Know it

15
14
13
12
11
Control points
B-Spline surfaces
Implicit surfaces

Bezier surfaces

Blending functions

aussian curvature

Mesh compression+storage

3 Gauss map
2

Mean curvature

1 fFensor product surfaces

Parametric surfaces

Interpolating curves

Parametric curves

atmull—-clark subdivision

B-Spline Cur

0 2 4 6 8

10

12

14




15
14
13
12
11

10

3
2

1

Huh?

Parametric surfaces
B-Spline surfaces
Catmull—clark subdivision
Parametric curves

Interpolating curves

B-Spline Curves

Gaussian curvature
Implicit surfaces

Mesh compression+storage

Control points

Bezier surfaces

ensof|product surfe

Gauss map

Blending functions

Mean curvature

0 2 4

12

14




Curves - quick revision,
emphasizing continuity

D.A. Forsyth, with slides from John Hart




Central 1ssues in modelling

® (Construct families of curves, surfaces and volumes that

® can represent common objects usefully;
® are easy to interact with; interaction includes:
® manual modelling;
® fitting to measurements;
® support geometric computations
® intersection
® collision




Main topics

Simple curves

Simple surfaces

Continuity and splines

Bezier surfaces and spline surfaces
Volume models

Meshes

Animation




Parametric forms

® A parametric curve 1s
® a mapping of one parameter into

e 2D
e 3D
® Examples
® circle as (cos t, sin t)
® twisted cubic as (t, t*t, t*t*t)
® circle as (1-tA2, 2 t, 0)/(1+tA2)

® domain of the parametrization MATTERS
® (cost,sint), O<=t<=pi is a semicircle




Curves - basic 1deas

® Important cases on the plane
® Monge (or explicit)
® y(x)
® Examples:
® many lines, bits of circle, sines, etc
® Implicit curve
® F(x,y)=0
® Examples:
® all lines, circles, ellipses
® any explicit curve; any parametric algebraic curve; lots of others
® Important special case: F polynomial
® Parametric curve
® (x(s),y(s)) forsin some range
® Examples
® all lines, circles, ellipses
® [mportant special cases: x,y polynomials, rational




Parametric forms

® A parametric surface 1s
® a mapping of two parameters into 3D
® Examples:
® sphere as (cos s cos t, sin s cos t, sin t)
® Again, domain matters

® Very common forms

x(s) = Z vidi(s)

® Surface
X(S,t) — E Vz'j¢ij(8,t)
1]

Functions phi are known as “blending functions”




Parametric vs Implicit

Some computations are easier in one form
® [Implicit
® ray tracing
® Parametric
® meshing
Implicit surfaces bound volumes
® “hold water”
® but there might be extra bits

Parametric surfaces/curves often admit implicit form

Control

® implicit: fundamentally global, rigid objects
® parametric: can have local control




Interpolation

® (Construct a parametric curve that passes through
(interpolates) a set of points.

® [agrange interpolate:
® gjve parameter values associated with each point

® use Lagrange polynomials (one at the relevant point, zero at all others) to
construct curve
® curve is:

Epiqﬁfl)(t)

i &points




Lagrange interpolate

® (Construct a parametric curve that passes through
(interpolates) a set of points.

® [agrange interpolate:
® gijve parameter values associated with each point

® use Lagrange polynomials (one at the relevant point, zero at all others) to
construct curve

® degree is (#pts-1)
® c.g. line through two points
® quadratic through three.




Lagrange polynomials

® Interpolate points at s=s_1, i=1..n
® Blending functions

® (Can do this with a polynomial

HjZl..i—l,i..n(S — Sj)
szl..i—l,i..n(sj — 8;)




Fig 2.16a. Interpolation
by a polynomial of degree 4. |

Fig 2.16c. Interpolation
by a polynomial of degree 14.




Hermite interpolation

® Hermite interpolate

® gjve parameter values and derivatives associated with each point

® curve passes through given point and the given derivative at that parameter
value

® For two points (most important case) curve is:

® use Hermite polynomials to construct curve
® one at some parameter value and zero at others or
® derivative one at some parameter value, and zero at others




Hermite curves

® Natural matrix form:
® solve linear system to get curve coefficients

® FEasily “pasted” together




Po®o(t) + P191(t) + vop2(t) + vies(t)

Blending functions are cubic polynomials, so we write as:

( ap a3 a2 as \
[ bo(t) du(t) da(t) da(t) |=[1 ¢ 2 @] b b1 b2 bad
Chb C1 C2 C3
This allows us to write the curve as:
( \ ( \
ap a1 a2 asg Po
|: 1 ¢ t2 .//.3 ] < bO bl b2 b3 > < P1 >
Ch €1 C2 C3 Vo
L dO dl dg dg ) \ V1 )

Basis matrix Geometry matrix




Hermite polynomials

[ do(t) 1(t) P2(t) @s(t) =1 t 2 3]

Co0t) or(t) a(t) os(t) ] =[0 1 2t 3]«




Constraints

$2(0)  @3(0) ] 1 0

( ¢2(1)  ¢3(1) | | 0 1
d1(0) 22(0) 230) | | 0 0
der(q) de2(1) 21y | [0 0

These constraints give:

Interpolate each endpoint
Have correct derivatives at each endpoint

O =) OO
_ O O O




[ $0(0) ¢1(0) ¢2(0) #3(0) |]=[1 0 0% 0% ]

OO = =

We can write individual constraints like:

To get:
00 0] (a a a asz’
111<b0b1b2b3>
1 0 O Cop C1 C2 C3
1 2 3| d di dy ds |

OO =

SO = O

S = O O

_—o O O




Hermite blending functions

Hermite Blending Polynomials

h, () =2u’ - 3u’ +1
h,(u) =-2u” +3u’
h,(u)=u"-2u’ +u

h,(W)=u"-u*




Bezier curves

Linear Interpolation

bl

b(u) = (1-u)b, + (Wb,

where 0 <u <1




Bezier curves

“Doubled” Linear Interpolation

bl

bl (u) = (1- )b, + (Wb, b! () = (1-wb, + ()b,

b2(w)=(1-wb' +(wb!
=(1-u)’b, +2u(l-u)b, +u’b,




Bezier curves

“Tripled” Linear Interpolation

b,

Get a cubic polynomial curve

b(u)= (1-w)'b,
+3(1—u)’*(u)b,
+3(1-uw)(uw)’b,
+(w)’b,

This is a cubic Bézier curve




Bezier curves as a tableau

“Tripled” Linear Interpolation

Repeated averaging in tableau form:

Input points
oy

0

b

—
=
o =

b
b
b, b b b

Paoint on curve

This clearly suggests a recursive procedure ...




de Casteljau (formal version)

General Bezier Curves

Given n+1 control points
b,,b,,...,b_eR’

We can define a Bézier curve
b(u)=b"(u)=bg(u)

via the recursive construction
b (1) =(1-u)b] ™ (u) +(u) bl (1)
b;(u) =D,

This is the de Casteljau Algorithm




Bezier curve blending functions

Common Bernstein Polynomials

[

L]

[/}

3 3
By =(1-u) Curve has the form:
B =(1-u)’ B; =3(1-u)*(u)
Bé =1-u Bf =2(1—u)(u) Bg =3(1—uw)(u)*
B =u Bl =u’ B =u’
{l.ﬂix\'- IZI.EJ
| S |
r:u.4 . “i 9 i
[} \\1 : I:I.l-‘i
- a.l e u..]l : ,
Y] i LI 7 TR T A B— 5 YT R




Bezier blending functions

® Bezier-Bernstein polynomials B(u) = C(n,i)(1 — u)'u™!

® here C(n, 1) is the number of combinations of n items, taken 1 at a time
[
n!

Cnd) = o on




Bezier curve properties

Pass through first, last points
Tangent to initial, final segments of control polygon
Lie within convex hull of control polygon

Subdivide




Bezier curve tricks - 1

e Pull a curve
towards a point
by placing two
control points
on top of one
another




Bezier curve tricks - 11

® (lose a curve by
making endpoints

the same point
® clean join by making
segments line up

P Po = Ps P4




Subdivision for Bezier curves

Use De Casteljau (repeated
linear interpolation) to
identify points.

Points as marked in figure
give two control polygons,
for two Bezier curves,
which lie on top of the
original.

Repeated subdivision leads
to a polygon that lies very
close to the curve

Limit of subdivision
process 1s a curve

b123

b23

b3

bo

Fig. 4.5. Decomposition of a Bézier curve into two
C? continuous curve segments (cf. Fig. 4.4).




Equivalences

4 control point Bezier curve 1s a cubic curve
so 1s an Hermite curve
so we can transform from one to the other
Easy way:
® notice that 4-point Bezier curve

® interpolates endpoints

® has tangents 3(b_1-b_0), 3(b_3-b_2)
® this gives Hermite->Bezier, Bezier->Hermite
Hard way:

® do the linear algebra




4-point Bezier curve:

(1t 2 ]

Hermite curve:

(1t 2 4

_ o O O

Po
P1
P2
Ps3

Po
P1

Vi




Converting

® Say we know G_b 3,6, = B,G,

® what G_h will give the same curve?

Gn = B;, ' ByGy

® known G_h works similarly




Joining up curves

® Two kinds of join

® (Geometric continuity
® G70 - end points join up
® G’ - end points join up, tangents are parallel
® [dea: the curves *could* be parametrized with a CA0 (CA1)

parametrization, but currently are not

® Very important in modelling

® Parametric continuity, or continuity
® (CAO - the parameter functions of the curve are continuous
® (Al - the parameter functions are continuous, have continuous deriv
® (CA2-.. ......and continuous second deriv
® Very important in animation (the parametrization is usually time)




Simple cases

® Join up two point Hermite curves

endpoints the same, vectors not - G0

endpoints, vectors the same - G (easy)

endpoints the same, vectors same direction - G* 1 (harder)
Catmull Rom construction if we don’t know tangents

® Subdivide a Bezier curve

result is GMinfinity if we reparametrize each segment as we should
® but not necessarily if we move the control points!

® Join up Bezier curves

endpoints join - G0
endpoints join, end segments collinear - G 1




Catmull-Rom construction (partial)

Pos---: Py define tangent I = 5':]:]'1'+1 - Pf—l)




Cubic interpolating splines

® n+1 points P_1
® X 1(t)1s curve between P_1, P_i+1

Fig. 3.11. The spline segment X ;.




Interpolating Cubic splines, G/ 1

® join a series of Hermite curves with equal derivatives.

® But where are the derivative values to come from?
® Measurements

dX; 1
e Cardinal splines dt (O) ) (1 t) (Pz—l—l Pz—l)
® average points
® tis “tension”
® specify endpoint tangents
® or use difference between first two, last two points




Tension

o A&pk +1

& .pk+2

Pi-1

t<0
(Looser Curve)

R

t>0
(Tighter Curve)




Interpolating Cubic splines: CA2

® One parametrization for the whole curve
® divided up into intervals, called knots

a=lg<Hhi<thh< - <ty_1<in=0b

At; =t — ;.
® [n each segment, there is a cubic curve FOR THAT SEGMENT

Ai(t—t)° +Bi(t—t;)* + Ci(t — t;) + D;
® And we must make this lot CA2

by <t <tiqq




Continuity

® at interval endpoints, curves must be
® Continuous

Xi(ti) = Xi—1(t:)

® have continuous derivative

dX; dX;_1
tj) = ti
- (i) = —— (&)

® have continuous second derivative

d*X; d*X;_1
t;) = t;
dt? (t:) dt? (t:)




Curves

® Assume we KNOW the derivative at each point
® write derivatives with

X;(t;) =P; =D,

(1) = Xi(t) =P = C;

Xi(tiz1) = Pig1 = A, ALY + B;At? + C;AL; + Dy
Xi(tit1) = Pl = 3A;At; + 2B;At; + C,




X;(t)

Curves

- P, (2@_“)3 _glt=t)” +1) +

(At;)3 (At;)?
(t —t;)° (t —t;)?
Pii1 (—2 (A, +3 L ) +
, (=) (t—1t)7
s ( B 2 (A U7 ti)) -

; =t (G=tgf
ks ( (At;)2 (Ay) )




CA2 Continuity supplies derivatives

® Second derivative 1s continuous

X"i21(t) = X(t;)

e Differentiate curves, rearrange to get

AtiP/i_l = Z(Ati_l —F Ati)P/Z‘ = Ati_1P/i+1 —

Atz’_l Atz’
P,..,.—P; 3
At (Pt )+ At;

3 (Pz — Pi—l)

® This is a linear system in tridiagonal form
® can see as recurrence relation - we need two tangents to solve




CA2 cubic splines

® Recurrence relations
® d(n-1) equations in d(n+1) unknowns (d is dimension)
® Options:
® give P’_0, P’_1 (easiest, unnatural)
second derivatives vanish at each end (natural spline)
give slopes at the boundary
® vector from first to second, second last to last
parabola through first three, last three points
third derivative is the same at first, last knot




More general splines

® We would like to retain continuity, local control
® but drop interpolation

® Mechanism

® oect clever with blending functions

® continuity of curve=continuity of blending functions

® we will need to “switch” on or off pieces of function
® c.g. linear example

® This takes us to B-splines, which you know
® 5o we’ll move on to surface constructions




