
0 2 4 6 8 10 12 14

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Tensor product surfaces

Mean curvature

Gauss map

Mesh compression+storage

Gaussian curvature

Blending functions

Bezier surfaces

Implicit surfaces

B Spline surfaces

Control points

Interpolating curves

Parametric surfaces

Catmull clark subdivision

Parametric curves

B Spline Cur

Know it

0 2 4 6 8 10 12 14

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

B Spline Curves

Interpolating curves

Parametric curves

Catmull clark subdivision

B Spline surfaces

Parametric surfaces

Bezier surfaces

Control points

Mesh compression+storage

Implicit surfaces

Gaussian curvature

Mean curvature

Blending functions

Gauss map

Tensor product surfa

Huh?

Curves - quick revision,
emphasizing continuity

D.A. Forsyth, with slides from John Hart

Central issues in modelling

• Construct families of curves, surfaces and volumes that
• can represent common objects usefully;
• are easy to interact with; interaction includes:

• manual modelling;
• fitting to measurements;

• support geometric computations
• intersection
• collision

Main topics

• Simple curves
• Simple surfaces
• Continuity and splines
• Bezier surfaces and spline surfaces
• Volume models
• Meshes
• Animation

Parametric forms

• A parametric curve is
• a mapping of one parameter into

• 2D
• 3D

• Examples
• circle as (cos t, sin t)
• twisted cubic as (t, t*t, t*t*t)
• circle as (1-t^2, 2 t, 0)/(1+t^2)

• domain of the parametrization MATTERS
• (cos t, sin t), 0<=t<= pi is a semicircle

Curves - basic ideas

• Important cases on the plane
• Monge (or explicit)

• y(x)
• Examples:

• many lines, bits of circle, sines, etc
• Implicit curve

• F(x, y)=0
• Examples:

• all lines, circles, ellipses
• any explicit curve; any parametric algebraic curve; lots of others
• Important special case: F polynomial

• Parametric curve
• (x(s), y(s)) for s in some range
• Examples

• all lines, circles, ellipses
• Important special cases: x, y polynomials, rational

Parametric forms

• A parametric surface is
• a mapping of two parameters into 3D
• Examples:

• sphere as (cos s cos t, sin s cos t, sin t)
• Again, domain matters

• Very common forms
• Curve

• Surface

• Functions phi are known as “blending functions”

x(s, t) =
�

ij

vijφij(s, t)

x(s) =
�

i

viφi(s)

Parametric vs Implicit

• Some computations are easier in one form
• Implicit

• ray tracing
• Parametric

• meshing

• Implicit surfaces bound volumes
• “hold water”
• but there might be extra bits

• Parametric surfaces/curves often admit implicit form
• Control

• implicit: fundamentally global, rigid objects
• parametric: can have local control

Interpolation

• Construct a parametric curve that passes through
(interpolates) a set of points.

• Lagrange interpolate:
• give parameter values associated with each point
• use Lagrange polynomials (one at the relevant point, zero at all others) to

construct curve
• curve is:

piφ i

l() t()
i∈points
∑

Lagrange interpolate

• Construct a parametric curve that passes through
(interpolates) a set of points.

• Lagrange interpolate:
• give parameter values associated with each point
• use Lagrange polynomials (one at the relevant point, zero at all others) to

construct curve
• degree is (#pts-1)

• e.g. line through two points
• quadratic through three.

•

Lagrange polynomials

• Interpolate points at s=s_i, i=1..n
• Blending functions

• Can do this with a polynomial

φi(s) =

�
1 s = si
0 s = sk, k �= i

�
j=1..i−1,i..n(s− sj)�
j=1..i−1,i..n(sj − si)

Hermite interpolation

• Hermite interpolate
• give parameter values and derivatives associated with each point
• curve passes through given point and the given derivative at that parameter

value
• For two points (most important case) curve is:

• use Hermite polynomials to construct curve
• one at some parameter value and zero at others or
• derivative one at some parameter value, and zero at others

p0φ0(t) + p1φ1(t) + v0φ2(t) + v1φ3(t)

Hermite curves

• Natural matrix form:
• solve linear system to get curve coefficients

• Easily “pasted” together

Blending functions are cubic polynomials, so we write as:

This allows us to write the curve as:

Basis matrix Geometry matrix

p0φ0(t) + p1φ1(t) + v0φ2(t) + v1φ3(t)

�
φ0(t) φ1(t) φ2(t) φ3(t)

�
=

�
1 t t2 t3

�

a0 a1 a2 a3
b0 b1 b2 b3
c0 c1 c2 c3
d0 d1 d2 d3

�
1 t t2 t3

�

a0 a1 a2 a3
b0 b1 b2 b3
c0 c1 c2 c3
d0 d1 d2 d3

p0

p1

v0

v1

Hermite polynomials

�
φ0(t) φ1(t) φ2(t) φ3(t)

�
=

�
1 t t2 t3

�

a0 a1 a2 a3
b0 b1 b2 b3
c0 c1 c2 c3
d0 d1 d2 d3

d

dt

�
φ0(t) φ1(t) φ2(t) φ3(t)

�
=

�
0 1 2t 3t2

�

a0 a1 a2 a3
b0 b1 b2 b3
c0 c1 c2 c3
d0 d1 d2 d3

Constraints

These constraints give:

 Interpolate each endpoint
 Have correct derivatives at each endpoint

φ0(0) φ1(0) φ2(0) φ3(0)
φ0(1) φ1(1) φ2(1) φ3(1)
dφ0

dt (0)
dφ1

dt (0)
dφ2

dt (0)
dφ3

dt (0)
dφ0

dt (1)
dφ1

dt (1)
dφ2

dt (1)
dφ3

dt (1)

 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

We can write individual constraints like:

To get:

�
φ0(0) φ1(0) φ2(0) φ3(0)

�
=

�
1 0 02 03

�

a0 a1 a2 a3
b0 b1 b2 b3
c0 c1 c2 c3
d0 d1 d2 d3

1 0 0 0
1 1 1 1
0 1 0 0
0 1 2 3

a0 a1 a2 a3
b0 b1 b2 b3
c0 c1 c2 c3
d0 d1 d2 d3

=

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Hermite blending functions

Bezier curves

Bezier curves

Bezier curves

Bezier curves as a tableau

de Casteljau (formal version)

Bezier curve blending functions

n�

i=0

biB
n
i (u)

Curve has the form:

Bezier blending functions

• Bezier-Bernstein polynomials
• here C(n, i) is the number of combinations of n items, taken i at a time
•

Bn
i (u) = C(n, i)(1− u)iun−1

C(n, i) =
n!

(n− i)!i!

Bezier curve properties

• Pass through first, last points
• Tangent to initial, final segments of control polygon
• Lie within convex hull of control polygon
• Subdivide

Bezier curve tricks - I

• Pull a curve
towards a point
by placing two
control points
on top of one
another

Bezier curve tricks - II

• Close a curve by
making endpoints
the same point
• clean join by making

segments line up

Subdivision for Bezier curves

• Use De Casteljau (repeated
linear interpolation) to
identify points.
• Points as marked in figure

give two control polygons,
for two Bezier curves,
which lie on top of the
original.
• Repeated subdivision leads

to a polygon that lies very
close to the curve
• Limit of subdivision

process is a curve

Equivalences

• 4 control point Bezier curve is a cubic curve
• so is an Hermite curve
• so we can transform from one to the other
• Easy way:

• notice that 4-point Bezier curve
• interpolates endpoints
• has tangents 3(b_1-b_0), 3(b_3-b_2)
• this gives Hermite->Bezier, Bezier->Hermite

• Hard way:
• do the linear algebra

4-point Bezier curve:

Hermite curve:

�
1 t t2 t3

�

1 0 0 0
−3 3 0 0
3 −6 3 0
−1 3 −3 1

p0

p1

p2

p3

�
1 t t2 t3

�

1 0 0 0
0 0 1 0
−3 3 −2 −1
2 −2 1 1

p0

p1

v0

v1

�
1 t t2 t3

�
BbGb

�
1 t t2 t3

�
BhGh

• Say we know G_b
• what G_h will give the same curve?

• known G_h works similarly

Converting

BhGh = BbGb

Gh = B−1
h BbGb

Joining up curves

• Two kinds of join
• Geometric continuity

• G^0 - end points join up
• G^1 - end points join up, tangents are parallel
• Idea: the curves *could* be parametrized with a C^0 (C^1)

parametrization, but currently are not
• Very important in modelling

• Parametric continuity, or continuity
• C^0 - the parameter functions of the curve are continuous
• C^1 - the parameter functions are continuous, have continuous deriv
• C^2 - and continuous second deriv
• Very important in animation (the parametrization is usually time)

Simple cases

• Join up two point Hermite curves
• endpoints the same, vectors not - G^0
• endpoints, vectors the same - G^1 (easy)
• endpoints the same, vectors same direction - G^1 (harder)
• Catmull Rom construction if we don’t know tangents

• Subdivide a Bezier curve
• result is G^infinity if we reparametrize each segment as we should

• but not necessarily if we move the control points!

• Join up Bezier curves
• endpoints join - G^0
• endpoints join, end segments collinear - G^1

Catmull-Rom construction (partial)

Cubic interpolating splines

• n+1 points P_i
• X_i(t) is curve between P_i, P_i+1

Interpolating Cubic splines, G^1

• join a series of Hermite curves with equal derivatives.
• But where are the derivative values to come from?

• Measurements

• Cardinal splines
• average points
• t is “tension”
• specify endpoint tangents

• or use difference between first two, last two points

dXi

dt
(0) =

1

2
(1− t)(Pi+1 −Pi−1)

Tension

Interpolating Cubic splines: C^2

• One parametrization for the whole curve
• divided up into intervals, called knots

• In each segment, there is a cubic curve FOR THAT SEGMENT

• And we must make this lot C^2

ti ≤ t < ti+1

Ai(t− ti)
3 +Bi(t− ti)

2 +Ci(t− ti) +Di

• at interval endpoints, curves must be
• Continuous

• have continuous derivative

• have continuous second derivative

Continuity

Xi(ti) = Xi−1(ti)

d2Xi

dt2
(ti) =

d2Xi−1

dt2
(ti)

dXi

dt
(ti) =

dXi−1

dt
(ti)

Curves

• Assume we KNOW the derivative at each point
• write derivatives with ‘

Xi(ti) = Pi = Di

dXi

dt
(ti) = X�

i(ti) = P�
i = Ci

Xi(ti+1) = Pi+1 = Ai∆t3i +Bi∆t2i +Ci∆ti +Di

X�
i(ti+1) = P�

i+1 = 3Ai∆t2i + 2Bi∆ti +Ci

Curves

Xi(t) = Pi

�
2
(t− ti)3

(∆ti)3
− 3

(t− ti)2

(∆ti)2
+ 1

�
+

Pi+1

�
−2

(t− ti)3

(∆ti)3
+ 3

(t− ti)2

(∆ti)2

�
+

P�
i

�
(t− ti)3

(∆ti)2
− 2

(t− ti)2

(∆ti)
+ (t− ti)

�
+

P�
i+1

�
(t− ti)3

(∆ti)2
− (t− ti)2

(∆ti)

�

C^2 Continuity supplies derivatives

• Second derivative is continuous

• Differentiate curves, rearrange to get

• This is a linear system in tridiagonal form
• can see as recurrence relation - we need two tangents to solve

X��
i−1(ti) = Xi(ti)

∆tiP
�
i−1 + 2(∆ti−1 +∆ti)P

�
i +∆ti−1P

�
i+1 =

3
∆ti−1

∆ti
(Pi+1 −Pi) + 3

∆ti
∆ti−1

(Pi −Pi−1)

C^2 cubic splines

• Recurrence relations
• d(n-1) equations in d(n+1) unknowns (d is dimension)

• Options:
• give P’_0, P’_1 (easiest, unnatural)
• second derivatives vanish at each end (natural spline)
• give slopes at the boundary

• vector from first to second, second last to last
• parabola through first three, last three points
• third derivative is the same at first, last knot

More general splines

• We would like to retain continuity, local control
• but drop interpolation

• Mechanism
• get clever with blending functions
• continuity of curve=continuity of blending functions
• we will need to “switch” on or off pieces of function

• e.g. linear example

• This takes us to B-splines, which you know
• so we’ll move on to surface constructions

