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Abstract

Many computer vision applications, such as scene analy-
sis and medical image interpretation, are ill-suited for tra-
ditional classification where each image can only be asso-
ciated with a single class. This has stimulated recent work
in multi-label learning where a given image can be tagged
with multiple class labels. A serious problem with exist-
ing approaches is that they are unable to exploit correla-
tions between class labels. This paper presents a novel
framework for multi-label learning termed Correlated La-
bel Propagation (CLP) that explicitly models interactions
between labels in an efficient manner. As in standard la-
bel propagation, labels attached to training data points
are propagated to test data points; however, unlike stan-
dard algorithms that treat each label independently, CLP si-
multaneously co-propagates multiple labels. Existing work
eschews such an approach since naive algorithms for la-
bel co-propagation are intractable. We present an algo-
rithm based on properties of submodular functions that ef-
ficiently finds an optimal solution. Our experiments demon-
strate that CLP leads to significant gains in precision/recall
against standard techniques on two real-world computer vi-
sion tasks involving several hundred labels.

1 Introduction

Multi-label learning refers to problems where an in-
stance can be assigned to multiple classes. This differs from
multi-class learning where every instance can be assigned
to only one class even though the number of classes is
more than two. The essential difference between multi-class
learning and multi-label learning is that classes in multi-
class learning are assumed to be mutually exclusive while
classes in multi-label learning are often correlated. Con-
sider the problem of automatically annotating images with
textual words, in which each annotation can be treated as
a separate class label. Since many words are semantically
related, class labels are correlated. Often, this correlation
among classes can be helpful for predicting class labels of
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Figure 1. An illustrative example of correlated
label propagation

test examples. For instance, the words “ocean” and “sky”
are both strongly related to the blue color feature. There-
fore it may be difficult to distinguish these two words based
on the color features alone. However, if we are confident
that an image should be annotated with “grass”, then it is
more likely that a region of blue in the same image should
be annotated as “sky” rather than “ocean”.

We present a novel framework, Correlated Label Prop-
agation, for multi-label learning that explicitly exploits
high-order correlation between labels. Unlike most exist-
ing approaches that usually only consider the propagation
of a single class label between training examples and test
examples, the proposed framework takes into account the
simultaneous propagation of multiple labels. To illustrate
the basic idea of our approach, consider the example in Fig-
ure 1. Points x1, . . . ,x6 are training examples and are as-
signed to six different classes. Point x0 is the test point.
For the convenience of discussion, let us assume that the
six training examples share the same similarity to the test
example x0. If we only consider the first-order propaga-
tion, which amounts to the counting of label frequency in
the neighborhood of x0, we will find that “a” is the most
likely class label, and that both “b” and “f” are the next
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equally-likely class labels. However, if we allow two labels
to be propagated simultaneously from the training examples
to the testing one, we will rank “b” ahead of “f” since “b”
co-occurs more frequently with “a” than “f”.

In addition to the general framework, this paper also
presents an efficient algorithm for correlated label propa-
gation. The rest of the paper is arranged as follows. Sec-
tion 2 briefly reviews the related work. Section 3 describes
the proposed framework for multi-label learning. Section 4
presents the efficient algorithm for solving the related opti-
mization problem. Section 5 presents experiments employ-
ing the proposed algorithm.

2 Related work

We first review the related work on multi-label learning,
followed by a discussion of label propagation.

2.1 Multi-label Learning

The most commonly-used approach for multi-label
learning is to divide it into a number of binary classifica-
tion problems [3, 11, 24]. In particular, for each class c,
training examples are organized into two groups: the group
of “positive” examples that are labeled by c, and the group
of “negative” examples that are not labeled by c. A binary
classifier is learned for c based on these two groups of ex-
amples. One disadvantage with such approaches is that they
treat each class label independently, and are therefore un-
able to exploit any correlation among class labels. Another
disadvantage is that these approaches do not easily scale
to a large number of classes since a binary classifier has
to be built for every class. Finally, most binary classifica-
tion approaches toward multi-label learning suffer severely
from the unbalanced data problem [22], particularly when
the number of classes is large. This is because, when the
number of classes is large, the number of “negative” exam-
ples is overwhelmingly larger than the number of “positive”
examples for any individual class. As a result, it is likely
that the binary classifiers will output the negative labels for
all instances.

Another group of approaches toward multi-label learn-
ing is label ranking [5, 7, 18]. These approaches learn a
ranking function of class labels from the labeled examples
and apply it to order the class labels for the given test ex-
amples. Compared to binary classification approaches, the
label ranking approaches are generally superior at dealing
with large numbers of classes because only a single rank-
ing function is learned to compare the relevance of indi-
vidual class labels with respect to the test examples. The
label ranking approaches also avoid the problem of unbal-
anced data since no binary decision has to be made regard-
ing class labels. However, similar to the binary classifica-

tion approaches, the label ranking approaches are unable to
exploit the label correlation information.

There has been little previous work in exploiting the la-
bel correlation within the context of multi-label learning.
[21] proposes a generative model for multi-label learning
that explicitly incorporates the pairwise correlation between
any two class labels. [8] introduces a Bayesian model to as-
sign labels through underlying latent representations. [28]
suggests a maximum entropy model for exploring the label
correlation for multi-label learning. In [25], a linear model
is assumed between the input features and the output class
labels, and a regression model is used to find the appro-
priate linear combination weights. The label correlation is
explored by imposing a common prior for the combination
weights on different classes. Despite these efforts in ex-
ploiting label correlation information, most of the research
is limited to pairwise correlation of class labels. Finally,
there are several papers on multi-label learning that assume
a particular structure among the class labels. [15] assumes
that class labels can be divided into a small number of dis-
joint clusters and [2, 17] assume a hierarchical structure
among the class labels. We believe that, given the compli-
cated relationships between class labels, such assumptions
are likely to be violated in many real-world applications. In
contrast, the framework proposed in this paper can take into
account the label correlation of any order. We also show that
the proposed framework can be solved efficiently based on
the concept of submodular functions.

2.2 Label Propagation

Label propagation approaches have recently become
popular in machine learning. The main idea is to propagate
the labels from training examples to test examples through
their similarities. The label information propagated from
different training examples are then accumulated and used
as the basis for scoring the class labels of test examples.
A number of machine learning methods have been devel-
oped for label propagation, including kernel-based K Near-
est Neighbor (kNN) [14], Gaussian processes [23, 4], har-
monic functions [29], and Green functions [27]. This work
distinguishes itself from the previous work in that multiple
labels can be propagated simultaneously from the training
examples to the test examples, which is the key to exploit-
ing the correlation among multiple labels.

3 A Correlated Label Propagation
Framework for Multi-label Learning

This section first presents a brief overview of the setup
of multi-label learning based on label ranking. We then de-
scribe the proposed framework for multi-label learning, fol-
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lowed by the efficient greedy algorithm using the concept
of submodular functions.

3.1 The Label Ranking Formulation of
Multi-label Learning

Let D = {(x1,S1), . . . , (xn,Sn)} denote the set of la-
beled examples, where n is the number of training examples
and m is the number of classes. Each xi = (xi,1, . . . , xi,d)
is an input vector of d dimension. Each set Si contains the
class labels that are assigned to the i-th training example.
For the convenience of presentation, we will employ a bi-
nary vector to represent a set of class labels. In particu-
lar, for a class label set S, its vector representation t(S) =
(ti,1, . . . , ti,m) has its j-th element set to 1 only when j ∈ S
and zero otherwise. Given a test point xt, our goal is to de-
termine a confidence vector zt = {zt,1, . . . , zt,m} such that
each component zt,i indicates the confidence of assigning
xt to the i-th class.

3.2 Correlated Label Propagation for
Multi-label Learning

To motivate the proposed framework, we first describe
the kernel-based kNN approach, which is one of the most
popular methods for label propagation and can be found in
many applications of computer vision [1, 19, 20].

Suppose the similarity of any two data points is mea-
sured by a kernel function K(·, ·) : Rd × Rd → R. Con-
sider the case of single-step propagation. The score of as-
signing the j-th class to the test example xt, i.e., zt,j , could
be estimated by

zt,j =
n∑

i=1

K(xt,xi)I(j ∈ Si), (1)

where I(j ∈ S) is an indicator function that outputs 1 when
the j-th class belongs to set S and is zero otherwise. There
are two problems with the expression in Equation 1:
• Overestimated Confidence Score. Equation 1 assumes

that a training example xi will propagate all of its class
labels to the test example xt according to the similarity
K(xt,xi). This is not necessarily true since maybe
only some of the class labels of xi will be propagated
to xt even though xi is similar to xt.

• Independent Label Propagation. As indicated in Equa-
tion 1, each class label is propagated from training ex-
amples to the test example independently of the other
class labels. In particular, the computation of the con-
fidence score zt,j for the j-th label is independent from
the confidence scores assigned to other class labels.

To resolve the problem of overestimated confidence score,
we replace the equality constraint in Equation 1 with the

following inequality constraint:

zt,j ≤
n∑

i=1

K(xt,xi)I(j ∈ Si). (2)

The above inequality indicates that the confidence score
propagated from training examples to the test example is
upper bounded by the sum of the pairwise similarity K(·, ·).
Note that no explicit value of the confidence score zt,j is
specified in the above expression.

To incorporate the label correlation information into la-
bel propagation, we consider the propagation of multiple
labels. Let the binary vector S be the set of labels that are
propagated from the training examples D to the test exam-
ple xt. We denote by st(S) the confidence score of assign-
ing any subset of S to xt. Similar to Equation 2, we intro-
duce the following constraint on the confidence score st(S),
i.e.,

st(S) ≤
n∑

i=1

K(xt,xi)I(S ∩ Si &= φ) (3)

where I(S ∩ Si &= φ) is used to ensure that only the train-
ing examples whose class labels overlap with the set S are
included in computing the confidence score. To link zt,j ,
i.e., the confidence score of assigning individual classes,
to st(S), i.e., the confidence score of assigning multiple
classes, we assume the following inequality,

m∑

j=1

zt,jI(j ∈ S) ≤ st(S). (4)

The above inequality implies that for a single data point,
the confidence of assigning any subset of class label set S
to xt should be no less than the confidence of assigning the
class label separately in S to xt. Combining Equation 4
with Equation 1, we obtain

m∑

j=1

zt,jI(j ∈ S) ≤
n∑

i=1

K(xt,xi)I(S ∩ Si &= φ).

The above expression can be simplified if we present it in
the vector form of the class labels, i.e.,

zT
t t(S) ≤

n∑

i=1

K(xt,xi)I(t(S)T t(Si)) (5)

Hence, given m different class labels and multi-labeled ex-
amples D, the confidence z of assigning individual classes
to the test example xt is subject to the following constraints:

∀t ∈ {0, 1}m, zT
t t ≤

n∑

i=1

K(xt,xi)I(tT t(Si))

z ( 0. (6)

0-7695-2646-2/06 $20.00 (c) 2006 IEEE



Furthermore, we can generalize the indicator function I(x)
to a concave function Ω(x), which we term the Label Ker-
nel Function. Then, the constraints in Equation 6 are gen-
eralized in the following form:

∀t ∈ {0, 1}m, zT
t t ≤

n∑

i=1

K(xt,xi)Ω(tT t(Si))

z ( 0 (7)

A detailed discussion of the label kernel function Ω(x) ap-
pears in the later part of this section.

It is insufficient to identify the appropriate confidence
scores z only with the constraints. Thus, we assume that
among all the confidence scores that satisfy the constraints
in Equation 7, the optimal solution z is the one that “max-
imally” satisfies the constraints. This assumption leads to
the following optimization problem for z:

max
z∈Rm

m∑

k=1

αkzk

s.t. ∀t ∈ {0, 1}m : zT t ≤
n∑

i=1

K(xi,xq)Ω(tT t(Si))

z ( 0 (8)

where {αk > 0}m
k=1 are the weights for the class labels.

Notice that the problem in Equation8 is a linear program-
ming problem, and therefor the solution will be on the ex-
treme points of the region bounded by the constraints.

Despite the simplicity, solving Equation 8 efficiently is
not trivial. This is because:

• Efficiency: The number of constraints in Equation 8
is exponential in the number of classes m. When m is
large (e.g., 100), the number of constraints will be too
large to be handled by any linear programming algo-
rithm.

• Undetermined Weights: The solution to Equation 8
depends on the weights {αk}m

k=1, whose exact values
are difficult to determine.

4 Efficient Learning Algorithm

In this section, we show that when the label kernel func-
tion Ω(x) is a concave function, there is a simple and greedy
algorithm for finding the optimal solution to the problem in
Equation 8. Furthermore, the solution only depends on the
relative order of weights {αk}m

k=1, and is independent of
their exact values. The algorithm for estimating label con-
fidence scores z is summarized in Figure 2. This greedy
algorithm is based on the following theorem from discrete
optimization [16]:

Input
• xt: the test example
• α1 ≥ α2 ≥ . . . ≥ αm > 0

Output: optimal label scores (zt,1, . . . , zt,m) for xt

For k = 1,. . . ,m
• Let class label set Tk = {1, 2, . . . , k}.
• f(Tk) =

∑n
i=1 K(xi,xt)Ω(tT (Tk)t(Si))

• zt,k = f(Tk) − f(Tk−1)

Figure 2. Algorithm for finding the optimal so-
lution to Equation 8

Given: (1) a finite set N , (2) a set function f : 2N → R
with f(φ) ≥ 0, and (3) a weight vector w ∈ R|N |. Then,
the linear programming problem:

max
w∈R|N|

wTx

s. t. ∀A ⊆ N ,
∑

e∈A
x(e) ≤ f(A)

∀e ∈ N , x(e) ≥ 0

can be solved by the following greedy algorithm if the set
function f is submodular:

• Sort elements of N as w(e1) ≥ w(e2) ≥ ... ≥ w(en)

• Let V0 = φ

For i =1,. . . ,n, let
Vi = Vi−1 + ei, and x(ei) = f(Vi) − f(Vi−1).

The validity of applying the above theorem to our prob-
lem defined in Equation 8 relies on the fact that the function
f in our algorithm, i.e.,

f(u) =
n∑

i=1

K(xt,xi)Ω(uT ti) (9)

is a submodular function if Ω(x) is a concave function. We
present a proof that f is submodular in the Appendix.

Remark: it is interesting that the kernel-based
k Nearest-Neighbor is a special case of the algorithm in Fig-
ure 2, given by setting Ω(x) = x.1 This is because

zt,k = f(Tk) − f(Tk−1)

=
n∑

i=1

K(xt,xi)
(
t(Tk) − t(Tk−1))T t(Si))

)

=
n∑

i=1

K(xt,xi)
(
eT

k t(Si))
)

=
n∑

i=1

K(xt,xi)I(k ∈ Si)

1The linear function x is both a concave and a convex function.
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where ek is the vector whose elements are all zero except
that the k-th element is 1. In the last step of the above
derivation, we use the property:

eT
k t(Si) =

{
1 k ∈ Si

0 otherwise.

4.1 Selecting Weights α and the Label
Kernel Function

This section discusses the impact of different choices for
weights {αk}m

k=1 and the label kernel function Ω(x).
Choice of Weights: The solution returned by the label

propagation algorithm is dependent only on the relative or-
der of the weights, {αk}m

k=1. There are two straightforward
choices for the weights:

1. order the weights α to be in the same order as class
frequency, namely αi ≥ αj ←→ pi ≥ pj;

2. order the weights to be in the reverse order of class
frequency, namely αi ≥ αj ←→ pi ≤ pj .

Above, pi is the frequency of the i-th class in the train-
ing data. A potential problem with the first choice for α
is that assigning large weights to the popular classes will
mean that those classes will tend to be selected before the
rare classes. Since popular classes are correlated with many
more classes than rare classes, choosing the weights for the
popular classes first could cause the test sample to overlap
with the labeled samples heavily from the beginning. This is
best illustrated using an example. Consider the two classes
“water” and “whale”, where the former is popular and the
latter rare; every time “whale” appears in the label set of
an training data, “water” also appears but not vice versa.
If “water” were chosen before “whale”, then no additional
overlap information would be introduced when the weight
for “whale” was determined. By contrast, the second choice
(selecting weights in reverse order of class frequency) al-
lows the rare classes to determine their confidence scores
before the popular classes. In our example, this means that
new overlapping information is introduced when the weight
for “water” is selected after the weight for “whale”. For
these reasons, our experiments employ the second choice
for the weights.

Choice of the label kernel function: As discussed
above, a prerequisite for the label kernel function Ω(x) is
that it should be concave. In addition to ensuring that f(u)
in Equation 9 is a submodular function, the choice of a con-
cave function is also consistent with the principle of De-
creasing Marginal Returns in Economics. Namely, that
more information is gained from the first few observations
than the repeated observation of the same evidence.

Table 1 lists four examples of label kernel functions: the
δ function, the sigmoid function, the exponential function,
and the count function. As indicated by the expressions in
Table 1, these four functions behave very differently. The δ

Table 1. Examples of label kernel functions
used in experiments

δ function δ(x) =
{

0 if x = 0
1 if x > 0

sigmoid function F (x) = 1
1+e−x

exponential function F (x) = 1 − 2−αx

count function F (x) = x

function outputs 1 whenever the input is positive. Thus, no
matter how many class labels are shared between the class
labels of a training example and the class labels of prop-
agation, the amount of label confidence propagated from
the training example remains the same. The exponential
function is a monotonically-increasing function with a max-
imum value of 1 (for x ≥ 0). Unlike both the δ function and
the exponential function, which output zero when the input
is zero, the sigmoid function has a non-zero output even
when the input is zero. This allows for any training exam-
ple to propagate confidence score to the test example even
when its assigned classes do not overlap with the class la-
bels of propagation. This property plays a role analogous to
smoothing in information retrieval (e.g., [26]). Finally, as
discussed in the previous section, the count function leads
to the standard kernel-based kNN algorithm.

5 Experiments

In our experiments, we focus on the study of multi-label
learning with a very large number of class labels. In par-
ticular, we address the following questions when examining
the effectiveness of the proposed label propagation method:
• Which label kernel functions is most effective?
• How effective is the proposed algorithm compared to

other state-of-art approaches?

5.1 Dataset

Our experiments employ two datasets: the Corel dataset
for automatic image annotation and the CLEF dataset for
text categorization. The first dataset contains 5000 images,
from which 4500 images are used for training and 500 im-
ages are used for testing. Each image is segmented into
several regions and the regions of similar features are clus-
tered into 500 clusters, known as blobs in [6]. Then, each
image is represented by a binary vector of these 500 blobs.
374 words are used for annotation and each of the images is
tagged with several words to describe its content. The aver-
age number of annotation words for each image is 3.5. We
treat each word as a class label to apply our algorithms. The
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Figure 3. Averaged F1 measure for the Corel
dataset

CLEF dataset [9] includes a total of 28,533 documents that
are assigned to 937 categories. The average number of cat-
egories assigned to each document is 4.6. Each document is
represented as a vector of 18,736 terms after stemming and
removing stopwords. 70% of the documents are randomly
selected for training and the remaining for testing.

5.2 Evaluation Metrics

Our experiments focus on the evaluation of label rank-
ing. Following [24], we use the micro F1 measurement,
which is the average of F1 score across different class la-
bels. Given the set of assigned class labels, Si and by Ŝi the
set of predicted class labels Ŝi, the F1 measurement of the
k-th class label is computed using:

F1 =
2pkrk

pk + rk

where pk and rk are the precision and recall of the k-th
label, respectively and are calculated as follows:

pk =
|{xi|k ∈ Si ∧ k ∈ Ŝi}|

|{xi|k ∈ Ŝi}|

rk =
|{xi|k ∈ Si ∧ k ∈ Ŝi}|

|{xi|k ∈ Si}|
.

Since some of the class labels are too rare to be predicted
by any algorithm, only the class labels that are predicted
at least once by either the proposed algorithm or the base-
line algorithms are used for evaluation. In order to see the
quality of ranked class labels, we evaluate the averaged F1

measurement for the top k ranked class labels (k ranging
from 1 to 10). Finally, the kernel function K(x,x′) is based
on the relevance language model [13], which has been suc-
cessfully applied to automatic image annotation [10]. More
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Figure 4. Average F1 measure for the CLEF
dataset

specifically, the similarity of a test example xt to a training
example, denoted by K(xt,xi), is calculated as:

K(xt,xi) = Pr(xt|xi) =
∏

k

[p(k|xi)]xt,k (10)

where

p(k|xi) = β
xi,k∑
k′ xi,k′

+ (1 − β)
∑n

j=1 xj,k∑
j = 1n ∑

k′ xi,k′
.

In our experiments, the parameter β is set to be 0.8 based
on cross validation.

5.3 Comparison of Different Label Kernel
Functions

In this section, we compare the performance of different
label kernel function Ω(x). Figures 3 and 4 show the av-
eraged F1 measurement of the four kernel label functions
on the Corel and CLEF datasets, respectively. Note that
the count function corresponds to the kernel-based kNN ap-
proach.

From the performance on these two datasets, we see a
similar trend in performance. First, we observe that, among
the four label kernel functions, the δ function performs the
worst for almost all ranks. This is due to the property of the
δ function that gives a constant value regardless of the num-
ber of class labels that overlap between the assigned class
labels of training examples and the propagated class labels.
Second, the performance of the three kernel label functions,
namely the sigmoid function, the exponential function, and
the count function, differ significantly when the cut-off rank
is small. Once the cut-off rank is large (e.g., 5 for the Corel
dataset and 6 for the CLEF dataset), the three label kernel
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functions deliver similar results. This is because when the
number of selected class labels is large, all of the label ker-
nel functions will be able to identify more or less the similar
set of class labels. As a result, the F1 measurement of all
three label kernel function are close to each other when the
cut-off rank is large. Third, we see that, among the four
functions, the exponential function appears to provide the
best or close to the best performance on both datasets.

5.4 Experiments for Automatic Image
Annotation

In this study, we compare the proposed label propaga-
tion approach to two established approaches for automatic
image annotation using the Corel dataset. They are the sta-
tistical translation model [6], and the multi-class support
vector machines (SVMs) [12]. To predict class labels for
a test image, we will first apply the two baseline models to
compute the score of each class label and rank the class la-
bels in the in the descending order of their scores. Then,
only the class labels before the cut-off rank will be chosen
as the labels for the test image.

The F1 measurement of two baseline approaches at dif-
ferent cut-off ranks of the translation model is presented in
Figure 5. For the purpose of comparison, we also include
the result of the proposed correlated label propagation ap-
proach that uses the exponential function. First, we observe
that both the proposed approach and the multi-class SVMs
significantly outperforms the translation model across all
ranking points. Second, the proposed approach achieve
similar performance as the multi-class SVMs. In particu-
lar, the multi-class SVMs outperforms the proposed label
propagation approach when the number of predicted class
labels is smaller than 4, and the proposed approach starts
to outperforms the multi-class SVMs afterwards. Given the
computational simplicity of the proposed approach, we be-
lieve that it is advantageous to use the proposed approach
for automatic image annotation than the SVMs, particularly
when the number of labels is large.

6 Conclusion

This paper proposes a novel framework, correlated la-
bel propagation, for multi-label learning that explicitly ad-
dresses the problem of label dependence. Unlike previous
approaches to multi-label learning that either treat class la-
bel independently or only take into count the pairwise cor-
relations, our proposed algorithm exploits label correlations
of any order. We formulate the proposed framework as a lin-
ear programming problem with an exponential number of
constraints that cannot be practically solved using standard
techniques. We provide an algorithm, based on properties
of submodular functions that can solve this problem exactly
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Figure 5. Average F1 measure for the corre-
lated label propagation, the translation model
and the support vector machine

and efficiently. We verify (both theoretically and experi-
mentally) that the proposed approach is significantly more
effective than the kernel-based kNN approach for multi-
label learning. Our experiments also show that correlated
label propagation is more effective than the statistical trans-
lation model for automatic image annotation.

Appendix A

Theorem 1 Function f(u) in Equation 9 is a submodular
function if the label kernel function Ω(x) is concave.
Proof
To show that f(u) is submodular, we use the following nec-
essary and sufficient conditions for submodular functions:

For any set A ⊆ B ⊆ N and element e ∈ N \ B,

f(A ∪ e) − f(A) ≥ f(B ∪ e) − f(B)

iff f is a submodular function. Using the binary vector rep-
resentation of sets, the above condition can be written as:

f(t(A ∪ e)) − f(t(A)) ≥ f(t(B ∪ e)) − f(t(B))

holds when t(B) ( t(A) and t(e)T t(B) = 0. Using the
expression of f(u) in Equation 9, we have

f(t(A ∪ e)) − f(t(A)) = (11)
n∑

i=1

K(xi, xt)
(
Ω(tT (A ∪ e)t(Si)) − Ω(tT (A)t(Si))

)

and

f(t(B ∪ e)) − f(t(B)) = (12)
n∑

i=1

K(xi, xt)
(
Ω(tT (B ∪ e)t(Si)) − Ω(tT (B)t(Si))

)
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Since e ∈ N \ B and A ⊆ B, we have

t(A ∪ e) = t(A) + t(e), t(B ∪ e) = t(B) + t(e)

Thus,

(t(A ∪ e) − t(A))T t(Si) = (t(B ∪ e) − t(B))T t(Si)
= t(e)T t(Si) (13)

Furthermore, based on the property A ⊆ A∪ e,B ⊆ B ∪ e,
we have

t(A)T t(Si) ≤ t(A ∪ e)T t(Si), t(B)T t(Si)
≤ t(B ∪ e)T t(Si). (14)

Now, based on the properties in Equations 13 and 14, for
any concave function Ω(x), we have

Ω(t(A)T t(Si)) + Ω(t(B ∪ e)T t(Si)) ≤
Ω(t(B)T t(Si)) + Ω(t(A ∪ e)T t(Si)) (15)

The above inequality holds because of the following prop-
erty of the concave function, i.e.,

Ω(x) + Ω(y) ≤ Ω(p) + Ω(q)

if x ≤ p, q ≤ y and x + y = p + q. By letting

x = t(A)T t(Si), y = t(B ∪ e)T t(Si)
q = t(B)T t(Si), p = t(A ∪ e)T t(Si)

we have Equation 15.
Finally, substituting the inequality in Equation 15 into

Equations 11 and 12, we obtain

f(t(A ∪ e)) − f(t(A)) ≥ f(t(B ∪ e)) − f(t(B)).
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