Parsing with a Single Neuron:
Convolution Kernels for Natural Language Problems

Michael Collinst and Nigel Duffy}

tAT&T Labs-Research,
Florham Park,
New Jersey.
mcollins@research.att.com

{Department of Computer Science,
University of California at Santa Cruz.
nigeduff@cs.ucsc.edu

Abstract

This paper introduces new train-
ing criteria and algorithms for NLP
problems, based on the Support Vec-
tor Machine (SVM) approach to
classification problems. SVMs can
be applied efficiently to a feature
vector representation ¢ as long as
the inner product between feature
vectors can be computed efficiently.
We show how this allows SVMs to
be applied to representations that
would be intractable, or certainly
challenging, for other methods.

1 Introduction

Recently, methods such as Markov Random
Fields (MRFs) (Abney 1997; Della Pietra et
al. 1997; Johnson et al. 1999) and Boost-
ing (Abney et al. 1999; Collins 2000) have
been introduced to natural language prob-
lems. These methods have the advantage of
being highly flexible, in that they allow the
objects being modeled to be represented as
arbitrary feature vectors. The motivation is
that the freedom to use richer representations
will lead to improved performance on NLP
tasks: there is empirical evidence for this,
in improvements on WSJ treebank parsing
through additional features (Charniak 1999;
Collins 2000) or in the successful application

of MRFs to linguistically motivated represen-
tations such as unification grammars or LFG
parses (Abney 1997; Johnson et al. 1999).

Our aim in this paper is to introduce new
learning algorithms which take advantage of
rich, high dimensional representations of NLP
objects. (Cortes & Vapnik 1995) describe two
major problems when working with such rich
representations. The first is “technical”: how
can models be trained and applied efficiently
in high dimensional spaces? The second is
“conceptual”: which training criteria lead to
good generalization (i.e., avoid problems with
overfitting) in spite of the model having a
large number of parameters?

Support Vector Machines (SVMs) (Cortes
& Vapnik 1995; Burges 1998) have been pro-
posed as a classification method which takes
advantage of rich feature spaces, while avoid-
ing computational problems and problems of
overtraining. The use of kernels allows learn-
ing to be performed efficiently in high di-
mensional spaces; moreover theoretical re-
sults (Bartlett & Shawe—Taylor 1998) show
that large margin classifiers can generalize
well in large or even infinite-dimensional fea-
ture spaces. Unlike other approaches such as
neural networks, SVM training algorithms in-
volve the optimization of a loss function with
a unique minimum, avoiding problems of lo-
cal minima. Empirically, SVMs have been

shown to be highly competitive on tasks such
as digit recognition (Cortes & Vapnik 1995)
or text classification (Joachims 1998). SVMs
construct a separating hyperplane, or a single
“neuron”, in the feature space (hence the title
of this paper).

The first part of this paper introduces
new training criteria and algorithms for NLP
problems, based on SVMs. The SVM tech-
nique bears some similarity to boosting and
MRFs, but there is a crucial difference. All of
these methods represent a given NLP object
x (e.g., a parse tree) as a feature vector ¢(x).
SVMs can be applied to a feature vector rep-
resentation ¢ as long as the inner product!
(¢(x),#(y)) between feature vectors can be
computed efficiently — irrespective of the di-
mensionality of the feature vectors ¢. This
property has been used to great effect in clas-
sification tasks, allowing models to be trained
and applied in feature spaces which are very
high dimensional, but where inner products
can nevertheless be computed efficiently.

Most previous work on SVMs has focused
on tasks where the objects to be classified
are vectors in Euclidean space, rather than
the discrete objects commonly found in NLP
problems. The second part of this paper de-
scribes various feature vector representations
for structures such as trees, dependency struc-
tures and paired sentences/tag sequences. In
each case we show that inner products be-
tween feature vectors can be computed in
polynomial time, in spite of exponentially
sized representations (such as a feature vector
tracking all sub-trees of a parse tree). The
inner products are convolution kernels over
discrete structures, as proposed by (Haussler
1999). These representations could in princi-
ple be used in other learning frameworks such
as boosting and MRF methods, but in prac-
tice would be computationally prohibitive due
to the exponential size of feature vectors®. In
section 4 we give some initial experiments as
“proof of concept” of the approach.

'We use (x,y) to denote the inner product (dot
product x - y) between vectors x and y.

2Although (Bod 1998) has previously applied the

“all sub-trees” representation — see section 5.1 for dis-
cussion.

1.1 Linear Models for NLP Problems

This section describes the problems we are
considering in this paper. We will use the
parsing problem throughout as an example,
although the framework is also relevant to
tagging tasks such as part-of-speech tagging,
named entity tagging or to problems such as
speech recognition. The set-up is as follows:

e Training data is a set of example in-
put/output pairs; in parsing the examples are
pairs {s;,t;} where each s; is a sentence and
each t; is the correct tree for that sentence.

e We assume some way of enumerating a set
of candidates for a particular sentence. We
use X;; to denote the j’th candidate for the
i’th sentence in training data, and C(s;) =
{xi1,Xi2 ...} to denote the set of candidates
for s;. A context-free grammar taken straight
from the training examples themselves is one
way of enumerating candidates. Another
choice is to use a hand-crafted grammar (such
as the LFG grammar in (Johnson et al. 1999))
or to take the n most probable parses from an
existing parser (as in (Collins 2000)).

e Without loss of generality we take x;1 to
be the correct parse for s; (i.e., x;1 = t;).

e Each candidate x;; is represented by a
feature vector ¢(x;;) in the space R". The
parameters of the model are also a vector w €
R™. We then define the “ranking score” of
each example as

F(X,‘j) = (w, ¢(XZJ)>

This score is interpreted as an indication of
the plausibility of the candidate; in particular,
the output of the model on a training or test
example s is
arguax (@, ¢(x)
x€C(s)

The representation is taken to be fixed: train-
ing the model involves setting the value of the
parameter vector w.

This framework is general enough to in-
clude several approaches. A closely related
approach to the one in this paper is the use
of Markov Random Fields (MRFs) by (John-
son et al. 1999). An LFG grammar is used to
enumerate a set of candidate features for each

sentence. A conditional probability is defined
for each of the candidates as

e{w,8(xi5))
Yec(s:) e(w,0(2))

and the output of the model on a training or
test example s is

P(xj)s:) =

argmax P(x|s) = argmax (w, ¢(x
gmax P(x|s) = argmax (w,¢(x))

The parameters are set to maximize the fol-
lowing objective function, which is a combina-
tion of the log-likelihood of the training data
and a Gaussian prior on the parameter values:

> log P(xisi) — ||w|[*
7

This function combines an incentive to raise
the probability of each correct parse close to
1 (and hence to push F(x;) >> F(x;) for
all 4,7 > 2) with a penalty for large param-
eter values. As we will see, this bears some
similarities to the training criterion for SVMs.

2 Support Vector Machines
2.1 Maximum Margin Hyperplanes

We now discuss the SVM training criterion
for the problem type described in the previous
section (the method is derived by a transfor-
mation from ranking problems to a margin-
based classification problem as described in
(Freund et al. 1998)). The question is
how to train the parameters w of a linear
model. First, note that a ranking function
that correctly ranked the correct parse above
all competing candidates would satisfy the
conditions F(x;1) > F(x;j) or equivalently
(w, p(xi1) — ¢(x45)) > 0 for all 4, j > 2.

A central concept in Support Vector Ma-
chines is the margin of a hyperplane on a given
training set. The margin of a hyperplane is
the minimal distance of the hyperplane to any
of the training data points. The distance from
the hyperplane @ to a point (¢(x;1) — ¢(xi5))
is (w, p(xi1) — ¢(x45))/|%||. The margin of a
hyperplane w is therefore

(w, p(xi1) — ¢(xi5))

The SVM training criterion is to choose the
hyperplane which correctly classifies all train-
ing examples, and has maximum margin.
This is equivalent (Cortes & Vapnik 1995)
to defining the optimal hyperplane w* as the
w which minimizes ||%||? subject to the con-
straints

(w, p(xi1) — d(xi5)) > 1

for all 4, 7 > 2. Search for the optimal pa-
rameter values w* is a quadratic programming
problem, see (Platt 1998) for a discussion of
optimization algorithms for SVMs.

In some cases it may not be possible (or
desirable) to classify all points in training
data correctly. For this reason, slack vari-
ables (Cortes & Vapnik 1995) ¢; ; can be intro-
duced, the modified objective function being
to minimize

— 112

l@l* +C) e (1)

(i,3)
(we use 3 (; ;) as shorthand for 3°; 3777) sub-

ject to the constraints that
(W, p(xi1) — d(xi5)) > 1 — € (2)
for all 2, j > 2. C is a constant that can be
optimized through cross-validation. On some
(usually most) training examples, €; ; will be
zero and the margin will be greater than 1.
On others, ¢; ; will be greater than zero: when
€;,; is greater than 1 the 4, j'th training exam-

ple is incorrectly classified.

2.2 Representation using Kernels

A key point (Kimeldorf & Wahba 1971;
Cortes & Vapnik 1995) is that the maximum
margin hyperplane can always be expressed
as a linear combination of the training exam-
ples themselves (recall that both w and ¢(x)
are in the same space R"):

W= oy (p(xi) — d(xij)) (3)
(4,9)

The values o; ; are a set of “dual” parame-
ters. It follows that the score of a candidate
can be calculated using the dual parameters,
and inner products between vectors, without
having to explicitly deal with feature or pa-
rameter vectors in the space R™:

(w*,x) =

2o1) g ((P(xi), ¢(x)) — (B(x45), (%))
Moreover, it turns out that many quadratic
programming algorithms (e.g., see (Platt
1998)) can be applied using inner products
between training examples alone, and without
explicit representation in the feature space
R™. Thus if the inner product between exam-
ples can be computed efficiently, SVMs can
be trained and applied to the representation
¢. This is important because for many repre-
sentations (¢(x), #(y)) can be computed effi-
ciently in spite of ¢(x) being huge or even hav-
ing infinite dimensions. This has been used to
great effect in the classification literature to
learn hyperplanes in spaces that would be in-
tractable for other methods. See the papers
in (Scholkopf et al. 1998) for many examples.

Figure 1 gives training and decoding meth-
ods for the SVM approach. The algorithms
require a training set, an algorithm for enu-
merating candidate parses for each sentence,
and an algorithm (kernel K) for computing
K(x,y) = (¢(x), #(y)) for some feature vec-
tor representation ¢ of examples. Under these
assumptions the SVM can be trained and ap-
plied in the space defined by ¢, with compu-
tational complexity depending on the cost of
computing K (x,y) rather than the size of the
feature space.

3 Kernels for NLP Problems
3.1 A Kernel for Trees

We will consider learning algorithms that
represent each tree x as a vector ¢(z) =
{h1(z), ho(z),...}. Each element hs(z) is a
“feature” or function of the tree. The repre-
sentation we will consider is a feature vector
that counts all sub-trees seen in training data
— this representation has previously been used
by (Bod 1998). A sub-tree is a larger tree
fragment that is formed by one or more ap-
plications of the rules in the grammar. See
figure 2 for examples. This is a very high di-
mensional representation, a given tree having
an exponential number of sub-trees.

We now show that a kernel can be used
with this representation. We assume that

The Training Algorithm
Inputs: Training examples {s;,t;} for ¢+ = 1...m.
An algorithm that enumerates a candidate set C(s;) =
{xi,1-..Xqn; } for each s;. An algorithm (kernel) that
computes the inner product (¢(x), ¢(y)) between fea-
ture vectors ¢(x) and ¢(y) representing trees x and
y. A constant C.
Output: Dual parameters a;,; for ¢ = 1...m,j =
2...n; which through Eq. 3 define the maximum mar-
gin hyperplane w* in the feature space defined by ¢.
Algorithm:
e For each training example s; enumerate candidates
C(s;). W.Lg. take x;,1 to be t;.
e Use a quadratic programming algorithm for SVMs
(e.g., see (Platt 1998)) to find the dual parameters
a;,; which define the hyperplane that minimizes Eq. 1
subject to the constraints Eq. 2.

The Decoding Algorithm

Input: A set of candidates C(s) for an input sen-
tence s. A set of examples {x;1...Xin;} together
with dual parameter values «; ;. An algorithm (ker-
nel) that computes the inner product {(¢(x), ¢(y)) be-
tween feature vectors.

Output: The highest scoring candidate under the hy-
perplane defined by the a;,;’s.

Algorithm: Return

arg max Zam‘ ({@(xi,1), d(x)) — (B(xi,5), #(x)))

Figure 1: Training and Decoding Algorithms
for SVMs for NLP Problems.

each of the m unique subtrees in training
data is indexed by an integer between 1
and m; we define hy(T) to be the number
of times the s’th sub-tree in training data
appears in 7. The inner product between
two trees under the representation ¢(7") =
{p1(T), ho(T) ... hm(T)} is

K(T1,Ty) = ($(T1), p(T2)) = Y hs(T1)hs(T2)

Computing this inner product directly is in-
tractable: the sum is over an exponential
number of sub-trees. To compute K effi-
ciently we first define the set of nodes in trees
Ty and 715 as N; and Ny respectively. We
define the indicator function I;(n) to be 1 if
sub-tree s is seen rooted at node n, 0 other-
wise. Hence

hs(Th) = Z Ii(n1) hs(T2) = Z Is(n2)

ni1€EN na €Ny
(4)

The first step to efficient computation of the
inner product is the property

a) S

TN

NP VP
|
N v NP
| | N
John gaw D N
| |
the man
b) NP NP D
P |
D N D N the
| |
the man
N NP NP
| N N
man D N D N
| |
the man

Figure 2: a) An example parse tree. b) The
sub-trees of the NP covering the man. The
tree in (a) contains all of these subtrees (some
multiple times), as well as many others.

(¢(T1), ¢(T2)) = 35 hs(T1)hs(T2)
= aneNl aneNQ s Is(n1)I5(n2)

This can be shown through application of the
identities in (4). If we define Cm(n1,n2) as

Cm(ni,ng) = Z Is(n1)I5(n2)

it follows that

(¢(T1),#(T2)) = Z Z Cm(ny,ng)

n1E€N1 n2€N2
(5)

Cm(n1,n9) is the number of common sub-
trees rooted at both nm; and ne. It can be
computed through a recursive definition:

e If productions at n; and ny are different
then Cm(ni,n2) = 0.

e Else if productions at nj/ng are the
same, and both ny/ng are pre-terminals, then
Cm(ni,ne) = 1.

e Else if productions at n; /ny are the same,
and both n1/ny are not pre-terminals.

ne(ny)
Cm(ni,mg) = H (1+Cm(ch(n1,1), ch(ne,i)))
i=1
In this last definition, nc(ni) is the number
of non-terminals directly below 71 in the tree;

a) .
lroot
saw
b
sbj obj PP
man woman With
dt¢ dt pp-obj
the the telescope
dt
the
Saw *
<bj lmt
man . saw
sbj pp
man with
‘pp—cbj
telescope
dt
the

Figure 3: a) A dependency graph. An arrow
signifies a dependency from a head-word to
a modifier. The arrows are labeled with the
grammatical relationship involved. b) Two
sub-graphs of the dependency graph.

due to the productions at n; and ng being the
same, we have nc(ni) = nc(ng). ch(ni,i) is
the 7’th child-node of n;.

The last definition follows because a com-
mon subtree for ny and ny can be formed
by taking the production at ni/nga, together
with a choice at each child of simply taking
the non-terminal at that child, or any one of
the common sub-trees at that child. Thus
there are (1 4+ Cm(ch(n1,1),ch(ng,1))) possi-
ble choices at the 7’th child.

From equation (5), and the recursive def-
inition of Cm(n1,n2), (¢(11), $(1T2)) can be
calculated in O(|N1||N2|) time. For our appli-
cation this is a pessimistic estimate of the run-
time: a more useful characterization is that it
runs in linear time in the number of members
(n1,n92) € N1 X No such that the productions
at n1 and ny are the same. In our data we
have found a typically linear number of nodes
with identical productions, so that running
time is close to linear in the size of the trees.

3.2 A Kernel for Dependency
Structures

This section describes a kernel for dependency
structures. Figure 3(a) shows an example de-

pendency structure. Each node in the tree
is a word in the underlying sentence. Depen-
dency relationships between pairs of words are
shown as arrows from the head to its modi-
fier; the relations are marked with labels such
as “sbj” or “obj”. At the root of the tree is
a special start node, labeled “*”. We assume
that each head has at most one modifier with
each possible relation.

We represent the graph as a set of nodes
{wi,...,w,}. The root node is w; the
other nodes are ordered arbitrarily. For
each node w, word(w) is the word at
the node. children(w) is used to denote
the set of (relation,node) pairs which
are direct modifiers of w. For example, the
graph in figure 3(a) would have the properties

word(wy) = “*7

children(w) = {(root wo) }

word(wy) =

ch’ildTen(wg) {(sb],wg) (0bj,wa), (pp, ws)}
word(ws) =

A feature of a dependency graph is a con-
nected sub-graph with at least two words.
Figure 3(b) shows two example features. We
will represent a dependency graph d as a vec-
tor of counts ¢(d) = {h1(d), ho(d),..., hp(d)}
where each hs(d) is the number of times a
particular feature is seen within d. In a sim-
ilar way to the tree kernel, the vector tracks
all possible subgraphs. By very similar argu-
ments to those in section 3.1, the inner prod-
uct between two vectors can be calculated as

K(dy,dg)=)

n1€N1,n2€N2

Cm(ni,ng)

where N1 and Ny are the sets of nodes in d;
and dy respectively, and Cm(ny,ng) is the
number of common subgraphs rooted at n
and ng. The definition for Cm(ny,n9) is also
similar. First we define sim(n1,n2) as the set
of common dependencies of ny1 and ns:

sim(ni,ng) =
{(z,y) | (Relation,z) € children(n,),
(Relation,y) € children(ns),
word(z) = word(y)}

We can calculate Cm as follows:

o If word(ni) # word(nsa) or children(ni) = 0
or children(nz) = then Cm(n,n2) =0
e Else
Cm(ni,ng) =
H(m,y)Esim(nl,ng)(Cm(xa y) + 2) -1

The last part of the definition follows because
a subtree rooted at n; and no can be formed
by making 1 of (Cm(z,y) + 2) at choices at
each shared node (z,y): either to pick 1 of the
Cm(z,y) sub-trees common to nodes z and ¥,
or to just pick the single node at z/y, or to ex-
clude the node altogether. This method over-
counts by including the sub-tree formed by
excluding all shared nodes, thereby forming a
node which is n1/n9 alone: for this reason 1
is subtracted from the product.

3.3 A Kernel for Paired Sequences

We next describe a kernel for paired se-
quences, such as a correspondance between
a sentence and its sequence of part-of-speech
tags. Each tag is referred to as a “state”,
and each state underlies (or generates) a sin-
gle word. An example of a paired sequence
is {* a/A b/C j/B d/E d4/D j/H *}, where
states are in capital letters, “words” are in
lower case. There are distinguished start and
end states, labeled “*” which do not generate
a word. For each node w, label(w) is the word
at the node. We define next(w) to be the node
in the sequence after w, and word(w) to be
the word generated by the state.

A sub-structure of a paired sequence con-
sists of a sub-sequence of states, where
each state may or may not have the word
that it generated below it. In the usual
way we represent an object p by a vector
¢(p) = {h1(p), h2(p), ...} where hy(p) is the
number of times the s’th sub-sequence is
seen in p. The kernel is (¢(p1), ds(p2)) =
Y onieN: maen, Cm(n1,n2) where Ni, Np are
the sets of states in pi,po respectively, and
Cm(ni,n2) is the number of common sub-
sequences beginning at nodes n1,n9 in p1, po.
There is again a recursive definition of C'm:
o If label(n1) # label(nsz) then Cm(nq,ng) =0
e Else if word(ni) # word(ns)

Cm(ni,n2) = Cm(next(ny), next(nsz))

e Else
Cm(ni,ng) =
14+ 2 x Cm(next(n1), next(ns))

3.4 Downweighting Larger Structures

In practice, the kernels described in previous
sections may weight larger substructures too
highly. As evidence for this, we have found in
experiments on WSJ treebank trees that the
tree kernel between an example and itself is
typically of order 10® while the average kernel
value between different trees is of order 102.
In this section we describe a modification to
the tree kernel that addresses this problem;
similar solutions can be applied to the depen-
dency or paired-sequence kernels.

The reason that the tree kernel is so peaked
is that there is an exponential blow-up in the
number of sub-trees with their depth. The
feature vector can be modified to downweight
larger sub-trees: the new representation is

hs(Tl) :)\size(s) Z Is(nl)

ni1€EN1

where 0 < A < 1 is a weighting parameter,
and size(s) is the number of rules within the
sub-tree s. Thus components of ¢ which cor-
respond to larger sub-trees are given lower
weight. The inner product between vectors
of this form can be computed in the way de-
scribed in section 3.1, with the last two defi-
nitions for C'm being altered as follows:

o If productions at n1/ngy are the same, and
n1/ng are pre-terminals, Cm(n1,ng) = A2

e Else if productions at n1 /no are the same,
and both ni/ny are not pre-terminals.

Cm(ni,mg) =
XTI (14 Cmi(ch(ng,), ch(ng, 1))

More generally, a different parameter A(z)
could be associated with each context-free
rule z, by replacing A with A(rule —at(n1)) in
the above definitions for C'm. This would re-
sult in the components (sub-trees) of ¢ being
weighted by the product of A\’s corresponding
to the rules they contain. One choice would
be to use the maximum likelihood estimate of
a PCFG to define these parameters (A(a —

‘ ‘ Perceptron ‘ PCFG ‘ Random ‘ Best ‘

P 0.75 0.72 0.59 0.91
R 0.74 0.67 0.60 0.88

Table 1: Results on the ATIS Corpus. P =
labeled precision, R=labeled recall.

B) = Count(a — B)/Count(c)). This would
give larger weight to subtrees which are esti-
mated to be more frequent by the PCFG.

4 Experiments

As a proof of concept we applied the tree ker-
nels to the Penn treebank ATIS corpus (Mar-
cus et al. 1993). We divided the corpus into
a training set of 879 sentences, and a test set
of 302 sentences. A PCFG was trained on
the training set, and a beam search was used
to give a set of parses, with PCFG probabil-
ities, for each of the training and test sen-
tences. The experiments were performed us-
ing a variant of the voted perceptron algo-
rithm (Freund & Schapire 1999). The voted
perceptron is a relative of the SVM which
can be used with kernels in the same way
and is somewhat more computationally effi-
cient. The voted perceptron examines one ex-
ample at a time and evaluates its prediction
sgn((w, ¢(xi1) — ¢(x45))). If this prediction
is incorrect then the example ¢(x;1) — ¢(xi;)
is added to the current parameter vector w.
In these experiments we ran the perceptron
through the data only once, we used subtrees
of depth at most 2 and trained on at most
20 candidate trees for each sentence. Dur-
ing testing the algorithm had to choose the
best parse tree from the top 100 candidates
yielded by the PCFG, for each of 302 sen-
tences. We compared the precision and recall
of the perceptron using our tree kernel to the
precision and recall of the highest probabil-
ity parse from the PCFG, a randomly chosen
parse from the candidates and the best parse
from the candidates. The results are given
in Table 1. Clearly, these results demonstrate
that the use of linear models with carefully de-
signed kernels is a promising approach. Con-
siderable work remains to be done to extract

their full potential, however.

5 Discussion

5.1 Previous Work

There is much previous work on the use of ker-
nels when examples are vectors in some space
R™. However, the space R" is quite differ-
ent from the discrete objects described in this
paper, which motivated our work on new ker-
nels. Kernels for discrete, recursive structures
were addressed in a general way by (Haussler
1999) when he defined “Convolution Kernels”
which involve a recursive calculation over the
“parts” of a discrete structure. (Lodhi et al.
2001) describe convolution kernels for strings,
the application being text categorization.

The parse tree representation in section 3.1
has been used in previous work by (Bod
1998). There are several key differences be-
tween his approach and ours though. The pa-
rameter estimation criterion in (Bod 1998) is
quite different; the model has a different form
(the score for a parse can not be expressed as
an inner product between vectors). The score
for a parse in the model of (Bod 1998) re-
quires explicitly summing over all sub-trees of
that tree; in practice Monte Carlo techniques
are required to approximate this score, rather
than calculating the scores exactly.

5.2 Other Learning Algorithms

There are methods other than Support Vec-
tor Machines that can be used with kernels
to learn hyperplanes. The perceptron algo-
rithm, which is guaranteed to find a sepa-
rating hyperplane if it exists, was the origi-
nal algorithm used with kernels (Aizerman et
al. 1964). The voted perceptron (Freund &
Schapire 1999) has been shown to be compet-
itive with SVM methods, while being com-
putationally less intensive. (Singer 2000) de-
scribes the use of Leveraged Vector Machines.

6 Conclusions

We have shown how Support Vector Machines
can be applied to natural language problems,
allowing computationally efficient learning in
high dimensional feature spaces. In future we

plan to do more detailed experiments, apply-
ing the methods to problems such as parsing
or named entity recognition.

References

Abney, S. (1997). Stochastic attribute-value gram-
mars. Computational Linguistics, 23, 597-618.

Abney, S., Schapire, R., & Singer, Y. (1999). Boosting
Applied to Tagging and PP Attachment. In Pro-
ceedings of the Joint SIGDAT Conference on Em-
pirical Methods in Natural Language Processing and
Very Large Corpora.

Aizerman, M., Braverman, E., & Rozonoer, L. (1964).
Theoretical Foundations of the Potential Function
Method in Pattern Recognition Learning. In Au-
tomation and Remote Control, 25:821-837.

Bartlett, P. and Shawe-Taylor, J. (1998). Generaliza-
tion Performance of Support Vector Machines and
Other Pattern Classifiers. In (Scholkopf et al. 1998).

Bod, R. (1998). Beyond Grammar: An Ezperience-
Based Theory of Language. CSLI Publica-
tions/Cambridge University Press.

Burges, C. (1998). A Tutorial on Support Vector Ma-
chines for Pattern Recognition. Data Mining and
Knowledge Discovery, 2(2):1-47.

Charniak, E. (1999). A mazimum-entropy-inspired
parser (Technical Report CS99-12). Department of
Computer Science, Brown University, RI.

Collins, M. (2000). Discriminative Reranking for Nat-
ural Language Parsing. Proceedings of the Seven-

teenth International Conference on Machine Learn-
ing (ICML 2000).

Cortes, C. & Vapnik, V. (1995). Support—Vector Net-
works. In Machine Learning, 20(3):273-297.

Della Pietra, S., Della Pietra, V., & Lafferty, J. (1997).
Inducing features of random fields. IEEE Trans-
actions on Pattern Analysis and Machine Intelli-
gence, 19, 380-393.

Freund, Y. & Schapire, R. (1999). Large Margin Clas-
sification using the Perceptron Algorithm. In Ma-
chine Learning, 37(3):277-296.

Freund, Y., Iyer, R.,Schapire, R.E., & Singer, Y.
(1998). An efficient boosting algorithm for com-
bining preferences. In Machine Learning: Proceed-
ings of the Fifteenth International Conference. San
Francisco: Morgan Kaufmann.

Haussler, D. (1999). Convolution Kernels on Discrete
Structures. Technical report, University of Santa
Cruz.

Joachims, T. (1998). Text Categorization with Sup-
port Vector Machines. In Proceedings of the Euro-
pean Conference on Machine Learning (ECML).

Johnson, M., Geman, S., Canon, S., Chi, S., & Riezler,
S. (1999). Estimators for stochastic ‘unification-
based” grammars. In Proceedings of the 37th An-
nual Meeting of the Association for Computational
Linguaistics.

Kimeldorf, G., & Wahba, G. (1971). Some Results on
Tchebycheffian Spline Functions. Journal of Math-
ematics Analysis and Applications, 33(1):82-95.

Lodhi, H., Christianini, N., Shawe-Taylor, J., &
Watkins, C. (2001). Text Classification using String
Kernels. To appear in Advances in Neural Informa-
tion Processing Systems 13, MIT Press.

Marcus, M., Santorini, B., & Marcinkiewicz, M.
(1993). Building a large annotated corpus of en-
glish: The Penn treebank. Computational Linguis-
tics, 19, 313-330.

Platt, J. (1998). Fast Training of Support Vector Ma-
chines using Sequential Minimal Optimization. In
(Scholkopf et al. 1998).

Scholkopf, B., Burges, C., & Smola, A. (eds.). (1998).
Advances in Kernel Methods — Support Vector
Learning, MIT Press.

Singer, Y. (2000). Leveraged Vector Machines. In
Solla, S.A., Leen, T.K., & Muller, K.R., editors,
Advances in Neural Information Processing Sys-
tems 12, pages 610-616, MIT Press.

