Tensor product surfaces

® Natural way to think of a surface:
® curve is swept, and (possibly) deformed.
® Examples:
® ruled surface (line is swept),
® surface of revolution (circle is swept along line, grows and shrinks).

® Surface form:




Tensor product surfaces

Usually, domain is rectangular;
® until further notice, all domains are rectangular.

Classical tensor product interpolate:
® Gouraud shading on a rectangle
® this gives a bilinear interpolate of the rectangles vertex values.

Continuity constraints for surfaces are more interesting
than for curves

Our curves have form:




Tensor product surfaces

® Suggests form for surfaces:

ZXz'jfi(U)fj(U)




Extruded surfaces

® (Geometrical model -
Pasta machine
Take curve and
“extrude’ surface
along vector
Many human
artifacts have this
form - rolled steel, \Vector

etc.
(x(s5,2), y(5,2),2(5,2)) = (x,(8), y.(5),2,(5)) + (v, v, V,)




® From every point on
a curve, construct a
line segment

through a single
fixed point in space
- the vertex

Curve can be space

or plane curve, but

shouldn’t pass

VO Fd s T (SRS TS G (x(s.1), y(s5.1),2(5.1)) = (1= )(x, (5), ¥, (), 2, () + (Vg v, . v;)




Commercial particle systems (wondertouch)




Surfaces of revolution

Plane curve + axis
“spin” plane curve
around axis to get
surface

Choice of plane is
arbitrary, choice of
axis affects surface

In this case, curve is on
x-z plane, axis i1s z
axis.

(x(8,2), y(8,1),2(5,1)) =

(x,(s)cos(t),x,(s)sin(?),z.(s))




t varies around circle

® Many artifacts are
SOR’s, as they’re easy
to make on a lathe.

Controlling is quite
easy - concentrate on
the cross section.

AX1s crossing Cross-
section leads to ugly
geometry.

S varies up curve




Ruled surfaces

® Popular, because it’s easy to
build a curved surface out of
straight segments - eg
pavilions, etc. (x(s,1), y(s,1),2(s,1)) =

® Take two space curves, and (1=1)(x,(5),y, (5),2,(s)) +
join corresponding points - 10X, (5), Y, (8),2, ()
same s - with line segment.

® Even if space curves are lines,
the surface is usually curved.







Parametric Surface Patches

As with parametric curves, define a vector-valued function

p(_u,L.’)=[x(u,U_) y(u,v) Z(u,v_)]

Derivatives are tangent to surface
 not necessarily orthogonal

w=10

ox ¢ c

p.(u,v)=| -
| du

p,(u,v)=
v

And the unit normal can be computed as
I)u X I)u

Il(ll,U) = ||I)“ N I)!:,”




Tensor Product Bezier Patches

® By the same process as with Bezier curves, we can derive

the form:
S‘ S‘ b;; B} (u) B (v)

1=0 7=0

® here B(u) are the Bezier-Bernstein polynomials, as before
® these are blending functions

® [t follows from the tensor product form that:
® interpolates four vertex points
surface is in convex hull of control points
tangent plane at each vertex is given by three points at that vertex

repeated de Casteljau (one direction, then the other) gives a point on the
surface, and tangent plane to surface




Tensor product Bezier patches

For fixed u, varying v gives

V varies a Bezier curve

varies
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Tensor Product Bezier patches

® Construct by de Casteljau algorithm

® repeated linear interpolation one way
® now go the other way

e OR
® repeated bilinear interpolation




de Casteljau algorithm for surfaces: darker lines indicate
interpolation in the p-direction.

Fig. 6.7a.

Repeated linear interpolation one way yields control points; use these points for repeated linear
interpolation in the other direction




Bilinear interpolation

u varies

hk Xo1




Bilinear interpolation

u varies




Bilinear Interpolation

u varies




uJ

Fig. 6.7b. The de Casteljau algorithm viewed as bilinear interpolation.

Repeated bilinear interpolation yields a surface too




Tensor Product Bezier Patches

® [t follows from the tensor product form that surface:

® interpolates four vertex points

® tangent plane at each vertex is given by three points at that vertex

® repeated de Casteljau (one direction, then the other) gives a point on the
surface, tangent plane to surface




Tensor product Bezier patches

® Recall we wrote curves as:
[ w o ouw? o ou 1 }/\/l

® We can write surface as:

[u3 u? u 1]/\/1




Bezier curve subdivision

bo

Fig. 4.5. Decomposition of a Bézier curve into two
C® continuous curve segments (cf. Fig. 4.4).




Applies also to surtaces




Fig. 6.9. Repeated refinement of a Bézier net (a) leads to
approximations (b), (c) of the Bézier surface (d).




Tensor product splines

® Simplest
® Dbicubic interpolating surface
® B-splines




Bicubic interpolating surfaces

® We have a grid in u, v of parameter values
® know height at each grid point

® and anything else we need to know (continuity means this is very little)
® must build an interpolating surface

® Form in each grid block:

Zij(8,8) = Yimo Yoo Cig 'Y




Constructing a spline

® Notation:




Step 1: Patches from info

® /.p,q,r at each corner yields the patch

® [inear algebra in monomials (exercise)
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p’s follow from continuity, spline in x dir




q’s follow from continuity, spline in y dir
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Step 4: Continuity reveals r’s

Because p is a cubic spline in vy,
resp q is a cubic spline in X,
we can “fill in” r from corners
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Fig. 6.2. Bicubic spline surface interpolating 5 x 5 points (circles).




Tensor product bsplines

® (Asyou’d expect) form is

Zij PijNia(s)Njk(¢)

® Two cases are most important
® periodic (surface is a torus)
® patches
® we repeat knots at start and finish of s, t




Fig. 6.13c. B-spline surface of order k = 3 with periodic
basis functions in both the u- and v-directions.



Fig. 6.13b. B-spline
surface of order k = 3
with basis functions
periodic in the
u-direction.




Fig. 6.13a. B-spline
surface of order k£ = 4
_ and its de Boor net
_(nonperiodic basis

* functions).




B-Spline subdivision

D.A. Forsyth, with slides from John Hart

























Example




Another Example




Building Objects with Patches

Paste together multiple patches to cover entire object
- the Utah Teapot, for example, is built from 32 patches

This raises some tricky questions
« how many patches needed?
- how to guarantee continuity of patches? while animating!?
- how can we cut holes in the surface?
—trimming curves — create boundary spline curves on surface




