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Abstract

One significant challenge in the construction of visual
detection systems is the acquisition of sufficient labeled
data. This paper describes a new technique for training
visual detectors which requires only a small quantity of la-
beled data, and then uses unlabeled data to improve perfor-
mance over time. Unsupervised improvement is based on
the co-training framework of Blum and Mitchell, in which
two disparate classifiers are trained simultaneously. Unla-
beled examples which are confidently labeled by one clas-
sifier are added, with labels, to the training set of the other
classifier. Experiments are presented on the realistic task of
automobile detection in roadway surveillance video. In this
application, co-training reduces the false positive rate by a
factor of 2 to 11 from the classifier trained with labeled data
alone.

1 Introduction
There are now a number of practical solutions for the

problem of visual detection [14, 11, 9, 13, 17]. While the
primary area of application is face detection, it has been
shown that these approaches are general and can be applied
to other objects such as pedestrians, face profiles, and au-
tomobiles [9, 13]. In the context of this success, it might
be argued that the construction of new types of detectors is
a straightforward process: select a detection technique, ac-
quire a large training set, and train the detector. Of course
many detection tasks are simply beyond the capabilities of
current detection techniques. Yet even for the “solvable”
tasks, the cost of data acquisition may be large enough to
preclude a practical deployment.

We call this scenario “High Initial Expense”. It arises
because all the above techniques require a very large set of
labeled training data. Typically several thousand scaled and
aligned positive examples are required. The cost of compil-
ing this positive data is high, since each example must be
located by hand. In addition as many as ��� negative exam-

ples are also required, usually a collection of several thou-
sand images which do not contain positive instances. This
large number of negative examples ensures that the false
positive rate is very low, perhaps ����.

Another related scenario is that of “Narrow Applica-
tion”. Using the example of face detection because of its
long history, achieving detection rates higher than 95% on
realistic images has proven very difficult. Part of the dif-
ficulty clearly lies in the complexity of the appearance of
faces. But another part of the difficulty arises because of
the very wide variety of background images which are en-
countered, including indoor locations such as offices, living
rooms, elevator lobbies, and conference rooms, and outdoor
locations such as fields, mountains, and trees. There are
many foreseeable applications of face detection which in-
volve a fixed camera, or a camera with a limited area of
application. For these cameras the range of background im-
ages is very limited. A face detector which has been trained
for “broad application” will expend representational capac-
ity to reject false positives which will never be encountered.
Conversely, a face detector which is trained for “narrow ap-
plication” in a particular location can achieve much lower
false positives rates and higher detection rates. The cost of
this approach, is that one must acquire a different training
set, and train a different classifier, for each location.

The difficulty shared in both scenarios is the high cost
of acquiring a large set of labeled examples. Of course,
gathering a large number of unlabeled examples in most
applications has much lower cost, as it requires no human
intervention. The question is whether unlabeled examples
are of any use when training a visual detector.

In this paper co-training is used to automatically im-
prove visual detector for cars in traffic surveillance video
[1]. Initially a small quantity of hand labeled data is used
to train a pair of car detectors (using the approach of Vi-
ola and Jones[16]). Co-training then generates additional
labeled training example from a large number of unlabeled
images. Experiments demonstrate that co-training can gen-
erate an accurate car detector using a significantly smaller
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number of labels than would be required for the same algo-
rithm when co-training is not used.

2 Learning from Unlabeled Data
The use of both labeled and unlabeled data for practical

problems was popularized by Nigam et. al. in the area of
information retrieval [8]. They use EM to infer the miss-
ing labels of the unlabeled data much in the same way that
EM is typically used to infer missing cluster labels. During
learning, EM assigns strong labels to those unlabeled exam-
ples which are unambiguous. These new examples sharpen
the class density estimates, which then allows for the label-
ing of additional unlabeled examples.

The basic assumption underlying the success of EM for
this task (as well as the more recent techniques [15, 7, 6])
is that the distribution of unlabeled data respects the class
boundaries of the labeled data. Technical details vary, but
the bottom line is that the density of unlabeled example
must be low near the classification boundary. This makes
good sense for two class problems where the classes are
Gaussian (and in a significant number of other practical sit-
uations). This assumption often does not hold for detection
tasks, where the density of the detected class is lost amid
the thousands of other classes.

Support Vector Machines [3] and Adaboost [4, 5] are
purely discriminative techniques for pattern recognition
which have had a significant impact on applications. Nei-
ther method attempts to estimate the density of the classes.
Instead, both methods use the notion of “classification mar-
gin” and attempt to maximize the margin of all (or most)
training examples. The result is improved generalization
performance from fewer examples.

Applied to discriminative classifiers, the direct analog of
Nigam et al’s approach is to assign labels to those unlabeled
examples which have a large margin (and are therefore un-
ambiguous). This is not an effective technique, since la-
beled examples with large margin are not informative and
have little effect on the final classifier. For discrimina-
tive classifiers one must find unlabeled examples which can
be unambiguously labeled AND have a negative (or small)
margin.

Co-training was proposed by Blum and Mitchell[1] as a
method for training a pair of learning algorithms. The basic
assumption is that the two learning algorithms use two dif-
ferent “views” of the data. For example, it is not hard to be-
lieve that one can discriminate between apples and bananas
using either features of their shape or features of their color.
Since the margins assigned by the classifiers are not directly
related, there may exist a set of examples with high margin
based on shape and small or negative margin based on color.
The key property is that some examples which would have
been confidently labeled using one classifier would be mis-
classified by the other classifier. The classifiers can there-

fore train each other, by providing additional informative
labeled examples. See Figure 2 for experimental evidence
that such informative examples do exist.

Given two “views” of the data, one might be tempted to
avoid training altogether and simply combine the views in
order to improve the classification performance. Why then
does co-training operate on the views separately, since it re-
duces classification performance? Co-training is a training
process not a classification process. After co-training the
final classifiers, which are trained on labeled and unlabeled
data, are significantly improved. These improved classifiers
are easily combined in order to maximize classification per-
formance.

In fact, Blum and Mitchell prove under a set of formal as-
sumptions, that co-training finds a very accurate rule from
a very small quantity of labeled data. This error rate is far
smaller than what would be achieved by simply combin-
ing the initial classifiers. The required assumptions include:
a reasonable learning algorithm, an underlying distribution
which satisfies “conditional independence”, and an initial
weak classification rule. The main drawback of their theo-
rem is the assumption of conditional independence, which
requires the two feature sets be statistically independent. In
most real world cases, this assumption is not likely to hold.

Nevertheless, co-training based methods for real world
problems have been developed and used successfully
by several groups, especially in the context of text
processing[2, 10]. In general, the approach used was to
add a new term to the training cost function penalizes the
number of disagreements that the two classifiers have on
the unlabeled examples.

While this seems like a reasonable approach, it overlooks
one important aspect of the co-training idea, which is that
each learner labels only those unlabeled examples on which
it can make a confident prediction. In this paper we sug-
gest a different co-training algorithm, which is based on the
known relationship between prediction confidence and pre-
diction margins[12].

2.1 Co-training Using Confidence Rated Predictions

While the general notion of co-training was defined by
Blum and Mitchell, there are many potential algorithmic
instantiations. We propose a new algorithm for co-training
which is explicitly applicable to margin based classifiers.
Given two classifiers trained on a small data set, estimate
margin thresholds above which (or below which) all train-
ing examples are correctly labeled. Thresholds can be es-
timated from the training set, or a validation set. Using
these thresholds assign labels to unlabeled examples, and
then add these examples to the training set and re-train the
classifier. New thresholds are then estimated. This process
can be repeated many times.

In the context of Adaboost we can analyze the co-
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training process in the following way. Let us denote the out-
puts from the weak classifiers by the vector �� � ��������

and the weights associated with these classifiers by �� �
��������,

��
��� ��� � �. The large margins assumption is

that there is some real number � � � such that the probabil-
ity that �� � �� � � is significant and the conditional probabil-
ity that �� corresponds to a detection given that �� � �� � � is
close to one.

Can we estimate this conditional probability reliably
from our training set? On its face, there seems to be no
reason to believe that this is possible. After all, the weights
�� depend on the training set and were chosen to maximize
the margins of the training examples. However, Schapire et
al [12] have shown, both experimentally and theoretically,
that large margins on the training set imply correct classi-
fication on test data even when the dimensionality � is ex-
tremely high. Specifically, Theorem 2 in [12] shows that for
any convex combination � of weak rules from a class with
VC dimension �, and for any � � �, the following inequal-
ity holds with probability �� Æ over the random choice of a
training set of size 	:
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where � is the ������� label, ������ is the convex com-
bination of weak classifiers for the �-th example. The first
sum on the right hand side of the equation corresponds to
the fraction of the training set examples with margin smaller
than �. The left hand side is proportion of testing examples
which are in error. The most important aspect of this theo-
rem is that the bound does not depend on � the number of
weak functions that are combined in the convex combina-
tion � .

From this we can conclude that there exists �, estimated
on the training or validation set, for which the risk of mis-
classification on test data is very low. We also rely on the
fact that the margins of the two classifiers are only weakly
related, and that the classifiers are not perfect. As a re-
sult, unlabeled data can be used to generate new informative
training examples for which the predicted label is highly ac-
curate.

3 Co-training for Visual Detection
There are a number of serious issues that arise in the do-

main of visual detection which must be addressed. One dif-
ficultly arises due to the highly unequal class probabilities.
A second is the alignment of automatically labeled positive
examples.

For the experiments in this paper we will co-train two
detectors for automobiles as seen from traffic surveillance

video cameras. These cameras are typically used to gauge
the traffic volume and delays in large urban areas. Many of
these cameras are setup as simple web-cams for the benefit
of commuters (see Figure 1). Other, more specialized cam-
eras, are used to count cars which pass a particular point on
the road. These cameras are used to replace “traffic loops”,
electromagnetic systems which are expensive to install and
calibrate. The traffic loop cameras are quite specialized and
must be placed in very particular locations and carefully
calibrated. One application of our system would be to re-
place traffic-loops and traffic-loop cameras with less expen-
sive web cam cameras.

In this application one classifier detects cars in the orig-
inal grey level images. The second classifier detects cars in
images where the background has been subtracted (called
BackSub in the rest of the paper). These classifier are well
suited to the available data, since the images are monocular
and grey level. Nevertheless, the input images are some-
what related, and as a result classifiers are not quite ideal
for co-training. We must emphasize that while “conditional
independence” is a sufficient condition for co-training to
succeed, it is widely believed that it never holds in prac-
tice. This paper demonstrates that even two closely related
classifiers can be co-trained effectively.

For our experiments 50 image patches containing posi-
tive examples and 6 validation images are used for the initial
training. While this a very small quantity of data, the result-
ing classifier is far better than random. In addition 22,000
entirely unlabeled images are made available for training.
After co-training, error rates are reduced by a factor of 2 to
11 across the entire ROC (receiver operating characteristic)
curve. The final classifier is quite effective.

4 Detection Framework
The detectors used in the co-training framework are

based on the work of Viola and Jones.
As is typical for detection, the input image is scanned

across location and scale. At each location an independent
decision is made regarding the presence of the target ob-
ject. In a 320x240 image there are over 50,000 independent
locations.

A collection of features are used to classify the training
set. These features are selected using the sequential logistic
regression algorithm of Collins et. al.(which we will call
LogAdaBoost in this paper). In each round the feature se-
lected is that with the lowest weighted error. Each feature
is a simple linear function made up of rectangular sums fol-
lowed by a threshold. In the final classifier, the selected
feature is assigned a weight based on its performance on
the current task. As in all variants of AdaBoost, examples
are also assigned a weight. In subsequent rounds incorrectly
labeled examples are given a higher weight while correctly
labeled examples are given a lower weight.
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Figure 1. Example images used to test and train the car detection system. On the left are the original images. On the right are
background subtracted images.

Figure 2. Left: A scatter plot of the joint distribution of margins for the two classifiers. These results are shown on test data, and
therefore represents the distribution on unlabeled data (positive examples are circles, negative are grey/green). For each classifier
two threshold are also shown, the threshold above which no negative is found, ��, and the threshold below which no positive is
found, ��. The regions labeled A,B,C, and D contain informative examples. Right: Particular examples taken from A, B, C, or D;
images which are mislabeled by one classifier (or have small margin) which are confidently labeled by the other classifier. E.G. Set
B contains images confidently labeled positive by the Grey classifier but are misclassified by the BackSub classifier. These examples
are added to the training set of the BackSub classifier during co-training.

In order to reduce the false positive rate while preserving
efficiency, classification is divided into a cascade of classi-
fiers. The early classifiers are constrained to use few fea-
tures (and are therefore efficient) while achieving a very
high detection rate. Constraints on the later classifiers are
relaxed: they contain more features and have a lower detec-
tion rate. Later cascade stages are trained only on the true
and false positives of earlier stages.

LogAdaBoost is used to train each stage in the cascade
to achieve low error on a training set. Due to the asym-
metric structure of the detection cascade, each stage in the
cascade must achieve a very low false negative rate. The
false negative rate of the trained classifier is adjusted, post
hoc, using a set of validation images in which positives have
been identified. These images are scanned and the threshold
is set so that the required detection rate is achieved on these
validation positives.

In order to train a full cascade to achieve very low false
positive rates, a large number of examples are required, both
positive and negative. The number of required negative ex-

amples is especially large. After 5 stages the false positive
rate is often well below 1%. Therefore over 99% of the
negative data is rejected and is unavailable for training sub-
sequent stages.

5 Experiments and Algorithms
Data was acquired from a Washington State Department

of Transit web site. The cameras selected provide 15 sec-
ond video clips once every 5 minutes. Data from a total of 8
cameras was used for experiments. The cameras were sim-
ilar, in that they were placed by the same authority. They
did however vary in height and angle to the roadway. Data
was acquired over a period of three weeks and randomly
sampled.

Two types of classifiers were constructed: a grey image
classifier (Grey) and a background difference (BackSub)
classifier. The Grey classifier uses the grey scale images
directly for detection. The input to the BackSub classifier
is the difference between the video images and the average
background computed from each video clip. Otherwise the
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feature set and training algorithms were identical for both
classifiers.

The labeled training data made up a tiny subset of the
total dataset. The training data includes images from 3 of
the cameras in which 50 cars were identified. In each case
a box was drawn around the car which contained a small
percentage of the background and had an aspect ratio of 1.4.
For training the car images where cropped and scaled to
20x28 pixels. The training data was limited to those car
images which were equal to or larger than 20x28 pixels.
The same 50 labeled cars were used to train both the image
classifier and the background difference classifier.

In addition to the labeled positive data, a set of six addi-
tional images were used as a validation set to adjust classi-
fier thresholds. The validation set contains images in which
every car is located and labeled. In practice images are
selected so that there are as many positives as possible so
that both the false positive and false negative rate can be
estimated. If there were unlabeled positive examples in
these images, it is likely that these positives would appear
as falsely labeled negative data.

Using this training and validation data, two cascaded de-
tectors are constructed, one for the grey images and one for
the background subtracted images. The input to the cas-
cade construction algorithm is the target detection and false
positive rates, a training set, and a validation set. The cas-
cade is built incrementally by adding features and classifier
stages until the detection and false positive rate targets are
achieved. The target detection rate is 100% (to ensure that
no positive example is lost) and the target false positive rate
was 0.2% (the same as the true positive rate). A 5 stage cas-
cade was learned with a total of 20 features. At this point
the co-training process is begun.

5.1 Co-training the Detectors

The first step is to retrain the final stage for the cascade
so that it has a larger number of features (in our experiments
30 features). This expanded stage provides a more accurate
estimate for the confidence (or margin) of new examples.
By comparison, a 4 feature stage would provide a smaller
range of confidence values.

Classification scores, a signed measure of confidence
computed by this final stage, are used to label a set of
22,000 unlabeled images (containing billions of sub win-
dows). Each patch in these images is first passed through
the cascade. If it labeled as potentially positive by the
first 5 stages, then the score computed by the final stage
is recorded.

For this final stage two thresholds are used to collect and
label unlabeled data. These thresholds are set using the val-
idation set. The positive threshold ��is the maximum score
achieved by the negative patches in the validation set. Any
example which falls above ��is very likely to be positive.

Similarly ��is the minimum score achieved by the posi-
tive patches in the validation set. Note that ��and ��are
estimated separately for the Grey and BackSub classifiers.
Since most data is negative, we can afford to be extremely
conservative. The conservative negative threshold is set to
1.3 times ��.

New examples are labeled and sampled using ��and ��.
These are added to the training set which includes the orig-
inal labeled data. Using this new training set, AdaBoost is
used to add three new features the classifier. The unlabeled
data is then resampled again. After 12 rounds of resampling
there are �� � �� � �� �� features.

Note that construction of the initial cascaded detectors
act to solve two critical problems facing the co-training pro-
cess: asymmetry and efficiency. Recall that in each image
there are at most a few dozen positive examples and as many
as 30,000 negative examples. Co-training predicts labels for
examples where one classifier is “confident” – unlikely to
be in error. In order to have a small percentage of errors
on positive labels, the false positive rate must be less than
1 in 10,000. This can be difficult to achieve. After 5 cas-
cade stages, the problem is much closer to symmetric, with
approximately one positive for every 10 negatives. The cas-
cade also provides a very significant boost in performance,
since only 1 in 1000 examples are accepted by the early
cascade stages.

5.2 Sampling Unlabeled Examples

Due to the strong asymmetry in the distribution of posi-
tive and negative examples, a different procedure is used to
sample from the different classes.

The main challenge for negative examples is the sheer
number of candidates. There are a huge number of con-
fidently labeled negative patches available after scanning
22,000 images, more than can be accommodated by the
learning algorithm. As a result, a justifiable technique of
selecting a good subset out of them is required.

Recall that in each iteration of the LogAdaBoost algo-
rithm each example �� is assigned a weight ��. A new fea-
ture �� is then add to the classifier, such that the weighted
sum over the training examples

�
�
����������, is maxi-

mized.
Though one could sample uniformly from the set of con-

fident negatives, this would ignore one critical piece of in-
formation, the margin of the example. If co-training is to
work well it relies on the assumption that some examples
that are confidently classified as negative by one classifier
are not confidently labeled by the other. These examples
are highly informative for the learning process.

A more principled sub sampling procedure is to use the
importance sampling approach, and randomly select nega-
tive data using a probability distribution related to the ex-
ample weight ��, and then assign the sampled examples
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- Initial setup
- Train two detectors

- Detector One: operates on grey level images
- Detector Two: operates on difference images
- Each detector has 5 classifier stages each containing 4 features.
- Detection rate on training set is 100%; false positive is 0.2%.

- Final stage is retrained to contain 30 features, which produces more reliable clas-
sification scores). Note: the scores assigned by this final stage are used to
select additional examples for co-training.

- Two thresholds are computed ��and ��.
- ��= max score achieved by a negative patch from the validation set
- ��= min score achieved by a positive patch from the validation set

- Co-training process (run for 12 rounds)
- 22,000 unlabeled images are scanned.
- In each range of co-training patches are sampled from the 22,000 unlabeled im-
ages
- Image patches labeled positive by the 5 stage cascade are examined
- Positive patches are extracted if score is greater than ��

- Pick local maxima in the score function (to improve alignment)
- Negative patches have score less than ��

- Since there are so many negative examples, examples are selected at random
based on AdaBoost weight

- The final stage of the classifier is augmented with 3 additional features using this
new training data.

Figure 3. A concrete description of the co-training process. Note there are very few parameters in this process. the structure of
the cascade is determined automatically during training (based on a target false positive equal to the true positive rate). Thresholds
are set automatically as well.

a constant weight. That is, if a subset of training ex-
amples �������� was sampled based on the LogAdaBost
weight, then the right approximation to the feature score is�

�
��������. According to the importance sampling princi-

pal, the achieved approximation will be significantly better
then the one achieved by uniformly sampling, and weight-
ing the sampled examples.

The naive way to sample � examples out of the train-
ing set will require scanning the confidently labeled nega-
tives � times. Since in each stage we are to sample few
thousands out of approximately billion examples, the above
approach will result in an extremely inefficient algorithm.
Tentatively, a reasonable approximation can be achieved
with only one pass over the data. To see this consider scan-
ning the data once, and for each example flipping � coins
with head probability ���, � � ��

�
�
��. The expected

number of selected examples resulting from such a process
is � . Moreover, the expected number of times each exam-
ple comes out in the sample is ����. This leads us to the
following algorithm: scan the data once. For each example
in the data- if ���� � � select the example with probabil-
ity ���� and assign it a weight �. If ���� � �, select the
example with probability �, and assign it the weight ����.

Note, however, that since the weights are exponen-
tially related to the margin, some examples have very high

weights and the number of different example achieved by
the above procedure is likely to be significantly lower then
� . Since the accuracy of the selected feature is strongly re-
lated to the number of different examples used for the eval-
uation, we wouldn’t like the resulting number of samples
to be too small. In order to achieve � different examples
there is a need to scale the examples weights �� by a larger
�. The correct solution is to solve

�
�
�	
������ �� � � ,

which is difficult when there are very many examples. This
equation can be approximately solved using a histogram of
the weights, which records the number of examples within
different ranges of weights.

5.3 Sampling Positive Data
Positive data must also be sampled carefully, but since

positive data is very rare, it is not necessary to reduce the to-
tal number of examples using sub-sampling. The key chal-
lenge is alignment. In many detection tasks significant ef-
fort goes into establishing a good alignment between the
labeled positive examples: the car images are scaled to the
same size, and translated so that visible features appear in a
consistent location relative to the detection window.

The alignment of examples sampled based on a high
score is problematic. It is frequently the case that for any
given positive example many overlapping subwindows are
assigned high score. This is a fundamental property of
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all scanning detectors, and it has been observed for many
types of detection tasks. Typically during detection, these
set of overlapping detected sub-windows are merged into
a single detection. During co-training great care must be
taken, since injecting positive examples at different scales
and translations can confuse the training process, and re-
duce performance.

The solution is to select only examples which are at the
peaks of the scoring function. The weight assigned to each
peak is the sum of the weights above the selection threshold
and are nearby the peak. See Figure 2 for automatically
selected positive examples.

5.4 Evaluation

Testing was performed on a separate set of hand labeled
examples that weren’t used anywhere in the training pro-
cess. This set included 90 images containing 980 posi-
tive examples. Since we are measuring the incremental im-
provement of the cascaded detectors due to co-training, the
final co-trained stage is only tested on those positives and
negatives which make it through the first 4 layers of the
cascade. In this case 7,000 negative examples remain for
the background subtracted cascade, and 10,000 for the grey
image classifier.

Figure 4 presents the ROC curves that were computed
using this testing data. Note that evaluating the ratio be-
tween the error rates of the original classifier and the co-
trained classifier, shows an improvement by a factor of 2 to
3 for the standard gray levels classifier, and a factor of 2 to
11 for the background subtracted classifier.

Figure 5 shows detection results, evaluated on some un-
labeled images.

6 Conclusions
We have shown that co-training can be used to signifi-

cantly improve detectors using unlabeled data. These detec-
tors are provided with less than 10% of the labeled data used
to train other published visual detectors. After co-training
the detection rates are quite good and the system is highly
functional.

One application of co-training is to reduce the cost of
constructing visual detectors. Another application may be
to produce detectors which are finely tuned to the specifics
of a particular problem.

As demonstrated in this paper, co-training automatically
improves a pair of weak detectors with no additional la-
beled data. In principle one could deploy a large number of
generic and therefore weak detection systems. Each system
could then use co-training to automatically fine tune perfor-
mance to achieve much higher detection rates. To achieve
this improvement each system would leverage the unique
characteristics of the deployed environment.
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