
0 2 4 6 8 10 12 14

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Tensor product surfaces

Mean curvature

Gauss map

Mesh compression+storage

Gaussian curvature

Blending functions

Bezier surfaces

Implicit surfaces

B Spline surfaces

Control points

Interpolating curves

Parametric surfaces

Catmull clark subdivision

Parametric curves

B Spline Cur

Know it

0 2 4 6 8 10 12 14

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

B Spline Curves

Interpolating curves

Parametric curves

Catmull clark subdivision

B Spline surfaces

Parametric surfaces

Bezier surfaces

Control points

Mesh compression+storage

Implicit surfaces

Gaussian curvature

Mean curvature

Blending functions

Gauss map

Tensor product surfa

Huh?

Curves - quick revision,
emphasizing continuity

D.A. Forsyth, with slides from John Hart

Central issues in modelling

• Construct families of curves, surfaces and volumes that
• can represent common objects usefully;
• are easy to interact with; interaction includes:

• manual modelling;
• fitting to measurements;

• support geometric computations
• intersection
• collision

Main topics

• Simple curves
• Simple surfaces
• Continuity and splines
• Bezier surfaces and spline surfaces
• Volume models
• Meshes
• Animation

Parametric forms

• A parametric curve is
• a mapping of one parameter into

• 2D
• 3D

• Examples
• circle as (cos t, sin t)
• twisted cubic as (t, t*t, t*t*t)
• circle as (1-t^2, 2 t, 0)/(1+t^2)

• domain of the parametrization MATTERS
• (cos t, sin t), 0<=t<= pi is a semicircle

Curves - basic ideas

• Important cases on the plane
• Monge (or explicit)

• y(x)
• Examples:

• many lines, bits of circle, sines, etc
• Implicit curve

• F(x, y)=0
• Examples:

• all lines, circles, ellipses
• any explicit curve; any parametric algebraic curve; lots of others
• Important special case: F polynomial

• Parametric curve
• (x(s), y(s)) for s in some range
• Examples

• all lines, circles, ellipses
• Important special cases: x, y polynomials, rational

Parametric forms

• A parametric surface is
• a mapping of two parameters into 3D
• Examples:

• sphere as (cos s cos t, sin s cos t, sin t)
• Again, domain matters

• Very common forms
• Curve

• Surface

• Functions phi are known as “blending functions”

x(s, t) =
�

ij

vijφij(s, t)

x(s) =
�

i

viφi(s)

Parametric vs Implicit

• Some computations are easier in one form
• Implicit

• ray tracing
• Parametric

• meshing

• Implicit surfaces bound volumes
• “hold water”
• but there might be extra bits

• Parametric surfaces/curves often admit implicit form
• Control

• implicit: fundamentally global, rigid objects
• parametric: can have local control

Interpolation

• Construct a parametric curve that passes through
(interpolates) a set of points.

• Lagrange interpolate:
• give parameter values associated with each point
• use Lagrange polynomials (one at the relevant point, zero at all others) to

construct curve
• curve is:

piφ i

l() t()
i∈points
∑

Lagrange interpolate

• Construct a parametric curve that passes through
(interpolates) a set of points.

• Lagrange interpolate:
• give parameter values associated with each point
• use Lagrange polynomials (one at the relevant point, zero at all others) to

construct curve
• degree is (#pts-1)

• e.g. line through two points
• quadratic through three.

•

Lagrange polynomials

• Interpolate points at s=s_i, i=1..n
• Blending functions

• Can do this with a polynomial

φi(s) =

�
1 s = si
0 s = sk, k �= i

�
j=1..i−1,i..n(s− sj)�
j=1..i−1,i..n(sj − si)

Hermite interpolation

• Hermite interpolate
• give parameter values and derivatives associated with each point
• curve passes through given point and the given derivative at that parameter

value
• For two points (most important case) curve is:

• use Hermite polynomials to construct curve
• one at some parameter value and zero at others or
• derivative one at some parameter value, and zero at others

p0φ0(t) + p1φ1(t) + v0φ2(t) + v1φ3(t)

Hermite curves

• Natural matrix form:
• solve linear system to get curve coefficients

• Easily “pasted” together

Blending functions are cubic polynomials, so we write as:

This allows us to write the curve as:

Basis matrix Geometry matrix

p0φ0(t) + p1φ1(t) + v0φ2(t) + v1φ3(t)

�
φ0(t) φ1(t) φ2(t) φ3(t)

�
=

�
1 t t2 t3

�






a0 a1 a2 a3
b0 b1 b2 b3
c0 c1 c2 c3
d0 d1 d2 d3






�
1 t t2 t3

�






a0 a1 a2 a3
b0 b1 b2 b3
c0 c1 c2 c3
d0 d1 d2 d3











p0

p1

v0

v1






Hermite polynomials

�
φ0(t) φ1(t) φ2(t) φ3(t)

�
=

�
1 t t2 t3

�






a0 a1 a2 a3
b0 b1 b2 b3
c0 c1 c2 c3
d0 d1 d2 d3






d

dt

�
φ0(t) φ1(t) φ2(t) φ3(t)

�
=

�
0 1 2t 3t2

�






a0 a1 a2 a3
b0 b1 b2 b3
c0 c1 c2 c3
d0 d1 d2 d3






Constraints

These constraints give:

 Interpolate each endpoint
 Have correct derivatives at each endpoint





φ0(0) φ1(0) φ2(0) φ3(0)
φ0(1) φ1(1) φ2(1) φ3(1)
dφ0

dt (0)
dφ1

dt (0)
dφ2

dt (0)
dφ3

dt (0)
dφ0

dt (1)
dφ1

dt (1)
dφ2

dt (1)
dφ3

dt (1)



 =





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1





We can write individual constraints like:

To get:

�
φ0(0) φ1(0) φ2(0) φ3(0)

�
=

�
1 0 02 03

�






a0 a1 a2 a3
b0 b1 b2 b3
c0 c1 c2 c3
d0 d1 d2 d3










1 0 0 0
1 1 1 1
0 1 0 0
0 1 2 3










a0 a1 a2 a3
b0 b1 b2 b3
c0 c1 c2 c3
d0 d1 d2 d3





=





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1





Hermite blending functions

Bezier curves

Bezier curves

Bezier curves

Bezier curves as a tableau

de Casteljau (formal version)

Bezier curve blending functions

n�

i=0

biB
n
i (u)

Curve has the form:

Bezier blending functions

• Bezier-Bernstein polynomials
• here C(n, i) is the number of combinations of n items, taken i at a time
•

Bn
i (u) = C(n, i)(1− u)iun−1

C(n, i) =
n!

(n− i)!i!

Bezier curve properties

• Pass through first, last points
• Tangent to initial, final segments of control polygon
• Lie within convex hull of control polygon
• Subdivide

Bezier curve tricks - I

• Pull a curve
towards a point
by placing two
control points
on top of one
another

Bezier curve tricks - II

• Close a curve by
making endpoints
the same point
• clean join by making

segments line up

Subdivision for Bezier curves

• Use De Casteljau (repeated
linear interpolation) to
identify points.
• Points as marked in figure

give two control polygons,
for two Bezier curves,
which lie on top of the
original.
• Repeated subdivision leads

to a polygon that lies very
close to the curve
• Limit of subdivision

process is a curve

Equivalences

• 4 control point Bezier curve is a cubic curve
• so is an Hermite curve
• so we can transform from one to the other
• Easy way:

• notice that 4-point Bezier curve
• interpolates endpoints
• has tangents 3(b_1-b_0), 3(b_3-b_2)
• this gives Hermite->Bezier, Bezier->Hermite

• Hard way:
• do the linear algebra

4-point Bezier curve:

Hermite curve:

�
1 t t2 t3

�






1 0 0 0
−3 3 0 0
3 −6 3 0
−1 3 −3 1










p0

p1

p2

p3





�
1 t t2 t3

�






1 0 0 0
0 0 1 0
−3 3 −2 −1
2 −2 1 1










p0

p1

v0

v1





�
1 t t2 t3

�
BbGb

�
1 t t2 t3

�
BhGh

• Say we know G_b
• what G_h will give the same curve?

• known G_h works similarly

Converting

BhGh = BbGb

Gh = B−1
h BbGb

Joining up curves

• Two kinds of join
• Geometric continuity

• G^0 - end points join up
• G^1 - end points join up, tangents are parallel
• Idea: the curves *could* be parametrized with a C^0 (C^1)

parametrization, but currently are not
• Very important in modelling

• Parametric continuity, or continuity
• C^0 - the parameter functions of the curve are continuous
• C^1 - the parameter functions are continuous, have continuous deriv
• C^2 - and continuous second deriv
• Very important in animation (the parametrization is usually time)

Simple cases

• Join up two point Hermite curves
• endpoints the same, vectors not - G^0
• endpoints, vectors the same - G^1 (easy)
• endpoints the same, vectors same direction - G^1 (harder)
• Catmull Rom construction if we don’t know tangents

• Subdivide a Bezier curve
• result is G^infinity if we reparametrize each segment as we should

• but not necessarily if we move the control points!

• Join up Bezier curves
• endpoints join - G^0
• endpoints join, end segments collinear - G^1

Catmull-Rom construction (partial)

Cubic interpolating splines

• n+1 points P_i
• X_i(t) is curve between P_i, P_i+1

Interpolating Cubic splines, G^1

• join a series of Hermite curves with equal derivatives.
• But where are the derivative values to come from?

• Measurements

• Cardinal splines
• average points
• t is “tension”
• specify endpoint tangents

• or use difference between first two, last two points

dXi

dt
(0) =

1

2
(1− t)(Pi+1 −Pi−1)

Tension

Interpolating Cubic splines: C^2

• One parametrization for the whole curve
• divided up into intervals, called knots

• In each segment, there is a cubic curve FOR THAT SEGMENT

• And we must make this lot C^2

ti ≤ t < ti+1

Ai(t− ti)
3 +Bi(t− ti)

2 +Ci(t− ti) +Di

• at interval endpoints, curves must be
• Continuous

• have continuous derivative

• have continuous second derivative

Continuity

Xi(ti) = Xi−1(ti)

d2Xi

dt2
(ti) =

d2Xi−1

dt2
(ti)

dXi

dt
(ti) =

dXi−1

dt
(ti)

Curves

• Assume we KNOW the derivative at each point
• write derivatives with ‘

Xi(ti) = Pi = Di

dXi

dt
(ti) = X�

i(ti) = P�
i = Ci

Xi(ti+1) = Pi+1 = Ai∆t3i +Bi∆t2i +Ci∆ti +Di

X�
i(ti+1) = P�

i+1 = 3Ai∆t2i + 2Bi∆ti +Ci

Curves

Xi(t) = Pi

�
2
(t− ti)3

(∆ti)3
− 3

(t− ti)2

(∆ti)2
+ 1

�
+

Pi+1

�
−2

(t− ti)3

(∆ti)3
+ 3

(t− ti)2

(∆ti)2

�
+

P�
i

�
(t− ti)3

(∆ti)2
− 2

(t− ti)2

(∆ti)
+ (t− ti)

�
+

P�
i+1

�
(t− ti)3

(∆ti)2
− (t− ti)2

(∆ti)

�

C^2 Continuity supplies derivatives

• Second derivative is continuous

• Differentiate curves, rearrange to get

• This is a linear system in tridiagonal form
• can see as recurrence relation - we need two tangents to solve

X��
i−1(ti) = Xi(ti)

∆tiP
�
i−1 + 2(∆ti−1 +∆ti)P

�
i +∆ti−1P

�
i+1 =

3
∆ti−1

∆ti
(Pi+1 −Pi) + 3

∆ti
∆ti−1

(Pi −Pi−1)

C^2 cubic splines

• Recurrence relations
• d(n-1) equations in d(n+1) unknowns (d is dimension)

• Options:
• give P’_0, P’_1 (easiest, unnatural)
• second derivatives vanish at each end (natural spline)
• give slopes at the boundary

• vector from first to second, second last to last
• parabola through first three, last three points
• third derivative is the same at first, last knot

More general splines

• We would like to retain continuity, local control
• but drop interpolation

• Mechanism
• get clever with blending functions
• continuity of curve=continuity of blending functions
• we will need to “switch” on or off pieces of function

• e.g. linear example

• This takes us to B-splines, which you know
• so we’ll move on to surface constructions

