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146 Development: Differential geometry

Furthermore, diffeomorphic surfaces need not be isometric. For example, two spheres
of different radii are diffeomorphic, but not isometric — the arc length of a complete great
circle depends on the radius of the sphere. The notion of isometry determines an equivalence
relation on surfaces.

The notion of isometry makes precise the ideas of rigid motions and congruence. We
define a congruence to be a self-isometry of a surface, ¢: S — S. Two figures, that is,
subsets of S, are congruent if there is an isometry with ¢(figure; ) = figure,. A figure made
up of segments of curves on a surface may be thought of as rods in a configuration and the
term rigid motion is synonymous with congruence.

It follows from the definition that the inverse of an isometry is also an isometry and so the
set of congruences of a surface forms a group. The importance of this observation cannot be
overestimated. It is the basis of another approach to geometry via so-called transformation
groups, initiated by Felix Klein (1849-1925) and Sophus Lie (1847-99). (An introduction
to this approach is found in Ryan (1986).)

Properties that are preserved under isometries are the most important to the geometry of
surfaces. We call such properties intrinsic. Properties that depend on the particular descrip-
tion of a surface are called extrinsic. For example, the fact that the z-axis is asymptotically
close to the surface of revolution of the tractrix is an extrinsic property of the surface. We
will see later that this surface intrinsically looks the same from almost every point on it.

To investigate intrinsic properties, we often argue locally with the apparatus of functions
associated to a coordinate patch.

Proposition 10.2. If ¢: S; — S, is an isometry, and P € 8y, then there are coordinate
charts x: (U C R?) — Sy around p and %: (U C R2) — 82 around ¢(p) such thar
the component functions of the metric associated to x and X, respectively, satisfy E = E.
F=F and G =G.

PROOF. Letx: (U C R?) — S1 be any coordinate chart around p, and define ¥: U — S to
be the coordinate chart given by ¥ = ¢ o x. This satisfies the properties of a coordinate patch
by virtue of the properties of a diffeomorphism. Now ¥, = d¢p(x,) and ¥, = dop(xy,).
Since ¢ is an isometry, E (4, v) = E(u, v), F(u, v) = F(u, v), and G(u, v) = G(u, v) by
direct calculation.

The proposition gives an important pointwise property of an isometry. An immedi-
ate corollary is that length, angle, and area are preserved by an isometry. For properties
sufficiently local, it is enough to have a local version of isometry to compare surfaces
geometrically.

Definition 10.3. A mapping ¢:(V C S;) - S, of a neighborhood V of a point p in
S is a local isometry at p if there are neighborhoods W C V of pand W of ¢ (p) witk
¢|W ‘W — W an isometry. Two surfaces are locally isometric if there is a local isometry
at every point for each of the surfaces.

A local isometry may fail to be an isometry. For example, a cylinder is locally isometric 1
the plane (roll it out). However, because the plane and the cylinder have different topologica!
properties, no single isometry identifies the cylinder with part of the plane.
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