### Tensor product surfaces

#### • Natural way to think of a surface:

- curve is swept, and (possibly) deformed.
- Examples:
  - ruled surface (line is swept),
  - surface of revolution (circle is swept along line, grows and shrinks).
- Surface form:

 $\mathbf{x}(u,v) = (x_1(u)x_2(v), y_1(u)y_2(v), z_1(u)z_2(v))$ 

### Tensor product surfaces

#### • Usually, domain is rectangular;

- until further notice, all domains are rectangular.
- Classical tensor product interpolate:
  - Gouraud shading on a rectangle
    - this gives a bilinear interpolate of the rectangles vertex values.
- Continuity constraints for surfaces are more interesting than for curves
- Our curves have form:

$$\sum_{i} \mathbf{X}_{i} f_{i}(u)$$

# Tensor product surfaces

• Suggests form for surfaces:

$$\sum_{ij} \mathbf{X}_{ij} f_i(u) f_j(v)$$

### Extruded surfaces

- Geometrical model -Pasta machine
- Take curve and "extrude" surface along vector
- Many human artifacts have this form - rolled steel, etc.



$$(x(s,t), y(s,t), z(s,t)) = (x_c(s), y_c(s), z_c(s)) + t(v_0, v_1, v_2)$$

### Cones

- From every point on a curve, construct a line segment through a single fixed point in space
  the vertex
- Curve can be space or plane curve, but shouldn't pass through the vertex



 $(x(s,t), y(s,t), z(s,t)) = (1-t)(x_c(s), y_c(s), z_c(s)) + t(v_0, v_1, v_2)$ 

### Commercial particle systems (wondertouch)



### Surfaces of revolution

- Plane curve + axis
- "spin" plane curve around axis to get surface
- Choice of plane is arbitrary, choice of axis affects surface
- In this case, curve is on x-z plane, axis is z axis.

(x(s,t),y(s,t),z(s,t)) =

 $(x_c(s)\cos(t), x_c(s)\sin(t), z_c(s))$ 

### SOR-2

- Many artifacts are SOR's, as they're easy to make on a lathe.
- Controlling is quite easy - concentrate on the cross section.
- Axis crossing crosssection leads to ugly geometry.



### Ruled surfaces

- Popular, because it's easy to build a curved surface out of straight segments - eg pavilions, etc.
- Take two space curves, and join corresponding points same s with line segment.
- Even if space curves are lines, the surface is usually curved.

(x(s,t), y(s,t), z(s,t)) =  $(1-t)(x_1(s), y_1(s), z_1(s)) +$   $t(x_2(s), y_2(s), z_2(s))$ 



#### **Parametric Surface Patches**

#### As with parametric curves, define a vector-valued function

 $\mathbf{p}(u,v) = \begin{bmatrix} x(u,v) & y(u,v) & z(u,v) \end{bmatrix}$ 

#### Derivatives are tangent to surface

not necessarily orthogonal

$$\mathbf{p}_{u}(u,v) = \begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} & \frac{\partial z}{\partial u} \end{bmatrix}$$
$$\mathbf{p}_{v}(u,v) = \begin{bmatrix} \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} & \frac{\partial z}{\partial v} \end{bmatrix}$$

#### And the unit normal can be computed as

$$\mathbf{n}(u,v) = \frac{\mathbf{p}_u \times \mathbf{p}_v}{\|\mathbf{p}_u \times \mathbf{p}_v\|}$$



### **Tensor Product Bezier Patches**

By the same process as with Bezier curves, we can derive the form:

 $\sum \overline{\sum} \mathbf{b}_{ij} \overline{B_i^n(u)} \overline{B_j^n(v)}$ 

 $i=0 \ j=0$ 

• here B(u) are the Bezier-Bernstein polynomials, as before

- these are blending functions
- It follows from the tensor product form that:
  - interpolates four vertex points
  - surface is in convex hull of control points
  - tangent plane at each vertex is given by three points at that vertex
  - repeated de Casteljau (one direction, then the other) gives a point on the surface, and tangent plane to surface

# Tensor product Bezier patches





### Tensor Product Bezier patches

#### • Construct by de Casteljau algorithm

- repeated linear interpolation one way
  - now go the other way
- OR
  - repeated bilinear interpolation



Repeated linear interpolation one way yields control points; use these points for repeated linear interpolation in the other direction

# Bilinear interpolation



# Bilinear interpolation



# **Bilinear Interpolation**





#### Repeated bilinear interpolation yields a surface too

### Tensor Product Bezier Patches

#### • It follows from the tensor product form that surface:

- interpolates four vertex points
- tangent plane at each vertex is given by three points at that vertex
- repeated de Casteljau (one direction, then the other) gives a point on the surface, tangent plane to surface

## Tensor product Bezier patches

• Recall we wrote curves as:

$$\begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} \mathcal{M} \begin{bmatrix} \mathbf{p}_0 \\ \mathbf{p}_1 \\ \mathbf{p}_2 \\ \mathbf{p}_3 \end{bmatrix}$$

• We can write surface as:

$$\begin{bmatrix} u^{3} & u^{2} & u & 1 \end{bmatrix} \mathcal{M} \begin{bmatrix} \mathbf{p}_{00} & \mathbf{p}_{01} & \mathbf{p}_{02} & \mathbf{p}_{03} \\ \mathbf{p}_{10} & \mathbf{p}_{11} & \mathbf{p}_{12} & \mathbf{p}_{13} \\ \mathbf{p}_{20} & \mathbf{p}_{21} & \mathbf{p}_{22} & \mathbf{p}_{23} \\ \mathbf{p}_{30} & \mathbf{p}_{31} & \mathbf{p}_{32} & \mathbf{p}_{33} \end{bmatrix} \mathcal{M}^{T} \begin{bmatrix} v^{3} \\ v^{2} \\ v \\ 1 \end{bmatrix}$$

### Bezier curve subdivision



## Applies also to surfaces





# Tensor product splines

- Simplest
  - bicubic interpolating surface
- B-splines

### Bicubic interpolating surfaces

#### • We have a grid in u, v of parameter values

- know height at each grid point
  - and anything else we need to know (continuity means this is very little)
- must build an interpolating surface

• Form in each grid block:

$$Z_{ij}(s,t) = \sum_{i=0}^{3} \sum_{j=0}^{3} c_{ij} s^{i} t^{j}$$

# Constructing a spline

• Notation:

$$p = \frac{\partial Z}{\partial x}$$
$$q = \frac{\partial Z}{\partial y}$$
$$r = \frac{\partial^2 Z}{\partial x \partial y}$$

# Step 1: Patches from info

- Z, p, q, r at each corner yields the patch
- Linear algebra in monomials (exercise)

# Step 2: Continuity reveals p's



p's follow from continuity, spline in x dir



# Step 3: Continuity reveals q's



q's follow from continuity, spline in y dir



# Step 4: Continuity reveals r's



Because p is a cubic spline in y, resp q is a cubic spline in x, we can "fill in" r from corners





Fig. 6.2. Bicubic spline surface interpolating  $5 \times 5$  points (circles).

### Tensor product bsplines

• (As you'd expect) form is

## $\sum_{ij} \mathbf{P}_{ij} N_{id}(s) N_{jk}(t)$

#### • Two cases are most important

- periodic (surface is a torus)
- patches
  - we repeat knots at start and finish of s, t



Fig. 6.13c. B-spline surface of order k = 3 with periodic basis functions in both the *u*- and *v*-directions.



Fig. 6.13b. B-spline surface of order k = 3with basis functions periodic in the *u*-direction. Fig. 6.13a. B-spline surface of order k = 4and its de Boor net (nonperiodic basis functions).

۰.

÷



# **B-Spline subdivision**

D.A. Forsyth, with slides from John Hart















# Example









# Another Example



#### **Building Objects with Patches**

#### Paste together multiple patches to cover entire object

the Utah Teapot, for example, is built from 32 patches

#### This raises some tricky questions

- how many patches needed?
- how to guarantee continuity of patches? while animating!?
- how can we cut holes in the surface?
  - trimming curves create boundary spline curves on surface