
• Natural way to think of a surface: 
• curve is swept, and (possibly) deformed.  
• Examples:  

• ruled surface (line is swept), 
• surface of revolution (circle is swept along line, grows and shrinks).

• Surface form:

Tensor product surfaces

x(u, v) = (x1(u)x2(v), y1(u)y2(v), z1(u)z2(v))



Tensor product surfaces

• Usually, domain is rectangular; 
• until further notice, all domains are rectangular.

• Classical tensor product interpolate:
• Gouraud shading on a rectangle

• this gives a bilinear interpolate of the rectangles vertex values.

• Continuity constraints for surfaces are more interesting 
than for curves

• Our curves have form:
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Tensor product surfaces

• Suggests form for surfaces:

�

ij

Xijfi(u)fj(v)



Extruded surfaces

• Geometrical model - 
Pasta machine

• Take curve and 
“extrude” surface 
along vector

• Many human 
artifacts have this 
form - rolled steel, 
etc.

(x(s, t), y(s, t), z(s,t)) = (xc (s), yc (s), zc (s)) + t(v0 ,v1,v2 )

Vector

Curve

t varies along line
s varies along curve



Cones

• From every point on 
a curve, construct a 
line segment 
through a single 
fixed point in space 
- the vertex

• Curve can be space 
or plane curve, but 
shouldn’t pass 
through the vertex

Vertex

Curve

t varies along line

s varies along curve

(x(s, t), y(s, t), z(s,t)) = (1− t)(xc (s), yc (s), zc (s))+ t(v0 ,v1 ,v2 )



Commercial particle systems (wondertouch)



Surfaces of revolution

• Plane curve + axis
• “spin” plane curve 

around axis to get 
surface

• Choice of plane is 
arbitrary, choice of 
axis affects surface

• In this case, curve is on    
x-z plane, axis is z 
axis.

(x(s, t), y(s, t), z(s,t)) =

(xc (s) cos(t), xc (s)sin(t), zc (s))



SOR-2

• Many artifacts are 
SOR’s, as they’re easy 
to make on a lathe.

• Controlling is quite 
easy - concentrate on 
the cross section.

• Axis crossing cross-
section leads to ugly 
geometry.

z

yx

t varies around circle

s varies up curve



Ruled surfaces

• Popular, because it’s easy to 
build a curved surface out of 
straight segments - eg 
pavilions, etc.

• Take two space curves, and 
join corresponding points - 
same s - with line segment.

• Even if space curves are lines, 
the surface is usually curved.

(x(s, t), y(s, t), z(s,t)) =
(1− t)(x1(s), y1 (s), z1(s))+

t(x2 (s),y2 (s), z2 (s))



c1(s)

c2(s)
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Tensor Product Bezier Patches

• By the same process as with Bezier curves, we can derive 
the form:

• here B(u) are the Bezier-Bernstein polynomials, as before
• these are blending functions

• It follows from the tensor product form that:
• interpolates four vertex points
• surface is in convex hull of control points
• tangent plane at each vertex is given by three points at that vertex
• repeated de Casteljau (one direction, then the other) gives a point on the 

surface, and tangent plane to surface
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Tensor product Bezier patches





Tensor Product Bezier patches

• Construct by de Casteljau algorithm
• repeated linear interpolation one way

• now go the other way
• OR

• repeated bilinear interpolation



Repeated linear interpolation one way yields control points; use these points for repeated linear 
interpolation in the other direction



Bilinear interpolation



Bilinear interpolation



Bilinear Interpolation



Repeated bilinear interpolation yields a surface too



Tensor Product Bezier Patches

• It follows from the tensor product form that surface:
• interpolates four vertex points
• tangent plane at each vertex is given by three points at that vertex
• repeated de Casteljau (one direction, then the other) gives a point on the 

surface, tangent plane to surface



Tensor product Bezier patches

• Recall we wrote curves as:

• We can write surface as:
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Bezier curve subdivision



Applies also to surfaces





Tensor product splines

• Simplest
• bicubic interpolating surface

• B-splines



Bicubic interpolating surfaces

• We have a grid in u, v of parameter values
• know height at each grid point

• and anything else we need to know (continuity means this is very little)
• must build an interpolating surface

• Form in each grid block:

Zij(s, t) =
�3

i=0

�3
j=0 cijsitj



Constructing a spline

• Notation:

•

p =
∂Z

∂x

q =
∂Z

∂y

r =
∂2Z

∂x∂y



Step 1: Patches from info

• Z, p, q, r at each corner yields the patch

• Linear algebra in monomials (exercise)



Step 2: Continuity reveals p’s

p’s follow from continuity, spline in x dir



Step 3: Continuity reveals q’s

q’s follow from continuity, spline in y dir



Step 4:  Continuity reveals r’s

Because p is a cubic spline in y, 
resp q is a cubic spline in x,

we can “fill in” r from corners





Tensor product bsplines

• (As you’d expect) form is

• Two cases are most important
• periodic (surface is a torus)
• patches 

• we repeat knots at start and finish of s, t 

�
ij PijNid(s)Njk(t)









B-Spline subdivision
D.A. Forsyth, with slides from John Hart

















Example



Another Example




