

Curves - quick revision, emphasizing continuity

D.A. Forsyth, with slides from John Hart

Central issues in modelling

• Construct families of curves, surfaces and volumes that

- can represent common objects usefully;
- are easy to interact with; interaction includes:
 - manual modelling;
 - fitting to measurements;
- support geometric computations
 - intersection
 - collision

Main topics

- Simple curves
- Simple surfaces
- Continuity and splines
- Bezier surfaces and spline surfaces
- Volume models
- Meshes
- Animation

Parametric forms

• A parametric curve is

• a mapping of one parameter into

- 2D
- 3D
- Examples
 - circle as $(\cos t, \sin t)$
 - twisted cubic as (t, t*t, t*t*t)
 - circle as $(1-t^2, 2t, 0)/(1+t^2)$
- domain of the parametrization MATTERS
 - $(\cos t, \sin t), 0 \le t \le pi$ is a semicircle

Curves - basic ideas

• Important cases on the plane

- Monge (or explicit)
 - y(x)
 - Examples:
 - many lines, bits of circle, sines, etc
- Implicit curve
 - F(x, y)=0
 - Examples:
 - all lines, circles, ellipses
 - any explicit curve; any parametric algebraic curve; lots of others
 - Important special case: F polynomial
- Parametric curve
 - (x(s), y(s)) for s in some range
 - Examples
 - all lines, circles, ellipses
 - Important special cases: x, y polynomials, rational

Parametric forms

• A parametric surface is

- a mapping of two parameters into 3D
- Examples:
 - sphere as (cos s cos t, sin s cos t, sin t)
- Again, domain matters
- Very common forms
 - Curve

$$\mathbf{x}(s) = \sum_{i} \mathbf{v}_{i} \phi_{i}(s)$$

• Surface

$$\mathbf{x}(s,t) = \sum_{ij} \mathbf{v}_{ij} \phi_{ij}(s,t)$$

Functions phi are known as "blending functions"

Parametric vs Implicit

• Some computations are easier in one form

- Implicit
 - ray tracing
- Parametric
 - meshing
- Implicit surfaces bound volumes
 - "hold water"
 - but there might be extra bits
- Parametric surfaces/curves often admit implicit form
- Control
 - implicit: fundamentally global, rigid objects
 - parametric: can have local control

Interpolation

- Construct a parametric curve that passes through (interpolates) a set of points.
- Lagrange interpolate:
 - give parameter values associated with each point
 - use Lagrange polynomials (one at the relevant point, zero at all others) to construct curve
 - curve is:

 $\sum_{i \in \text{point}} p_i \phi_i^{(l)}(t)$

Lagrange interpolate

- Construct a parametric curve that passes through (interpolates) a set of points.
- Lagrange interpolate:
 - give parameter values associated with each point
 - use Lagrange polynomials (one at the relevant point, zero at all others) to construct curve
 - degree is (#pts-1)
 - e.g. line through two points
 - quadratic through three.
 - •

Lagrange polynomials

- Interpolate points at s=s_i, i=1..n
- Blending functions

$$\phi_i(s) = \begin{cases} 1 & s = s_i \\ 0 & s = s_k, k \neq i \end{cases}$$

• Can do this with a polynomial

$$\frac{\prod_{j=1..i-1,i..n} (s-s_j)}{\prod_{j=1..i-1,i..n} (s_j-s_i)}$$

Hermite interpolation

• Hermite interpolate

- give parameter values and derivatives associated with each point
- curve passes through given point and the given derivative at that parameter value
- For two points (most important case) curve is:
- use Hermite polynomials to construct curve
 - one at some parameter value and zero at others or
 - derivative one at some parameter value, and zero at others

Hermite curves

- Natural matrix form:
 - solve linear system to get curve coefficients
- Easily "pasted" together

$$\mathbf{p}_0\phi_0(t) + \mathbf{p}_1\phi_1(t) + \mathbf{v}_0\phi_2(t) + \mathbf{v}_1\phi_3(t)$$

Blending functions are cubic polynomials, so we write as:

$$\begin{bmatrix} \phi_0(t) & \phi_1(t) & \phi_2(t) & \phi_3(t) \end{bmatrix} = \begin{bmatrix} 1 & t & t^2 & t^3 \end{bmatrix} \begin{cases} a_0 & a_1 & a_2 & a_3 \\ b_0 & b_1 & b_2 & b_3 \\ c_0 & c_1 & c_2 & c_3 \\ d_0 & d_1 & d_2 & d_3 \end{cases}$$

This allows us to write the curve as:

$$\begin{bmatrix} 1 & t & t^2 & t^3 \end{bmatrix} \begin{cases} a_0 & a_1 & a_2 & a_3 \\ b_0 & b_1 & b_2 & b_3 \\ c_0 & c_1 & c_2 & c_3 \\ d_0 & d_1 & d_2 & d_3 \end{cases} \begin{cases} \mathbf{p}_0 \\ \mathbf{p}_1 \\ \mathbf{v}_0 \\ \mathbf{v}_1 \end{cases}$$

Basis matrix

Geometry matrix

Hermite polynomials

$$\begin{bmatrix} \phi_0(t) & \phi_1(t) & \phi_2(t) & \phi_3(t) \end{bmatrix} = \begin{bmatrix} 1 & t & t^2 & t^3 \end{bmatrix} \begin{cases} a_0 & a_1 & a_2 & a_3 \\ b_0 & b_1 & b_2 & b_3 \\ c_0 & c_1 & c_2 & c_3 \\ d_0 & d_1 & d_2 & d_3 \end{cases}$$

$$\frac{d}{dt} \begin{bmatrix} \phi_0(t) & \phi_1(t) & \phi_2(t) & \phi_3(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 & 2t & 3t^2 \end{bmatrix} \begin{cases} a_0 & a_1 & a_2 & a_3 \\ b_0 & b_1 & b_2 & b_3 \\ c_0 & c_1 & c_2 & c_3 \\ d_0 & d_1 & d_2 & d_3 \end{cases} \end{cases}$$

Constraints

$$\begin{bmatrix} \phi_0(0) & \phi_1(0) & \phi_2(0) & \phi_3(0) \\ \phi_0(1) & \phi_1(1) & \phi_2(1) & \phi_3(1) \\ \frac{d\phi_0}{dt}(0) & \frac{d\phi_1}{dt}(0) & \frac{d\phi_2}{dt}(0) & \frac{d\phi_3}{dt}(0) \\ \frac{d\phi_0}{dt}(1) & \frac{d\phi_1}{dt}(1) & \frac{d\phi_2}{dt}(1) & \frac{d\phi_3}{dt}(1) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

These constraints give:

Interpolate each endpoint Have correct derivatives at each endpoint We can write individual constraints like:

$$\begin{bmatrix} \phi_0(0) & \phi_1(0) & \phi_2(0) & \phi_3(0) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0^2 & 0^3 \end{bmatrix} \begin{cases} a_0 & a_1 & a_2 & a_3 \\ b_0 & b_1 & b_2 & b_3 \\ c_0 & c_1 & c_2 & c_3 \\ d_0 & d_1 & d_2 & d_3 \end{cases}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 2 & 3 \end{bmatrix} \begin{cases} a_0 & a_1 & a_2 & a_3 \\ b_0 & b_1 & b_2 & b_3 \\ c_0 & c_1 & c_2 & c_3 \\ d_0 & d_1 & d_2 & d_3 \end{cases} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Hermite blending functions

Hermite Blending Polynomials

 $h_{1}(u) = 2u^{3} - 3u^{2} + 1$ $h_{2}(u) = -2u^{3} + 3u^{2}$ $h_{3}(u) = u^{3} - 2u^{2} + u$ $h_{4}(u) = u^{3} - u^{2}$

Bezier curves Linear Interpolation

Bezier curves

"Tripled" Linear Interpolation

Get a cubic polynomial curve

$$\mathbf{b}_{0}^{3}(u) = (1-u)^{3} \mathbf{b}_{0}$$

+3(1-u)^{2}(u) \mathbf{b}_{1}
+3(1-u)(u)² \mathbf{b}_{2}
+(u)³ \mathbf{b}_{3}

This is a cubic Bézier curve

Bezier curves as a tableau

"Tripled" Linear Interpolation

Repeated averaging in tableau form:

This clearly suggests a recursive procedure ...

de Casteljau (formal version)

General Bézier Curves

Given *n*+1 control points

$$\mathbf{b}_0, \mathbf{b}_1, \dots, \mathbf{b}_n \in \mathbb{R}^3$$

We can define a Bézier curve

$$\mathbf{b}(u) = \mathbf{b}^n(u) = \mathbf{b}^n_0(u)$$

via the recursive construction

$$\mathbf{b}_{i}^{r}(u) = (1-u)\mathbf{b}_{i}^{r-1}(u) + (u)\mathbf{b}_{i+1}^{r-1}(u)$$
$$\mathbf{b}_{i}^{0}(u) = \mathbf{b}_{i}$$

This is the de Casteljau Algorithm

Bezier curve blending functions

8.0

0.6

0.4

0.2

0.2

0.4

Common Bernstein Polynomials

0.8

0.6

0.4

0.2

8.0

0.6

0.4

0.2

0.2

0.4

0.6

0.8

0.4

0.8

Curve has the form:

Bezier blending functions

• Bezier-Bernstein polynomials

$$B_i^n(u) = C(n,i)(1-u)^i u^{n-1}$$

- here C(n, i) is the number of combinations of n items, taken i at a time
- ${\color{black}\bullet}$

$$C(n,i) = \frac{n!}{(n-i)!i!}$$

Bezier curve properties

- Pass through first, last points
- Tangent to initial, final segments of control polygon
- Lie within convex hull of control polygon
- Subdivide

Bezier curve tricks - I

 Pull a curve towards a point by placing two control points on top of one another

Bezier curve tricks - II

- Close a curve by making endpoints the same point
 - clean join by making segments line up

Subdivision for Bezier curves

- Use De Casteljau (repeated linear interpolation) to identify points.
- Points as marked in figure give two control polygons, for two Bezier curves, which lie on top of the original.
- Repeated subdivision leads to a polygon that lies very close to the curve
- Limit of subdivision process is a curve

Fig. 4.5. Decomposition of a Bézier curve into two C^3 continuous curve segments (cf. Fig. 4.4).

Equivalences

- 4 control point Bezier curve is a cubic curve
- so is an Hermite curve
- so we can transform from one to the other
- Easy way:
 - notice that 4-point Bezier curve
 - interpolates endpoints
 - has tangents 3(b_1-b_0), 3(b_3-b_2)
 - this gives Hermite->Bezier, Bezier->Hermite
- Hard way:
 - do the linear algebra

4-point Bezier curve:

$$\begin{bmatrix} 1 & t & t^2 & t^3 \end{bmatrix} \begin{cases} 1 & 0 & 0 & 0 \\ -3 & 3 & 0 & 0 \\ 3 & -6 & 3 & 0 \\ -1 & 3 & -3 & 1 \end{cases} \begin{bmatrix} \mathbf{p}_0 \\ \mathbf{p}_1 \\ \mathbf{p}_2 \\ \mathbf{p}_3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & t & t^2 & t^3 \end{bmatrix} \mathcal{B}_b \mathcal{G}_b$$

Hermite curve:

$$\begin{bmatrix} 1 & t & t^2 & t^3 \end{bmatrix} \begin{cases} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -3 & 3 & -2 & -1 \\ 2 & -2 & 1 & 1 \end{cases} \begin{cases} \mathbf{p}_0 \\ \mathbf{p}_1 \\ \mathbf{v}_0 \\ \mathbf{v}_1 \end{bmatrix}$$

 $\begin{bmatrix} 1 & t & t^2 & t^3 \end{bmatrix} \mathcal{B}_h \mathcal{G}_h$

Converting

- Say we know $G_b \qquad \mathcal{B}_h \mathcal{G}_h = \mathcal{B}_b \mathcal{G}_b$
 - what G_h will give the same curve?

$$\mathcal{G}_h = \mathcal{B}_h^{-1} \mathcal{B}_b \mathcal{G}_b$$

• known G_h works similarly

Joining up curves

• Two kinds of join

- Geometric continuity
 - G^0 end points join up
 - G¹ end points join up, tangents are parallel
 - Idea: the curves *could* be parametrized with a C^0 (C^1) parametrization, but currently are not
 - Very important in modelling
- Parametric continuity, or continuity
 - C^0 the parameter functions of the curve are continuous
 - C^1 the parameter functions are continuous, have continuous deriv
 - C² and continuous second deriv
 - Very important in animation (the parametrization is usually time)

Simple cases

• Join up two point Hermite curves

- endpoints the same, vectors not G^0
- endpoints, vectors the same G^1 (easy)
- endpoints the same, vectors same direction G^1 (harder)
- Catmull Rom construction if we don't know tangents
- Subdivide a Bezier curve
 - result is G^infinity if we reparametrize each segment as we should
 - but not necessarily if we move the control points!
- Join up Bezier curves
 - endpoints join G^0
 - endpoints join, end segments collinear G^1

Catmull-Rom construction (partial)

Cubic interpolating splines

- n+1 points P_i
- X_i(t) is curve between P_i, P_i+1

Interpolating Cubic splines, G¹

- join a series of Hermite curves with equal derivatives.
- But where are the derivative values to come from?
 - Measurements

$$\frac{d\mathbf{X}_i}{dt}(0) = \frac{1}{2}(1-t)(\mathbf{P}_{i+1} - \mathbf{P}_{i-1})$$

- Cardinal splines
 - average points
 - t is "tension"
 - specify endpoint tangents
 - or use difference between first two, last two points

Interpolating Cubic splines: C²

- One parametrization for the whole curve
 - divided up into intervals, called knots

 $a = t_0 < t_1 < t_2 < \dots < t_{N-1} < t_N = b.$

 $\Delta t_i := t_{i+1} - t_i.$

• In each segment, there is a cubic curve FOR THAT SEGMENT

$$\mathbf{A}_i(t-t_i)^3 + \mathbf{B}_i(t-t_i)^2 + \mathbf{C}_i(t-t_i) + \mathbf{D}_i$$

• And we must make this lot C^2

$$t_i \le t < t_{i+1}$$

Continuity

- at interval endpoints, curves must be
 - Continuous

$$\mathbf{X}_i(t_i) = \mathbf{X}_{i-1}(t_i)$$

• have continuous derivative

$$\frac{d\mathbf{X}_i}{dt}(t_i) = \frac{d\mathbf{X}_{i-1}}{dt}(t_i)$$

• have continuous second derivative

$$\frac{d^2 \mathbf{X}_i}{dt^2}(t_i) = \frac{d^2 \mathbf{X}_{i-1}}{dt^2}(t_i)$$

Curves

• Assume we KNOW the derivative at each point

 $\mathbf{X}_i(t_i) = \mathbf{P}_i = \mathbf{D}_i$

$$\frac{d\mathbf{X}_i}{dt}(t_i) = \mathbf{X}'_i(t_i) = \mathbf{P}'_i = \mathbf{C}_i$$

 $\mathbf{X}_{i}(t_{i+1}) = \mathbf{P}_{i+1} = \mathbf{A}_{i}\Delta t_{i}^{3} + \mathbf{B}_{i}\Delta t_{i}^{2} + \mathbf{C}_{i}\Delta t_{i} + \mathbf{D}_{i}$

$$\mathbf{X}_{i}'(t_{i+1}) = \mathbf{P}_{i+1}' = 3\mathbf{A}_{i}\Delta t_{i}^{2} + 2\mathbf{B}_{i}\Delta t_{i} + \mathbf{C}_{i}$$

Curves

$$\begin{split} \mathbf{X}_{i}(t) &= \mathbf{P}_{i} \left(2 \frac{(t-t_{i})^{3}}{(\Delta t_{i})^{3}} - 3 \frac{(t-t_{i})^{2}}{(\Delta t_{i})^{2}} + 1 \right) + \\ \mathbf{P}_{i+1} \left(-2 \frac{(t-t_{i})^{3}}{(\Delta t_{i})^{3}} + 3 \frac{(t-t_{i})^{2}}{(\Delta t_{i})^{2}} \right) + \\ \mathbf{P}'_{i} \left(\frac{(t-t_{i})^{3}}{(\Delta t_{i})^{2}} - 2 \frac{(t-t_{i})^{2}}{(\Delta t_{i})} + (t-t_{i}) \right) + \\ \mathbf{P}'_{i+1} \left(\frac{(t-t_{i})^{3}}{(\Delta t_{i})^{2}} - \frac{(t-t_{i})^{2}}{(\Delta t_{i})} \right) \end{split}$$

C^2 Continuity supplies derivatives

• Second derivative is continuous

 $\mathbf{X}''_{i-1}(t_i) = \mathbf{X}_i(t_i)$

• Differentiate curves, rearrange to get

$$\Delta t_i \mathbf{P}'_{i-1} + 2(\Delta t_{i-1} + \Delta t_i) \mathbf{P}'_i + \Delta t_{i-1} \mathbf{P}'_{i+1} = 3\frac{\Delta t_{i-1}}{\Delta t_i} (\mathbf{P}_{i+1} - \mathbf{P}_i) + 3\frac{\Delta t_i}{\Delta t_{i-1}} (\mathbf{P}_i - \mathbf{P}_{i-1})$$

- This is a linear system in tridiagonal form
 - can see as recurrence relation we need two tangents to solve

C^2 cubic splines

• Recurrence relations

• d(n-1) equations in d(n+1) unknowns (d is dimension)

• Options:

- give P'_0, P'_1 (easiest, unnatural)
- second derivatives vanish at each end (natural spline)
- give slopes at the boundary
 - vector from first to second, second last to last
- parabola through first three, last three points
- third derivative is the same at first, last knot

More general splines

- We would like to retain continuity, local control
 - but drop interpolation
- Mechanism
 - get clever with blending functions
 - continuity of curve=continuity of blending functions
 - we will need to "switch" on or off pieces of function
 - e.g. linear example
- This takes us to B-splines, which you know
 - so we'll move on to surface constructions