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146 D ev e lopment : D ffi rential g e ometry

Furthermore, diffeomorphic surfaces need not be isometric. For example, two spheres
of different radii are diffeomorphic, but not isometric - the arc length of a complete great
circle depends on the radius of the sphere. The notion of isometry determines an equivalence
relation on surfaces.

The notion of isometry makes precise the ideas of rigid motions and congruence. We
define a congruence to be a self-isometry of a surface, @: s -+ s. Two figure.r, that is,
subsets of S, are congruent if there is an isometry with @(figure1) = figure2. A figure made
up of segments of curves on a surface may be thought of as rods in a configuration and the
term rigid motion is synonymous with congruence.

It follows from the definition that the inverse of an isometry is also an isometry and so the
set of congruences of a surface forms a group. The importance of this observation cannot be
overestimated. It is the basis of another approach to geometry via so-called transformation
Sroups, initiated by Felix Klein (1849-1925) andSophus Lie (1g47-gg). (An introduction
to this approach is found in Ryan (1986).)

Properties that are preserved under isometries are the most important to the geometry o.
surfaces. We call such properties intrinsic. Properties that depend on the particular descrip-
tion of a surface are called extrinsic. For example, the fact that the z-axis is asymptoticall\
close to the surface of revolution of the tractrix is an extrinsic property of the surface. \;r,',=

will see later that this surface intrinsically looks the same from almost every point on it.
To investigate intrinsic properties, we often argrre locally with the apparatus of function,

associated to a coordinate patch.

Proposition 10.2. If Q: sl -+ 52 is an isometry, ancl p e s1, then there are coordincti;
charts x:(u c iR2) --+ St arounrt p and i:(u C re1) -* s2 arouncl g(p) such tht;:
the componentfunctions of the metric associated to x andi, respectively, satisfy E : E
F:F,andG:G.

PRooF. Let x: (u c 1R2) --+ s1 be any coordinate chart around p, and define ;: u -+ sl r

bethecoordinatechartgiven byi : Qox.This satisfies theproperties ofacoordinatepatc:
by virtue of the properties of a diffeomorphism. Now i, : dQoer,) and i, : dfip(r,
Since @ is an isometry. E\u.u): E(u.ut, F(u. u) : Ftu. u). and Glu,u): G(u,utl
direct calculation.

The proposition gives an important pointwise property of an isometry. An immec:-
ate corollary is that length, angle, and area are preserved by an isometry. For propertie,
sufficiently local, it is enough to have a local version of isometry to compare surf'ac;,
geometrically.

Definition 10.3. A mappingQ:( c Sr) --+ 52of aneighborhooclV of apoint p.-
51 is a local isometry at p if there are neighborhoods LIt C V of p and W of e(fl rt::
Ql, : llt -', w cm isometry. Two surfaces are locaily isometric if there is a local isome:-
at every pointfor each ofthe surfaces.

A local isometry may fail to be an isometry. For example, a cylinder is locally isometric .

the plane (roll it out). However, because the plane and the cylinder have different topologrc.
properties, no single isometry identifies the cylinder with part of the plane.
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