like constraints set by the animator,
which enabled them to alter the timing and blend
between motions. Their use of constraints is similar
to ours, but differs in that we are not warping the
motion in between, but synthesizing it. The space-
time constraints method originally created by Witkin
and Kass [WK88] was developed to allow the ani-
mator to specify constraints such as feet positions
of a character, and then solve for these constraints
by minimizing the difference from the original data
[Gle97]. In further work, this method was applied to
adapt a set of motion data to characters of different
sizes [Gle98], and combined with a multiresolution
approach for interactive control of the result [LS99].
Physics were included in the method of Popovic and
Witkin [PW99], in which the editing is performed in
a reduced dimensionality space. In other interesting
work, Chi et. al. developed a method for using the
principles of Laban Movement Analysis to enhance
the style of pre-existing motions [CCZB00]. All of
these methods have given good results. However, in
the process of forcing the constraints to be satisfied
or generalizing the data, some of the very fine de-
tail that is sometimes important to the style of the
motion may be lost. In our work we address this lim-
itation by using an optimization method that enables
hard constraints to be satisfied while directly incor-
porating information about the style of the original

motion.

2.4 Sampling Probability Densities

In our work we use a statistical representation of our
motion data, and make use of sampling techniques
to determine likely outcomes. Other projects in an-
imation and speech recognition have also made use
of these ideas. A Markov chain monte carlo algo-
rithm was used to sample multiple animations that
satisfy constraints for the case of multi-body colli-
sions of inanimate objects [CF00]. In other projects,
a common method of representing data has been to
use mixtures of Gaussians and hidden Markov mod-
els. Bregler [Bre97] has used them to recognize full
body motions in video sequences, and Brand [Bra99]
has used them to synthesize facial animations from
example sets of audio and video. Brand and Hertz-
mann [BH00] have also used hidden Markov models
along with an entropy minimizations procedure to
learn and synthesize motions with particular styles.
Our method differs from these projects in that we
want to keep as much of the information in the origi-
nal data as possible, and so have chosen to use kernel-
based probability distributions to represent our data
as a way to generalize it while keeping all of the fine
detail.

3 Methods

In this section we will describe the method used to
create our animations. There are two main aspects
to the process: analysis and synthesis. In the analy-
sis phase, we decide which aspects of the real motion
data are important to preserve in the final animation,
and represent the data accordingly. In the synthesis
phase, we use the data base created in the analy-
sis phase, as well as additional information and con-
straints input by the animator, to produce the final
product.

3.1 Analysis

One of the most important questions we seek to an-
swer with our work is: which features of the original
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data are important to fully describe the texture of a
motion? Although the original data and final result
that is input to the animation are in the form of joint
angles and translations, we find that other features
may be more useful during the process of defining and
applying a motion texture to an animation. In par-
ticular, we make use of phases, frequency bands, and
correlations, each of which is described below along
with the reason we feel it is an important aspect of
the motion to preserve during synthesis. A second
problem we seek to solve is how to represent these
features in such a way as to be the most useful for
the synthesis process. We chose to use kernel-based
probability distributions as a balance between gener-
alizing the data and keeping all of the fine detail in
the motion.

3.1.1 Features

Phases. By phases we mean a segment of time dur-
ing which a particular set of hard constraints are sat-
isfied. For example, during a walk cycle, there is a
phase where the right foot is flat on the floor, an-
other phase where the right heel lifts while the right
toe stays on the floor, then the left heel touches the
floor, and so on (figure 1). The initiation of these con-
tact points correspond to what traditional animators
often use as key frames in their animations, which
is why we felt they were important to take note of
in our method. In addition, just by knowing which
phase the motion is in, the angle data becomes much
more constrained (figure 2). For example, when the
left foot is on the floor, the hip and knee angle are
likely to fall within a different range than when the
left leg is not touching the floor. If there are no hard
constraints in effect (note it is not often true that no
hard constraints are in effect, only if the character is
airborne as in jumping or briefly during each step in
running) we can classify this situation as a phase as
well.

Frequency Bands. In most cases we divide the
angle and translation data into frequency bands be-
fore using it for synthesis (figure 2). The decomposi-
tion can be made with any standard technique such
as wavelets or the Laplacian Pyramid, with similar
results. We choose this representation because it of-

Figure 1: Example of a set of 4 phases during a
walk cycle. The phases are as follows (a) right
foot flat on the floor; (b) right heel lifts, right
toe still contacting floor; (c) left foot flat on
the floor; (d) left heel lifts, left toe contacting
floor. Note this is a simplified model, for ex-
ample in reality there is a moment when the
left toes are on the floor at the same time the
right heel is touching the floor. However, we
found this simplified model gave good results
in the synthesis process.

ten simplifies the form of the data, for example by
separating the smooth roughly sinusoidal overall mo-
tion of a walk cycle from the high frequency jitter as-
sociated with live motion. These two aspects of the
motion are important in different ways. Variations
in the lower frequency bands are associated with the
large scale motions, such as the stride length or over-
all motion. On the other hand, we perceive variations
in the higher frequency bands as jitter or wiggling
around. Both forms of fluctuation are present in live
motion, and they are important to preserve in any
synthesis or editing method that is to capture the
essence of the original motion.

Correlations. In coordinated human or animal
motion, the angle and translation data for each joint
are related to each other. For example, when the hip
angle has a certain value, the knee angle is most likely
to fall within a certain range that depends upon the
hip angle. Another type of correlation can be found if
we look at the relationship between angle values at a
given time to past and future times. In other words,
the hip angle at time t will be related to the hip angle
at time t − 1 and t − 2, because of the dynamics of
live motion. One way to visualize such correlations
is with a plot such as that in figure 4, where we show
the example of the knee angle vs. hip angles for each
point in time of motion capture data of two differ-
ent walk styles. Notice that the shapes of the plots
are similar, but not exactly the same, both appear-
ing as a skewed horseshoe shape. The shape of such
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Figure 2: Hip angle data with the phases
marked. Right foot flat, green circle; right
toe in contact, magenta triangle; left foot flat,
blue star; left toe in contact, red square. Note
how the data has a very particular structure
within each phase.

a correlation plot contains the personality informa-
tion. In addition, such a plot contains information
on how the data is likely to vary within a given style.
Neither plot is an exact shape, but allows for some
variation; given a hip angle, the knee angle may fall
within a certain range. For clarity in this example we
have plotted a two dimensional correlation, but in the
synthesis method we usually use more than two di-
mensions, looking at joint probability distributions of
up to 8 features at once.

3.1.2 Representation of the features

Merely representing the correlations among the data
features is not enough, because the data are still dis-
crete points. We really want a smooth distribution,
so that we could potentially sample not just values
that are actually in the data, but any of an infinite
number of values that are likely to occur given the
data. Probability distributions are commonly cre-
ated by fitting a function such as a gaussian to the
data. However, in this situation finding such a func-
tion would be difficult if not impossible because of the
complex shape of the distribution. In addition, the
data may be sparse, especially if there is not much
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Figure 3: Example of decomposing data into
frequency bands. Shown is the left hip angle
data, higher frequencies are at the top, lower
at the bottom. A Laplacian pyramid decom-
position was used for this plot.
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Figure 4: Plot of the knee angle vs. the hip
angle at each point in time for two walk styles.
(a) normal walk (b) funky walk.

motion data available and we are looking in several
dimensions at once. We want to truly preserve all
of the information present in the original data, yet
not lose any of the subtleties that create the motion
texture. As a result, we chose to represent the data
with kernel-based probability distribution, in which a
kernel function is placed over each of the data points
and all of the kernels are summed to create a smooth
distribution while preserving the nature of the origi-
nal data [Bis95]. We used a gaussian kernel function
because of its simplicity and it gave good results, but
one could use any of a number of standard kernels.
Using the example of the correlation between knee
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and hip angles, we could mathematically represent
the corresponding (unnormalized) two dimensional
kernel-based joint probability distribution as

P (θ, φ) =
∑

i

[
e
(

θ−θi
2σθ

)2
e
(

φ−φi
2σφ

)2
]

(1)

where P (θ, φ) is the probability of finding hip angle
θ and knee angle φ together, θi is the hip angle at the
ith point in time in the original data, φi is the knee
angle at the ith point in time, and σθ and σφ are the
sigmas corresponding to the Gaussian kernels used
for the hip and knee angle, respectively.

In figure 5 we show a plot of such a distribution,
again for the case of the knee vs. hip angle. The
user must chose the width of the kernel, which in
our case is the sigma of the gaussian. In the plot we
show several different choices of the sigma. In plot (a)
the sigma is too small to generalize the data, in plot
(d) it is too wide to capture the specifics, whereas in
the intermediate plots the sigmas allow for a reason-
able representation of the data. In practice we choose
the sigmas automatically based on the spread of the
data, usually about 1/10 the standard deviation of
the data, which corresponds to plot (b).

3.2 Synthesis

The goal of the synthesis phase is to start with the
distributions created during the analysis as well as
the constraints set by the animator, and create the
final animation. We achieve this result by first sam-
pling the kernel-based distributions, and then opti-
mizing the result as described below.

3.2.1 Sampling

To begin synthesis, the animator specifies the hard
constraints (in our work so far, the hard constraints
are always foot positions on the floor, but other con-
straints such as intermediate leg positions could also
be used) and how long the constraint should be satis-
fied. Given this information, we create the first angle
by sampling based on phase, frequency band, and
previous points in time. For example, suppose the
first phase we are synthesizing is the left foot flat on
the floor, and the first angle data we are synthesizing
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Figure 5: Contour plot of a 2-D kernel-based
probability distribution for the hip and knee
angle, the same data as shown in the correla-
tions plot in figure 4a. Four different sigmas
were used, as a fraction of the standard devi-
ation of the angle data. (a) 1/40 (b) 1/10 (c)
1/5 (d) 1/2.

is the left hip x angle, which we will represent as θ .
To get the first synthetic angle value, a 1-D kernel-
based probability distribution of likely values in the
lowest frequency band at the beginning of the first
phase is constructed from the data and sampled.

The second point is sampled from a 2-D kernel-
based conditional probability distribution of the
value at time t vs. the value at time t−1. We fix the
value of the first point, which is now time t− 1, and
create a conditional distribution P (θt|θt−1) , where
only data from the relevant phase and frequency band
is used, from which we sample θt , the hip x angle
at time t. The third value is similarly obtained by
sampling from the 3-D distribution P (θt|θt−1, θt−2),
and so on until we have N points. From then on, each
subsequent point is sampled from a N+1 dimensional
conditional distribution P (θt|θt−1, θt−2, . . . θt−N ). In
most cases, we use N=4 for good results. We sample
to the end of that phase, and then continue sampling
into the next phase, using data from the new phase,
and so on until we reach the end of the time specified
by the animator. This whole process is repeated for
the other frequency bands, and then all of the bands



3 METHODS 7

are summed to yield the final sampled angle data.
Now that we have one angle, we can use that in-

formation in our conditional probability distributions
when we synthesize further angles. For example, sup-
pose we now want to synthesize the hip y angle, which
we will represent here as α. We would sample as
we did for the hip x angle, but now the distribution
would be P (αt|αt−1, αt−2, . . . αt−N , θt), where at rep-
resents the hip y angle at time t, and θt is again the
hip x angle . We continue this process throughout the
whole skeleton until all angles have been synthesized.
In all cases we start from the center of the body and
move outward when deciding which angles to include
in the conditional distributions. The hips and overall
rotations and translations are sampled first, then the
knee angles are sampled from the phases, previous
points, and hip angles; the ankles are sampled from
the phases, previous points, and knee angles, and so
on. We set up the sampling in this manner because
often motion is initiated from the center of the body,
and it gave good results.

3.2.2 Optimization

Now that we have a set of sampled data, the resulting
animation will resemble the desired result, but still
not be exactly what the animator wants. In partic-
ular, the hard constraints are probably not fully sat-
isfied, because they only appeared in the initial sam-
pling in that they determined which phase to sample
from. In addition, it is necessary to bin the data in
order to achieve the sampling, which leads to some
roughness in the final result. To remove these prob-
lems, we use a gradient based method to optimize the
synthetic data. In a sense, we have two sets of con-
straints. The kernel-based probability distributions
can be thought of as being soft constraints on the
data. There is a range of possible values allowed for
all of the degrees of freedom of the synthetic data that
will satisfy the distributions specified by the original
data. On the other hand, the constraints specified by
the animator, in our case foot positions on the floor
at particular times, are hard constraints that must
be satisfied exactly. We want our optimization pro-
cedure to force the hard constraints to be satisfied
while not pushing the data beyond reasonable values

allowed by the soft constraints. To optimize the data
based on the hard constraints, we use a gradient de-
cent method, in which we allow the angles of the hip,
knee, and ankle of the leg that is supposed to be con-
strained to the floor to vary. The function we want
to minimize is

Fhard = (Txo − xc)2 (2)

where T is the full set of transformation matricies
that describe the motion of the leg, xo is the initial
position of the foot, and xc is the desired constrained
position that the animator has specified. The deriva-
tives of the rotation matricies are taken numerically
to choose the step direction and step size.

To optimize based on the soft constraints, we rep-
resent the data with the same kernel-based probabil-
ity distributions that were used in the sampling, ex-
cept that now we also include N points in the future,
θt+1, θt+2, ...θt+N . We found that including these
points reduced the number of iterations required in
the optimization. Here we want to stay near a local
maximum in an equation of the form of equation 1.
Consider the example of optimizing the hip y angle,
and using as the other features in the distribution the
hip x angle and N = 1 point on either side of the time
point being optimized. (In practice, we used N = 8).
We will use the same notation as above, letting θt

represent the hip x angle at time t, and αt represent
the hip y angle at time t. We write the function below
in equation 3.

P (αt, αt−1, αt+1, θt) =
∑

i

[
e(

αt−αi
2σα

)2e(
αt−1−αi−1

2σα
)2e(

αt+1−αi+1
2σα

)2e
(

θt−θi
2σθ

)2
]

(3)
We take the derivative of this distribution with re-

spect to αt, and take a step in the direction that
maximizes the probability of occurrence. This pro-
cess would be repeated for each time t in the syn-
thetic data for the hip y angle α. A similar optimiza-
tion process would be repeated for the other degrees
of freedom, including the appropriate other joints in
the probability distribution, the same ones that were
used for sampling.

In practice, we alternate optimizing for the hard
constraints with optimizing for the soft. After the
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initial sampling, we begin by optimizing for the hard
constraints, then the soft, and repeat. In the final
round of optimizing the soft constraints, we only op-
timized in phases where the hard constraints would
not be disturbed. For example, if the phase were
such that the left foot were in contact with the floor,
we only optimized the angles of the right leg, and
not the overall translations, overall rotations, or left
leg angles. This final round was useful for smooth-
ing over small discontinuities that sometimes arouse
at the boundary between phases after optimizing for
the hard constraints. The angles in the upper body
only underwent one round of optimization for the soft
constraints, since they are not affected by the hard
constraints that we used.

4 Experiments

To demonstrate this method, we worked with motion
capture data of two styles of walk, one of which was
rather stylized and will be referred to as the “funky
walk”, the other of which will be called the “normal
walk”. We used 33 degrees of freedom to represent
the character, 27 joint angles, 3 overall rotations, and
3 overall translations. In each case we used 512 time
points of real data, which corresponded to about 12
steps.

For each walk we were able to synthesize large
amounts of data that had the characteristics we de-
sired. In other words, the final animations (1) had
the style of the original motion capture data; (2) were
not exactly the same as the original data, but showed
the variation we wanted for a life like feeling (this as-
pect is especially clear with the funky walk, where
the original data had a large amount of fluctuation
in it); (3) the hard constraints specified at the be-
ginning of the synthesis of foot positions on the floor
were satisfied.

The results are especially well illustrated for the
case of the normal walk. For example, if we ani-
mate three characters offset in space but with the
same motion capture data, the result looks artificial
because they all move exactly the same. However,
if we animate two of the characters with synthetic
data created with step sizes roughly equal in size to

that of the original data, the animation is much more
convincing because even though the characters are
marching in step with each other, their movements
vary a bit. Furthermore, an observer cannot tell by
looking which is the real data and which is the syn-
thetic data.

For the case of the funky walk, the results are
less convincing. The motion and variations are still
present, but one can easily tell the synthetic data
apart from the real data due to occaisional high fre-
quency glitches in the motion. These arise because
our initial sampling relies upon the correlations be-
tween joints, which are less constrained for the funky
walk than for the normal walk (figure 4). Work is in
progress to overcome these limitations. For example,
we find that for motions with more variations, rely-
ing more on correlations to points at past and future
times improves the result.

The importance of the variations is especially no-
ticeable if we create a crowd of characters from one
data set. If the characters are all animated with the
original data, the motion looks artificial. Even if the
data is shifted in phase, an observer can still pick up
on the repeating patterns, especially if not much data
is available in the first place. However, when we syn-
thesize the data using our method, we can create an
unlimited supply of data to animate a crowd. Fig-
ure 6 shows an example output image from such an
animation. We can create even more variability by
specifying hard constraints in ways that are unlikely
to be found in the data. For example, if we make
the distance between steps very small, the character
prances in place with a style like that of the original
motion.

5 Discussion and Future Work

The need for truly life-like animations that capture
the fine detail and subtleties of motion has become
even more pressing with the advent of photo-realism
in computer graphics. In such situations, the ob-
server expects the motion to reflect life, much more so
than when the animated characters are more cartoon-
like. Animators at studios that do work in photo-
realistic settings, even if they are experienced experts,
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Figure 6: Example frame from one of the out-
put animations. Each of the charactors was
animated with a different set of synthetic data,
note how they vary in their motions.

find their jobs to be extremely challenging.
One solution to the problem of how to achieve life-

like motion is o use motion capture data. The draw-
back of using motion capture data is the lack of con-
trol; once the data has been collected, the animator
may find it is not exactly what he or she needs. Yet,
in many cases, what the animator wants from mo-
tion capture data is not the action, but the style or
personality of it. In other words, the animator wants
the texture of the motion. The work presented in this
paper is a first step toward developing a method for
creating motion data for animation that is textured
using information from live motion capture data. The
animator can start with a small amount of motion
capture data of a cyclic motion that he or she likes,
and create a new animation by specifying important
features such as foot placement on the floor. The
resulting motion maintains the texture of the origi-
nal motion, while satisfying the required hard con-
straints.

Our work falls into the same category as that of
Brand and Herzman, in that we are interested in mo-
tion synthesis and capturing the style of a motion.
However, we differ in our approach and emphasis.
The use of HMM’a and mixtures of gaussians in their
method yields efficient computations and is success-
ful at quickly synthesizing new animations or altering
the style of an existing animation. Ultimately their

work will allow non-expert animators to create very
appealing work that they would not have been able
to do otherwise. On the other hand, their method of
representing the data may not capture all of the fine,
higher frequency detail that an expert animator may
be interested in and that gives an animation a truly
life-like appearance, as it may wash out some of the
fine detail in the data when generalizing it. Also, at
present it does not provide much of a way for an an-
imator to control the outcome in that he or she does
not have access to various features of the data.

We address these issues in our work, which will
ultimately be more useful to expert animators. We
address the problem of giving the animator control
by dividing the data into features that may be mean-
ingful to an animator. It is intuitive for an anima-
tor to think in terms of key frames and the length
of time between them. A key frame can be thought
of as a hard constraint in our method, and we have
included the specification of hard constraints in our
method. Keeping motion coordinated often means
that the joints are moving properly with respect to
one another, which we have represented by looking
at correlations among the joint angles as a function
of time, and being sure these correlations are main-
tained while the hard constraints are also satisfied.
Finally, we suspect that much of what we perceive as
“texture” occurs at the mid to high frequency range,
which is why it is useful to divide the motion data into
frequency bands. By having access to the frequency
information, we may be better able to abstract the
part of the texture that we want.

The disadvantage of dividing the data up in this
way is that it may require more effort on the part of
the animator, as he or she must specify how to use
the features. However, this may be exactly what an
experienced animator wants to do to have full control
over the result. We address the problem of capturing
fine detail with a limited data set by using kernel-
based probability distributions to represent the fea-
tures of interest. Such distributions allow all of the
data to contribute to the distribution without losing
any of the fine structure. The disadvantage of this
representation is that it leads to much slower compu-
tations than a method that generalizes the data more
such as mixtures of Gaussians. However, if the goal
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is to create the highest quality animations possible,
then speed may not be a primary concern. In fact, in
such cases, the issue is not speed at all, but whether
or not the desired result can be achieved at all. We
plan to speed up the computation by implementing
an algorithm that only uses gaussian kernels in the
proximity of the current state.

Ultimately, we would like to allow an animator to
start with any motion he or she likes the style of,
either in motion capture or from another computer
animation, and create another animation that cap-
tures that style. The animator should have options
for how the new motion is created, either by simply
specifying a few key poses and letting the computer
synthesize the rest, or starting from a complete set of
angles and translations, such as if it came from an-
other motion capture data set, and putting the tex-
ture of the desired style on top of it. We have started
in that direction with some simple examples, and are
currently working on applying the method to more
complicated situations.
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