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Figure 1: “Ow, dude! You missed your cue to take hold of the board!” Clips of sound and clips of motion are selected from separate
performances, spliced together and resynchronized to create the animated delivery of a meaningful new utterance.

Abstract

We describe a method for using a database of recorded speech
and captured motion to create an animated conversational charac-
ter. People’s utterances are composed of short, clearly-delimited
phrases; in each phrase, gesture and speech go together meaning-
fully and synchronize at a common point of maximum emphasis.
We develop tools for collecting and managing performance data
that exploit this structure. The tools help create scripts for per-
formers, help annotate and segment performance data, and struc-
ture specific messages for characters to use within application con-
texts. Our animations then reproduce this structure. They recom-
bine motion samples with new speech samples to recreate coherent
phrases, and blend segments of speech and motion together phrase-
by-phrase into extended utterances. By framing problems for ut-
terance generation and synthesis so that they can draw closely on a
talented performance, our techniques support the rapid construction
of animated characters with rich and appropriate expression.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; I.2.7 [Artificial Intelligence]:
Natural Language Processing—Language Generation; Speech syn-
thesis; J.5 [Arts and Humanities]: Performing Arts

Keywords: animation, motion capture, motion synthesis, lan-
guage generation, conversational agents, speech synthesis

1 Introduction

Engaging dramatic performances convincingly depict people with
genuine emotions and personality. This illusion springs not so
much from an author’s script as from the nuances of the performer’s

body and voice. By evoking nuances of spontaneous action, per-
formers can animate characters’ utterances, embody characters’
identities, and portray the detail of characters’ feelings.

It takes a talented artist to bring a script to life. Research on inter-
active characters increasingly focuses on example-based synthesis
techniques that can directly exploit a performer’s talent. For exam-
ple, many methods for computer character animation now start from
collections of motion data captured from human performances, as
in [Arikan and Forsyth 2002; Kovar et al. 2002a; Lee et al. 2002a;
Li et al. 2002; Pullen and Bregler 2002]. In fact, even human ani-
mators sometimes use an actor’s rendition to help guide their work.
Likewise, in automatic speech synthesis, some of the most effective
current results are obtained using application-specific databases of
recorded voice talent [Black and Lenzo 2000]. Despite the common
perspective across these fields, researchers have not yet shown how
to reconcile their different example-based synthesis techniques.

We present an integrated framework for creating interactive, em-
bodied talking characters from human performances. We show how
to collect, organize and manipulate sound and motion data to build
a character engine that synthesizes expressive animated utterances
directly from the state of an underlying application. Our integration
depends on using constraints from human communication to orga-
nize the design, as advocated by [Cassell 2000]. In our results, such
as that in Figure 1, and in the accompanying video, these constraints
allow the meaning and personality in the actor’s original recordings
to resurface in our character’s new utterances.

Our approach brings two key contributions. First, we show how
to use a performer’s intuitions about a character’s behavior as an
alternative to more comprehensive reasoning about communica-
tion. We use natural language generation techniques to link the
performer’s script to aspects of the application state. These links
establish an application-specific semantics for communicative be-
haviors. Once we capture performance and link it to the application
state, we no longer have to plan, annotate or infer the specific form
and meaning that appears in a gesture. Annotators simply judge
whether motions in the actor’s performance are descriptive (iconic
presentations of specific content) or expressive (metaphorical pre-
sentations of function, which are more common and can often be
quite broadly reused). Thus our approach is distinguished from that
of BEAT [Cassell et al. 2001], which relies on natural language un-
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derstanding techniques to predict the underlying linguistic and dis-
course structure of an input text. Our approach handles expressive
gestures with new generality.

Second, where previous approaches synthesize speech and mo-
tion separately, our approach selects and concatenates units of
speech and units of motion as part of a single optimization process.
Our units of speech are short phrases of a few words from the origi-
nal performance. These intervals correspond tointonation phrases,
which are the high-level units of natural face-to-face communica-
tion. Our units of motion are extracted from the corresponding tem-
poral intervals, and can be warped to accompany different speech
in a new utterance. In natural utterances, the peaks of emphasis
in gesture occur simultaneously with peaks of emphasis in speech.
Gesture transitions lie near the boundaries of phrases, away from
the emphasis in speech and motion. We define an objective function
over possible utterances that balances seamless speech, continuity
of gesture, and consistency of speech and gesture. Optimizing this
objective lets us trade off the units of speech and the units of mo-
tion that we include in an utterance, and search more flexibly for
realizations that require minimal processing. This gives a more ro-
bust design that can use more of the available data. For example, it
is no longer the case that the timing of gesture during speech must
be driven entirely by a standalone speech synthesizer, as in BEAT
[Cassell et al. 2001] and other previous work.

Our framework supports creative effort across the many steps re-
quired to design, capture and realize a new character. In particular,
a single compositional, context-dependent description of system ut-
terances guides content creation, data collection and utterance gen-
eration. In this framework, teams can develop interactive charac-
ters with just a modest increase over the effort of scriptwriting, data
acquisition and motion computation already required to use perfor-
mance data for canned character animation. The results have im-
mediate application for entertainment, training, and conversational
human-computer interaction generally.

2 Background and Related Work

2.1 Communication

In face-to-face dialogue, utterances consist of coordinated ensem-
bles of coherent verbal and non-verbal actions [McNeill 1992;
Bavelas and Chovil 2000; Engle 2000]. No modality is privi-
leged or primary. The speech consists of a sequence ofintona-
tion phrases. Each intonation phrase is realized with fluid, continu-
ous articulation and a single point of maximum emphasis. Bound-
aries between successive phrases are associated with perceived dis-
juncture and are marked in English with cues such as pitch move-
ment, vowel lengthening and sometimes, but not always, pausing.1

See [Pierrehumbert and Hirschberg 1990; Silverman et al. 1992].
Gestures are performed in units that coincide with these intonation
phrases, and points of prominence in gestures also coincide with the
emphasis in the concurrent speech [Ekman 1979; McNeill 1992].

People use these ensembles of gesture and speech to offer a
consistent description of objects and events, but these ensembles
need not respect the phrase boundaries found in traditional syn-
tactic structure. Rather, they organize an utterance into units that
describe a common topic and achieve a consistent communicative
intention [McNeill 1992; Steedman 2000].

This model is increasingly corroborated by fine-grained exper-
imental analysis of the delivery and interpretation of human ut-
terances [McNeill et al. 2001; Krahmer et al. 2002; Cerrato and

1For readability, here, we use intonation phrase as a cover for two dif-
ferent kinds of high-level prosodic units, the intonation phrase and the in-
termediate phrase, distinguished in English phonology.

Skhiri 2003]. Correspondingly, systems for conversational anima-
tion since [Cassell et al. 1994] have aimed to coordinate the mean-
ing and the realization of animated actions with the delivery of si-
multaneous speech. Our work continues this tradition.

2.2 Speech Synthesis and Language Generation

The ability to access extensive databases of recorded speech has en-
abled speech synthesis systems to concatenate minimally-processed
segments of recorded speech [Hunt and Black 1996]. The technol-
ogy underlies high-quality wide coverage synthesis systems, such
as AT&T’s Next-Gen synthesizer [Beutnagel et al. 1999]. In fact,
domain-specific synthesizers can use specific recordings of appli-
cation utterances to recreate the rendition and voice quality of a
human performer even more closely [Black and Lenzo 2000]. We
build directly on these techniques here.

Building spoken utterances that express application data involves
natural language generation (NLG) as well as speech synthesis
(see [Reiter and Dale 2000]). Our work is also informed by prior
work in NLG. In particular, we adopt a commonly-used template-
based technique for NLG, which involves the recursive, context-
dependent expansion of utterance structure as guided by application
data, as in [Seneff 2002]. A particular advantage of this approach is
the ability to generate a network of possible utterances for further
processing as in [Langkilde 2000; Bangalore and Rambow 2000;
Bulyko and Ostendorf 2002]. Template generation systems can also
help to select and organize utterances for subsequent recording to
streamline domain-specific speech synthesis [Theune and Klabbers
2001; Pan and Wang 2002].

2.3 Motion Synthesis

Performance-driven animation rests on technology for recording
human motion and rendering it back just as performed; such tech-
nology has long embraced the expressive movements of human
communication [Williams 1990]. Performance data can also serve
as the basis for synthesizing new motion; we can warp captured
motion in time and space [Witkin and Popovi´c 1995], interpolate
captured motion to vary its emotional character [Rose et al. 1998],
retarget it to new characters [Gleicher 1998], and preserve its dy-
namics in the process [Popovi´c and Witkin 1999]. Such manipu-
lation remains limited in its ability to adapt the gross structure of
captured motion. Using a more extensive database of captured mo-
tion can achieve more flexible synthesis while reducing the need for
radical editing of performance data. See [Arikan and Forsyth 2002;
Kovar et al. 2002a; Lee et al. 2002a; Li et al. 2002; Park et al. 2002;
Pullen and Bregler 2002]. These approaches exploit large databases
of motion segmented into short units that can be blended together.
The approaches construct new motions by selecting sequences of
units to splice together so as to optimize the transitions between
them and to satisfy global constraints on motion. Since characters’
gestures must match both the content and timing of simultaneous
speech, two further refinements to these techniques prove vital for
conversational animation. First, following [Arikan et al. 2003], we
can classify motion data into qualitative categories and factor this
information into the selection of units in motion synthesis. This lets
us restrict our attention to gestures with particular patterns of form
or content. Second, following [Kim et al. 2003], we can readily
warp the timing of performance data to synchronize with external
events. In our case, this lets us synchronize temporal emphasis in
speech with the peak of effort in the accompanying movement.

2.4 Conversational Animation

Our work falls in a broad category of research which aims to
develop animated characters known asembodied conversational
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agents(ECAs). ECAs combine synthesized speech with hand ges-
tures, head movements and facial displays to recreate the com-
municative functions and behaviors of human dialogue. Cassell
et al. [2000] introduce and survey this work. ECAs need a wide
range of expressive movements beyond the articulatory movements
(e.g., of the lips) studied in research onvisual speech[Schroeter
et al. 2000; Ezzat et al. 2002; Beskow 2003]. ECAs also need to
maintain fine-grained semantic and temporal connections between
these movements and ongoing speech, which requires going beyond
behavioraltechniques that drive animation from statistical models
[Perlin and Goldberg 1996; Brand 1999; Lee et al. 2002b]. Pre-
vious methods for using performance data have been sufficient for
visual speech and behavioral animation, but not for ECAs.

ECAs typically involve a component that generates coordinated
units of speech and gesture, and another that realizes the animation.
The generation component sometimes adopts rule-based planning
methods, as in [Cassell et al. 1994; Pelachaud et al. 1996], and
sometimes reconstructs conversational actions from text input, as
in [Cassell et al. 2001]. Our template-based generator differs from
these techniques because it does not require a general approach to
plan or fill in communicative behavior. Moreover, we use the tem-
plates to acquire data from a performer and to constrain data-driven
synthesis, rather than to formulate specific input for domain-general
synthesis as in [Stone and DeCarlo 2003; Bickmore 2003].

Procedural components for realizing conversational animation,
including [Beskow et al. 2002; Kopp and Wachsmuth 2004; De-
Carlo et al. 2002], share our emphasis on coordination of speech
and gesture. They accept generic multimodal input specifications
indicating the units of each utterance, the categories of motion to
accompany each unit, and the points of synchrony between them.
We explore motion capture as an alternative in order to enable
extremely rapid development of high-quality application-specific
ECAs. Of course, with performance-driven conversational anima-
tion, we cannot yet achieve the generality of procedural animation.

3 Our Approach

We approach character creation through a single end-to-end frame-
work. As outlined in Figure 2, our framework ties together activ-
ities of content authoring and data preparation during the devel-
opment of a conversational character, and run-time processes that
use this content and data for generation and animation. The uni-
fied approach greatly streamlines character development. It makes
it possible to capture the data needed for a character with a limited
number of performances, to catalogue performance data with lim-
ited human effort, and to synthesize new utterances that best exploit
the available data.

• Content authoring. As described in Section 3.1, a scriptwriter
designs what the character will say. Automatic tools then
compute the utterance units implicit in the specification, for-
mulate a concise script for a performer, compute a database
specification that organizes the anticipated sound and motion
recordings, and compile an application-specific generator that
will index into the resulting database.

• Data preparation. As we describe in Section 3.2, analysts
can rely on automatic analysis to describe the possible form,
content and function of motion. But they must still annotate
the perceptually prominent moments of emphasis in speech
and gesture and classify each gesture to characterize the kind
of meaning it carries. This analysis is closely supported by
automatic tools for speech processing and data visualization.

• Generation and animation. Finally, as we describe in Sec-
tion 3.3, at run-time, our synthesis engine runs the genera-
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Figure 2: Designing an interactive conversational character from
performance data. A single specification, the character design, is
automatically transformed into a network representation that orga-
nizes the entire development process. We compute the performer’s
script from the network, use the network to characterize perfor-
mance elements and set them up into a database, and compile the
network into a generation engine. The database also includes de-
scriptions for the timing and content of gesture which is annotated
with machine assistance. At run-time, the application input, gen-
eration system and database together determine a space of possible
utterance realizations. We optimize in this space to derive the time-
line for an utterance, which is then animated by stitching together
segments of motion and speech performance.

tor with application input to formulate each utterance speci-
fication. The synthesizer recombines performance data to fit
this specification. In particular, our engine solves a unified
dynamic programming problem which simultaneously opti-
mizes the selection of speech and motion units in pursuit of
seamless speech, smooth motion, and consistent timing and
content across speech and motion. We realize this sequence
by adjusting pitch and volume to splice successive speech seg-
ments together, warping successive motions to blend them
together, and retiming each motion to synchronize with the
marked points of emphasis in the corresponding speech.

3.1 Authoring characters

In our framework, the generation of conversational action is an ex-
tension of the generation of spoken utterances. We have to charac-
terize the organization of characters’ utterances, describe the mean-
ing and use of these utterances in the application and reason system-
atically about what the character can say. Our approach to character
authoring therefore extends techniques for NLG.

The structure of natural language calls for authors to organize
characters’ communicative behaviors hierarchically into categories.
Different expressions of the same category may be substituted for
one another, which will change the meaning of the utterance but
not its grammar. We use traditional phrase structure grammars to
encode this information compactly and systematically. (See e.g.
[Jurafsky and Martin 2000].) Figure 3 shows a small example spec-
ifying sixteen utterances for a character. The italicized symbols
are nonterminals. The notationA → R indicates a production that
replacesA with the stringRduring a derivation. No recursion is al-
lowed. This rules out families of rules such asA→BCandC→AD
that can expand any nonterminal (hereA) into a string in which the
nonterminal appears again. This restriction keeps the set of utter-
ances finite and simplifies the processes of designing, recording,
implementing, and validating a character.

The symbolz is an instruction to include a prosodic boundary
at a specified point within the utterance. Designers can usez like
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Start→ Frame Sentence
Frame→ on that runz

IF: contrastive(cxt)
AS: contrast

Frame→ ε
Sentence→ youVerbPhr
VerbPhr→ Modifier Property
Modifier→ still

IF: info(cxt) = prev-info(cxt)
AS: reminder

Modifier→ ε
Property→ Predicate Action

IF: type(cxt) = action-error

Predicate→ waited too longz
IF: error-type(cxt) = late
AS: correct-error

Predicate→ were too quickz
IF: error-type(cxt) = early
AS: correct-error

Action→ to grab the boardz
IF: error-action(cxt) = grab
AS: correct-action

Action→ to jump offz
IF: error-action(cxt) = jump
AS: correct-action

Figure 3: A small template grammar describing possible utterances
such as,on that run, you still were too quick to grab the boardand
you waited too long to jump off. IF associates productions with
a condition that tests the application context (cxt). AS associates
productions with an abstract communicative function.z marks a
prosodic break.

a comma, to segment utterances into intonation phrases indepen-
dently from their canonical syntactic structure. This represents a
grammar that specifies prosodic markup for synthesized utterances,
as in [Seneff 2002]. However, our phrasing does not provide in-
put to an existing speech synthesizer. Instead, we will suggest this
phrasing in the performer’s script and use this phrasing to index the
resulting recordings.

NLG systems can use a grammar in various ways, including
translating an input semantic representation or planning mental ef-
fects on an audience [Reiter and Dale 2000; Cassell et al. 2000].
Template NLGis another alternative [Theune and Klabbers 2001;
Bulyko and Ostendorf 2002; Seneff 2002]. Template NLG uses
the grammar directly to construct utterances without formulating
an intermediate communicative plan or semantic representation. In
template NLG, nonterminals in a derivation are holes that need to
be filled as a function of the current state of an interactive applica-
tion. Productions in the grammar are rules for filling in the holes.
Each production includes aconditionthat tests the context and says
when it should be used.

Figure 3 is a template grammar. Its conditions test features of
the variablecxt, the current application state. For example, one
production specifies using the phrase “waited too longz” to char-
acterize an error the user has made. The production is restricted
by the conditionerror-type(cxt) = late that checks that the user has
made this error. The grammar of Figure 3 also declares the abstract
communicative functionof phrases. This declaration summarizes
why a phrase is included in the character’s repertoire. For example,
productions “waited too longz” and “were too quickz” share the
functioncorrect-error, because they spell out the kind of error the
user made. By default, the alternative productions that rewrite each
symbol are assumed to share a common function.

The specified grammar is automatically compiled into a tran-
sition network that can plan possible utterances by sequencing
units of speech and gesture. The compilation implements the stan-
dard correspondence between finite grammars and state machines,
and goes on to eliminate non-null transitions that do not end in
z by concatenating them with their successors [Hopcroft et al.
2000]. Each edge in the compiled network now groups together
related words that should be uttered as a single phrase, regardless
of syntactic constituency. Moreover, each edge associates a phrase
with an application-specific condition for its use (usingIF) and the
application-specific communicative function it achieves (usingAS).
Figure 4 shows such a phrasal network for the grammar of Figure 3.

on that run

you were too quick

you still were too quick

you waited too long

you still waited too long

to grab the board

to jump offε

Figure 4: A network representation of the grammar of Figure 3, in
which each edge encodes an instruction to use a complete intona-
tion phrase; in our approach, such edges can abstract a single choice
of coordinated speech and gesture.

• On that runz you were too quickz to grab the boardz
• On that runz you still were too quickz to jump offz
• On that runz you still waited too longz to jump offz
• On that runz you waited too longz to grab the boardz

Figure 5: A concise script for the network of Figure 4.

(The figure suppresses the attributes of condition and function as-
sociated with each edge.) Note howparts of productions in the
grammar can combine together in edges such as “you still were
too quick” to form intonation phrases that do not match the hier-
archical grammatical structure. After compilation, we no longer
need to consider the grammatical structure that makes up individ-
ual units. This edge achieves a combination of functions:reminder
andcorrect-error. In other words, it is used to tell the user a type
of error that they have just repeated. This edge is associated with
the conjunction of the conditionsinfo(cxt) = prev-info(cxt) and
type(cxt) = action-error anderror-type(cxt) = early. So the edge
will be selected only when the current error was to act too early and
the user made the same error in the previous interaction.

Network transformations have been used in NLG to allow dy-
namic programming tools to explore spaces of syntactic derivations
and other realizations [Langkilde 2000; Bangalore and Rambow
2000; Bulyko and Ostendorf 2002]. Such methods typically apply
during synthesis, to break down edges from high-level units like
words and phrases into increasingly fine-grained units. Instead, we
group units during development in order to conduct the synthesis
more effectively with larger units.

In particular, we exploit the network representation to generate
the performer’s script automatically. Each line in the script is a
path through the network—a possible complete utterance. As long
as the script contains one performance for each edge, the character
will be able to synthesize any path through the network. (Obtaining
several renditions leads to a richer database with useful variability.)
For the network of Figure 4, only four renditions are required to
create sixteen possible utterances. Figure 5 offers a representative
set. Note that performance sessions are most effective if variability
is equally distributed within the utterance.

We can calculate the size of the script from the hierarchical struc-
ture of our network. When a subnetwork offers multiple paths from
start to end, we need all the lines from each path. Along successive
stages, we need only provide as many lines as the most variable
stage. Thus Figure 4 needs four lines because of the four edges for
the second phrase. We use precomputed counts to select and con-
catenate edges corresponding to numerically-indexed script lines.
Alternative scripts can be generated by randomization.

3.2 Preparing performance data

The next step is to capture the performances from which to syn-
thesize the utterances we have specified. We start from the
automatically-compiled script. The performer interprets it to offer
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her own embodied delivery with added expressive detail. These per-
formances can flesh out the application content, for example using
distinctive gestures. They can also portray the character’s personal-
ity and potential relationship with the interlocutor, and so highlight
phrases’ communicative function. These added elements of perfor-
mance are what subsequent processing must preserve.

To do so, we need to know what the performer did and when.
Existing automatic tools for speech and motion data provide a good
start. They can provide a temporal alignment of the performance
with its transcript, extract acoustic and visual features, and prepare
resources for visualizing and understanding the data.

However, human analysis remains necessary for accurately tim-
ing and categorizing the performer’s behavior. Points of perceived
prominence in speech and gesture correlate with automatically-
extracted features but do not match them exactly. We annotate when
they occur. We also annotate the perceived relationship between
gesture and speech. In particular, we need to know whether the
gesture isdescriptiveor expressive. Descriptive gestures elaborate
the referential content of the utterance. This is typical of iconic ges-
tures that represent objects or events in space. For example, a ges-
ture that pantomimes the action of jumping while ongoing speech
talked about a jump would count as a descriptive gesture. Descrip-
tive gestures have to be indexed under the content associated with
the performance. A convincing character cannot pantomime a jump
while describing another action.

Expressive gestures highlight the attitude of the speaker towards
what she is saying and comment on the relationship of speaker and
addressee, which is typical of metaphorical and beat gestures. For
example, a gesture in which the performer brings her hands toward
her head and shakes them to pantomime a frustrated reaction should
count as expressive. So should a gesture in which the performer
points at the addressee and shakes her hand side-to-side in repri-
mand. Expressive gestures should be indexed under the function
associated with the performance. Pantomimed frustration will fit
any context that reports a frustrating outcome. An embodied repri-
mand fits any context where the character describes something the
user has done wrong. For more on the meanings of different kinds
of gesture, see [McNeill 1992; Bavelas and Chovil 2000].

Note that we do not describe the function and content of ges-
ture independently as part of annotation. This principled decision
reflects the complexity of gesture semantics. It is especially hard
to label metaphorical gestures with a specific communicative func-
tion and then reason correctly about it. We assume that the content
and function that the template generator associates with each per-
formance unit already characterizes the gesture precisely enough
for the application. We leave the rest to our skilled performer.

We found that it takes about two hours per minute of speech
(about ten utterances in our examples) to check automatic align-
ment and prosodic features, and to extract points of emphasis and
pitch. A further two hours per minute of video is required to check
the coding and timing of gesture. It seems possible to improve this
substantially using a more focused codebook, a more ergonomic
coding environment, and of course better automatic tools.

Validation can help to minimize any remaining errors after hu-
man annotation. We can do this by checking that phrase data is
appropriately resynthesized from annotations. We can use the syn-
thesis techniques explored in Section 3.3, but procedural animation
can be used as well.

3.3 Synthesis techniques

3.3.1 Unit selection

To plan a new utterance, the generator traverses the network from
context information supplied by the external application. This de-
termines the content and communicative function of each of the
phrases the character needs to realize. To animate these phrases,

si , mj

costd 
(si ,mj )

phrase p

costd (sk ,ml )

phrase p+1

sk , ml

costs(s
i ,mj ,sk ,ml)

. . . . . .

Figure 6: Dynamic programming solves simultaneously for combi-
nations of speech and gesture.

we must pick suitable sound recordings and gesture performances.
This is theunit selection problem.

Each edge traversed in the generator corresponds to a choice of
sound and a choice of motion for realization. The options for each
stage can be looked up in the database, giving a setsound(p) of
sound units and a setmotion(p) of motion units for each phrasep
from 1 to the lengthn of the utterance. We writeSp for the sound
to be presented at timep andMp for the motion to be presented at
time p, and usesi andmj to represent entries in the database. Our
options for realization thus consist of a setU given by

{〈S1 . . .Sn,M1 . . .Mn〉|∀p∈ 1..n : Sp ∈ sound(p)∧Mp ∈motion(p)}
For realization, we want to pick the best element ofU that we can.

We measure a sequence based on itscost, which serves as an
approximate, heuristic measure of the perceptible degree to which
a unit of performance will have be modified in a final realization.
The overall form of the cost function is guided by previous work
in example-based synthesis [Hunt and Black 1996; Arikan and
Forsyth 2002; Kovar et al. 2002a], and by the computational advan-
tage of obtaining a factored decomposition of cost. We define the
cost functions as the sum of a number of quadratic penalty terms.
(Differences are penalized directly to prefer values near 0; for a ra-
tio r, we penalize log(r) to prefer values near 1.) The particular
terms reflect the kinds of processing that we actually perform in the
course of realizing utterances, as described in Section 3.3.2.

We assigncostd(si ,mj) to deliveringeach phrase, based on the
match between its soundsi and motionmj . We chosecostd(si ,mj)
to have one term which penalizes the amount of time-warping (a
ratio) required to align the motion to the sound. We also assign
costs(si ,mj ,sk,ml ) to splicing the recordings between successive
soundssi andsk and motionsmj andml . Three terms are used in
defining costs(si ,mj ,sk,ml ). The first measures the difference in
joint positions betweenmj andml , temporally averaged across the
short overlay window where corresponding samples will be inter-
polated. The second term penalizes differences in pitch (a ratio)
between the peak ofsk and the peak that originally followedsi . The
third term penalizes blends that may require motion data from out-
sidemj andml taken from adjacent phrases in the original recording
(which is safe because blending occurs only in the middle of utter-
ances). Thus, this objective takes the form

n

∑
p=1

costd(Sp,Mp)+
n−1

∑
p=1

costs(Sp,Mp,Sp+1,Mp+1)

The terms of this objective only involve adjacent segments. That
means we can compute its minimum by dynamic programming—
the best sequenceSp andMp up to phrasep must include the best
sequence up to timep−1 that ends inSp−1 andMp−1.

A danger of this procedure is the complexity of computing the
best options at timep+ 1 from the best options at timep. This
grows quadratically in the number of states, and the number of
states grows in turn as theproduct of the number of units avail-
able in each modality. There are two reasons why we can expect
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Figure 7: Points of emphasis in speech and points of continuity and
discontinuity of motion determine the windows over which motion
is blended together and warped across time.

such a computation to remain scalable. First, we are selecting
phrasesandgesturesas whole units, son is short and there are rel-
atively few options for realizing each phrase. In effect, as in Arikan
et al. [2003], we have a hierarchical solution, which derives fine-
grained adjustments within the parameters of a coarse solution with
a much smaller search space.

Second, the combinatorial structure of the dynamic program-
ming problem can be exploited further. For example, in addition
to the typical iterative algorithm, we have implemented afactored
A* search for the optimum solution [Klein and Manning 2003]. A*
search builds the dynamic programming table dynamically using a
priority queue. Options are explored based not on the error accu-
mulated so far but also using a heuristic estimate of the further cost
that the option must incur. With factored A* search, we derive an
accurate heuristic estimate by solving separate dynamic program-
ming problems for sound and motion in advance.

3.3.2 Animation

Our strategy for realizing the animation is diagramed in Figure 7.
The speech segments (in green) provide a rigid time-line. Each seg-
ment provides one or two fixed temporal landmarks. These corre-
spond to the first and last prosodic peaks in the phrase. There is an
additional landmark at the splice point between successive speech
segments. We use these landmarks to describe two kinds of inter-
vals in the final animation:playback windowsandblending win-
dows. Playback windows represent the frames of animation which
draw only on a single segment of captured data. During playback
windows, only temporal warping is applied. Our temporal warping
method aligns the first frame of motion emphasis with the begin-
ning of the window and aligns the final frame of motion emphasis
with the end of the window. Intermediate frames are created by
interpolation. We treat the interval between the prosodic peaks of
each speech segment as a playback window. The initial and final
segments of the utterance are also treated as playback windows,
but the sound is extended with silence if necessary so that motions
never need to be warped faster. In addition, if successive motions
are selected to accompany successive speech segments, we bridge
successive speech segments with a playback window.

Blending windows represent the frames of animation in which
two segments of captured data are combined. We create blending
windows for the whole interval without emphasis between succes-
sive speech segments, when we have to blend discontinuous motion
data. We create the blend following [Witkin and Popovi´c 1995]. We
first find a smaller overlay window centered as close as possible to
the join between speech segments. We create a warp target for the
first clip of captured data at the end of the overlay window, by in-
terpolating between the two motion clips. Before using the first
segment, we interpolate it towards this target. During the blend-
ing window before the overlay window, just the interpolated frames
from the first segment are used.

For the second clip we create an analogous warp target at the start
of the overlay window. But the second animation is first translated
to keep at least one foot close to stationary across the blend. After

the overlay window, just the interpolated, translated frames from
the second segment are used. During the overlay window, of course,
the two (interpolated) motions are interpolated with each other.

4 Implementation and Results

Using this platform, we built an end-to-end generator for critique
of play in the tutorial mode of a video game like Electronic Art’s
SSX snowboarding series. Our systematic design ensures that there
is an utterance for every context across this scenario, that these ut-
terances vary appropriately as the context changes, that they remain
grammatical despite combining phrases in new ways, and that they
index into available performances of speech and gesture. Figure 8
and the accompanying video shows synthesized examples of our
character. We used our our skeleton to drive a model from Elec-
tronic Art’s SSX 3 (Zoe), and rendered in Maya. In these examples,
both speech and gesture are spliced together drawing on multiple
utterances. Our character retains the fluid meaningful gestures of
the original performance. The transformations required to stitching
motions together and realign motion into synchrony with speech
are unobtrusive, and the match between gesture and speech pre-
serves much of the meaning and personality of the actor’s original
portrayal.

The data collection and analysis required to create this charac-
ter was modest. Kate Brehm acted our script at the NYU motion
capture lab. We captured her performance with a 12-camera Vicon
motion capture system, a head-mounted microphone and a DAT
recorder, and a digital video camcorder. The script involved 22 ut-
terances and 102 distinct phrases; each complete performance took
five minutes and yielded about two minutes of speech and motion.

Our prototype tools require a mix of text entry andad hocscript-
ing. In a more established pipeline with direct, user-friendly inter-
faces (e.g., in an industrial game development setting), we expect
that an added day or two in a motion capture studio and an added
person-month of data preparation would suffice to put together 10
scenarios like the one we developed, each one designed so as to add
1-2 minutes of conversational animation to perhaps 10 minutes of
other play (for a role-playing game). This is enough to support play-
ers in a two-hour experience in a seemingly unbounded world pop-
ulated with individual talking characters who respond specifically
to them. Achieving comparable variability with generic techniques
for language processing and procedural animation would require a
much greater initial investment in computational infrastructure.

The script and data for our prototype may be small, but our char-
acter’s behavior is quite variable. Its grammar distinguishes 98 dif-
ferent states in game play, with two or more alternative wordings for
each phrase in each state; the grammar generates more than 6000
phrase combinations. In the data-driven realization of these utter-
ances, we can trade off optimization to achieve further variability.
Note that the two are inherently at odds. Generalizing [Bulyko and
Ostendorf 2002], we could optimizate simutaneously over content,
speech and motion, but we would get just one, single lowest-cost
realization per context: 98 utterances total.

To understand this tradeoff, we compared three solution methods
for utterance construction: dynamic programming (DP); sampling
from low-cost utterances (SS) by perturbing DP with a small ran-
dom change to the score terms; or uniformly random realization
(RR). We collected ten outputs for each of the 32 kinds of errors
(320 examples per condition, covering a large fraction of the possi-
ble contexts). At one extreme, RR used all 59 available sound and
motion clips and never repeated a selection of sounds or of motions
(this means there were 320 different patterns of motions and also
of sounds), but the median score of its utterances was 1300. (Good
scores are typically in the range 10 to 50.) By contrast DP used
43 of the motion units and 52 sound units, and selected just 39 pat-
terns of motion stretched as necessary to match up with 286 patterns
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“That was ugly, dude. “Yikes, dude!
On this run you forgot to set up your jump.” You nailed it”

Figure 8: Additional synthesized utterances.

of speech (which was more variable because it was more directly
driven by content). The median score was now 16, and about one
third of the cases involved a choice of speech units that was not op-
timal except in the context of the accompanying motions. Finally,
SS used 53 motion units and 57 sound clips, and saw 159 differ-
ent motion patterns and 309 distinct sound patterns. SS continued
to offer engaging realizations, achieving a median score of 26; it
seems that our approach can make highly variable use of available
data for extended interaction with a character. At the same time, the
DP results suggest that our approach can also work with small sam-
ples of selected data for high-quality lightweight realization which
would be suitable for infrequent interactions. By analyzing the DP
results, we were quickly able to construct a smaller collection of 18
frequent motion clips that DP could align with speech (across the
32 contexts) with a median score of 19.

Our implementation is designed to demonstrate the feasibility
of the approach; a range of known techniques could improve the
output animation, such as dynamic spatiotemporal constraints (e.g.,
to avoid foot skate) [Kovar et al. 2002b], spline warping to improve
motion continuity [Kovar and Gleicher 2003], or search over frames
of animation to find the best blending point for selected motions
[Arikan et al. 2003]. We could also tune weights, ideally by percep-
tual metrics and machine learning, as pursued in speech synthesis
research such as [Hunt and Black 1996] and under development for
computer animation, as in [Reitsma and Pollard 2003]. Our manip-
ulation of output speech is also rudimentary—at run-time, we de-
rive a pitch error by comparing the pitch range of each segment to
that seen originally after its predecessor; we distribute error evenly
across the sentence by adjusting the pitch of speech samples up or
down using the Praat speech analysis program (www.praat.org).

Other limitations reflect genuine trade-offs among alternative de-
signs for interactive conversational characters. For example, dis-
playing a range of affect with performance-based animation re-
quires many consistent performances. Procedural animation can
achieve such variability more systematically [Chi et al. 2000]. Con-
versely, handling open-ended vocabulary (such as names and num-
bers) requires more general speech synthesis with smaller units
over a finer time-scale, and combining limited domain and general
speech synthesis is a perennial challenge [Black and Lenzo 2000].

5 Conclusion

This paper has presented techniques for animating conversational
characters from human performance. The central idea is to reason
over natural units of communicative performance, and to retain the
temporal synchrony and communicative coordination that charac-
terizes peoples’ spontaneous delivery. We work with a compact,
systematic description of application utterances and automatically
convert between multiple representations of this description to sup-
port the entire life-cycle of character development. This framework

offers an explicitly multimodal architecture, in which every stage
of design, analysis and computation works with coordinated and
synchronized multimodal presentations.

For future work, we plan a comprehensive assessment of users’
reactions to our animations, in tandem with building an ECA for a
meaningful task and carefully controlling against any design flaws
that remain in the new interface. We also hope to combine our re-
sults with other approaches to conversational animation. For exam-
ple, given suitable databases of performance, our techniques could
also be used to realize utterance specifications derived by rule-
based planning methods, such as [Cassell et al. 1994], or derived
by inference from text input, as in [Cassell et al. 2001].

Capturing detail of movement in the face and hands remains
difficult, and the analysis we do of the data we have is intensive.
The better and more reliably motion can be captured and analyzed
automatically, the less expensive these techniques will be to use.
The techniques required are the subject of ongoing research. But
we have demonstrated in this paper that scientific principles and
good design already suffice to create engaging, high-quality deliv-
ery interactive characters with reasonable effort. The possibility of
streamlining the process only adds to the attraction of the approach.
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