# MRF's CRF's and refining localization

D.A. Forsyth

## Issues:

- Have a box on an object, but we'd like tighter boundaries
  - What to do?
- Early (and very good) techniques
  - Grab Cut
  - Obj Cut
- Both use MRF/CRF models and inference
  - cover that quickly

# Markov random field - formal

#### Definition

Given an undirected graph G = (V, E), a set of random variables  $X = (X_v)_{v \in V}$  indexed by V form a Markov random field with respect to G if they satisfy the local Markov properties:

Pairwise Markov property: Any two non-adjacent variables are conditionally independent given all other variables:

 $X_u \perp\!\!\!\perp X_v \mid X_{V \setminus \{u,v\}}$ 

Local Markov property: A variable is conditionally independent of all other variables given its neighbors:

 $X_v \perp\!\!\!\perp X_{V \setminus \mathrm{N}[v]} \mid X_{\mathrm{N}(v)}$ 

where N(v) is the set of neighbors of v, and  $N[v] = v \cup N(v)$  is the closed neighbourhood of v.

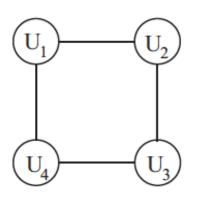
Global Markov property: Any two subsets of variables are conditionally independent given a separating subset:

 $X_A \perp\!\!\!\perp X_B \mid X_S$ 

where every path from a node in A to a node in B passes through S.

The Global Markov property is stronger than the Local Markov property, which in turn is stronger than the Pairwise one. <sup>[3]</sup> However, the above three Markov properties are equivalent for a positive probability.<sup>[4]</sup>

## MRF - First case for us



- The graph is a 2D grid
- Each random variable is a binary random variable
  - eg inside object, outside object
- In this case

$$p(x) \propto \exp\left[\frac{1}{2}\sum_{i}\sum_{j} \operatorname{goodness}(x_i, x_j)\right]$$

Look at Ch15 of AML for some examples, BUT that uses different inference procedures and has 1, -1 labels. I'm using Greig; Porteous; Seheult notation (see web page for paper)

# Notice

- If the goodness of a pair is high, p is higher
- Because these are binary, we can simplify
- We want:
  - better for neighbors to agree than disagree
  - the goodness for both 0 is the same as for both 1
- Can then simplify

$$p(x) \propto \exp\left[\frac{1}{2}\sum_{i}\sum_{j} \text{goodness}(x_i, x_j)\right]$$

• To get

$$p(x) \propto \exp\left[\frac{1}{2}\sum_{i=1}^{n}\sum_{j=1}^{n}\beta_{ij}\{x_{i}x_{j} + (1 - x_{i})(1 - x_{j})\}\right]$$

# Important

- We want:
  - better for neighbors to agree than disagree
  - the goodness for both 0 is the same as for both 1
- This means

$$p(x) \propto \exp\left[\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \beta_{ij} \{x_i x_j + (1 - x_i)(1 - x_j)\}\right]$$
  
This is >=0 for j neq j

## First model

- At each pixel, there is an unknown binary label
  - 0=out, 1=in
- These binary labels form an MRF
  - where it is cheaper to agree than to disagree
- At each pixel, there are measurements
  - conditioned on the label
  - details to follow
- Q: how do we get the MAP set of labels?

# Model

- At each pixel we have observations y
  - yields likelihood

$$l(y|x) = \prod_{i=1}^{n} f(y_i|x_i) = \prod_{i=1}^{n} f(y_i|1)^{x_i} f(y_i|0)^{1-x_i}$$

• what is f? (later)

• write 
$$\lambda_i = \ln\{f(y_i|1)/f(y_i|0)\}$$

• Then

 $\log p(x|y) = \sum_{i=1}^{n} \lambda_i x_i + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \beta_{ij} \{ x_i x_j + (1 - x_i)(1 - x_j) \}$ 

## To obtain MAP estimate

• Maximise

$$\sum_{i=1}^{n} \lambda_i x_i + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \beta_{ij} \{ x_i x_j + (1 - x_i)(1 - x_j) \}$$

- But how?
  - blank search won't do it
  - variational inference doesn't attract (why?)
- In this special case, graph cut works

## Graph cut (quick but clean)

Consider a capacitated network comprising n + 2 vertices, being a source s, a sink t and the n pixels. There is a directed edge (s, i) from s to pixel i with capacity  $c_{si} = \lambda_i$ , if  $\lambda_i > 0$ ; otherwise, there is a directed edge (i, t) from i to t with capacity  $c_{it} = -\lambda_i$ . There is an undirected edge (i, j) between two internal vertices (pixels) i and j with capacity  $c_{ij} = \beta_{ij}$  if the corresponding pixels are neighbours.

For any binary image  $x = (x_1, \ldots, x_n)$  let  $B = \{s\} \cup \{i: x_i = 1\}$  and  $W = \{i: x_i = 0\} \cup \{t\}$  define a two-set partition of the network vertices and put

$$C(x) = \sum_{k \in B} \sum_{l \in W} c_{kl}$$

The set of edges with a vertex in B and a vertex in W is called a *cut* and C(x) is called the *capacity* of the cut.

It's readily seen that C(x) may be written

$$C(x) = \sum_{i=1}^{n} x_i \max(0, -\lambda_i) + \sum_{i=1}^{n} (1 - x_i) \max(0, \lambda_i) + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \beta_{ij} (x_i - x_j)^2$$

which differs from -L(x|y) by a term which does not depend on x;

# Graph cut, II

#### • SO

- set up the graph as described, and do a min-cut
- this is polynomial
- Ifs, ands, buts
  - this only works in the case it is cheaper to agree than to disagree
    - more general case, it's max cut which isn't funny at all
  - this only works for the binary case
    - but approximations for some multilabel cases are very good
- More details
  - there are \*many\* min-cut algorithms with different complexities
    - adapted to different types of problem
  - significant literature on best min-cut algorithm for vision applications
    - we'll ignore search github

# Grab Cut

- Originally for matting
  - extracting an object from an image
- Process
  - user places box
    - grabcut segments intended object
  - user perhaps iterates with strokes, etc.
- For us:
  - segments using graph cuts
    - clever iterative model of interior/exterior
  - extremely simple shape prior on object







## Simplest case: grey level image

Their paper [Boykov and Jolly 2001] addresses the segmentation of a monochrome image, given an initial trimap *T*. The image is an array  $\mathbf{z} = (z_1, \ldots, z_n, \ldots, z_N)$  of grey values, indexed by the (single) index *n*. The segmentation of the image is expressed as an array of "opacity" values  $\underline{\alpha} = (\alpha_1, \ldots, \alpha_N)$  at each pixel. Generally  $0 \le \alpha_n \le 1$ , but for hard segmentation  $\alpha_n \in \{0, 1\}$ , with 0 for background and 1 for foreground. The parameters  $\underline{\theta}$  describe image foreground and background grey-level distributions, and consist of histograms of grey values:

$$\underline{\theta} = \{h(z; \alpha), \, \alpha = 0, 1\},\tag{1}$$

one for background and one for foreground. The histograms are assembled directly from labelled pixels from the respective trimap regions  $T_B, T_F$ . (Histograms are normalised to sum to 1 over the grey-level range:  $\int_z h(z; \alpha) = 1$ .)

# Grey level image, II

An energy function **E** is defined so that its minimum should correspond to a good segmentation, in the sense that it is guided both by the observed foreground and background grey-level histograms and that the opacity is "coherent", reflecting a tendency to solidity of objects. This is captured by a "Gibbs" energy of the form:

$$\mathbf{E}(\underline{\alpha},\underline{\theta},\mathbf{z}) = U(\underline{\alpha},\underline{\theta},\mathbf{z}) + V(\underline{\alpha},\mathbf{z}) .$$
(2)

The data term U evaluates the fit of the opacity distribution  $\underline{\alpha}$  to the data z, given the histogram model  $\underline{\theta}$ , and is defined to be:

$$U(\underline{\alpha}, \underline{\theta}, \mathbf{z}) = \sum_{n} -\log h(z_{n}; \alpha_{n}).$$
(3)

The smoothness term can be written as

$$V(\underline{\alpha}, \mathbf{z}) = \gamma \sum_{(m,n)\in\mathbf{C}} dis(m,n)^{-1} \left[\alpha_n \neq \alpha_m\right] \exp{-\beta \left(z_m - z_n\right)^2}, \quad (4)$$

where  $[\phi]$  denotes the indicator function taking values 0,1 for a predicate  $\phi$ , **C** is the set of pairs of neighboring pixels, and where  $dis(\cdot)$  is the Euclidean distance of neighbouring pixels. This energy

## Notice

$$\sum_{i=1}^{n} \lambda_{i} x_{i} + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \beta_{ij} \{ x_{i} x_{j} + (1 - x_{i})(1 - x_{j}) \}$$

$$\bigvee$$

$$V(\underline{\alpha}, \mathbf{z}) = \gamma \sum_{(m,n) \in \mathbf{C}} dis(m,n)^{-1} [\alpha_{n} \neq \alpha_{m}] \exp{-\beta(z_{m} - z_{n})^{2}},$$

$$U(\underline{\alpha}, \underline{\theta}, \mathbf{z}) = \sum_{n} -\log h(z_{n}; \alpha_{n}).$$

They're minimizing, and GPS are maximizing; this means they use a cost (not goodness) for disagreeing (not agreeing)

# Improving this

#### • Where does trimap come from?

- start with
  - inside: a bunch of pixels in "deep interior" of box
  - outside: a bunch of pixels outside box
- Histograms for color images are clumsy
  - too big
- Initial trimap is messy
  - reestimate using segmentation

# Replace histograms

#### • Use mixture of normals

- have some interior, some exterior pixels
- build mixture of normal model for each case
  - AML ch 9 if you've forgotten
  - now you can compute p(yl 1), etc. from this

# **Re-estimation**

- Use initial trimap to make GMM
- Segment with graph cut
  - Now you have a trimap
- Re-estimate GMMs, and iterate

# Open questions

- What to do if you have a stronger shape prior?
  - MRF is a shape prior, but very weak
  - Basic semantic segmentation first