Image classification

Big picture

We know how to do this

® with convnets
® minor fights about architecture, but...

You should think about these nets as
® complicated feature construction followed by simple classifier

Dynamics of learning are not even slightly understood
There are some nasty ifs, ands and buts

Figure 17.1: On the left, a selection of digits from the MNIST dataset. Notice how
images of the same digit can vary, which makes classifying the image demanding. It
is quite usual that pictures of “the same thing” look quite different. On the right,
digit images from MNIST that have been somewhat rotated and somewhat scaled,
then cropped fit the standard size. Small rotations, small scales, and cropping
really doesn’t affect the identity of the digit

Loop

Lincending¢
l?.72/2 éﬁo
2R 41940

Line ending

¢ Crossing ?
FP Q4B éi
50

Figure 17.2: Local patterns in images are quite informative. MNIST images, shown
here, are simple images, so a small set of patterns is quite helpful. The relative
location of patterns is also informative. So, for example, an eight has two loops, one
above the other. All this suggests a key strategy: construct features that respond
to patterns in small, localized neighborhoods; then other features that look at
patterns of those features: then others that look at patterns of those, and so on.
Each pattern (here line endings, crossings, and loops) has a range of appearances.
For example, a line ending sometimes has a little wiggle as in the three. Loops can
be big and open, or quite squashed. The list of patterns isn’t comprehensive. The
“?” shows patterns that I haven’t named, but which appear to be useful. In turn,
this suggests learning the patterns (and patterns of patterns: and so on) that are
most useful for classification

v N\
\ A\

. \\E\
Ble X ": \\ N
{>E e \\\ A

\{- X > \\\\\ N

| \\\\\
\&
N\

Figure 17.4: To compute the value of N’ at some location, you shift a copy of M to
lie over that location in Z; you multiply together the non-zero elements of M and
7 that lie on top of one another; and you sum the results

g b y B s .l.n'.. -

L SO § -... - Te e ot ¥\
w#,"/....n SN Eme N
m . g5e.% ‘o ~ RS -~ W .
m.. LR . - :
. w—
I
)
Q.
-
w2

ZF
o
h ..
7
5]
=
t-
S
7
8
<
1)}
a L
-
5
=

|04 O O OGBS ol e Oy On O N
=t NS G ST SRR N
m.p/./:,;z = NN =
o ff SN N S YR ¢ vhu e RN Y
< SR Pl O
S RS E s BRIt
W?,..&..J?._ nw. N~ ML e 33».331..
= (AN (I SRS S o
C/o.co . / /-\\I‘lllv/

OO LV SO

/7 Data blocks

i I A =
1x1x500 1x1x500 Ix1x10 Ix1x10
4x4x50
8x8x50
12x12x20
- 24x24x20
28x28x 1
Network layers
0 0
g z g 2 g -
z g = g 3 - @
e S a = & & = =
o S |2 g b g—» = b = P : P
g |®| |g| |F :
g =
Receptive fields
5x5 6x6 14x14 16x16 Whole image Whole image Whole image

Figure 17.9: Three different representations of the simple network used to classify
MNIST digits for this example. Details in the text

Figure 17.10: Four of the 20 kernels in the first layer of my trained version of the
MNIST network. The kernels are small (5 x 5) and have been blown up so you
can see them. The outputs for each kernel on a set of images are shown above the
kernel. The output images are scaled so that the largest value over all outputs is
light, the smallest is dark, and zero is mid grey. This means that the images can
be compared by eye. Notice that (rather roughly) the far left kernel looks for
contrast; center left seems to respond to diagonal bars; center right to vertical
bars; and far right to horizontal bars

/7 Data blocks

i I A =
1x1x500 1x1x500 Ix1x10 Ix1x10
4x4x50
8x8x50
12x12x20
- 24x24x20
28x28x 1
Network layers
0 0
g z g 2 g -
z g = g 3 - @
e S a = & & = =
o S |2 g b g—» = b = P : P
g |®| |g| |F :
g =
Receptive fields
5x5 6x6 14x14 16x16 Whole image Whole image Whole image

Figure 17.9: Three different representations of the simple network used to classify
MNIST digits for this example. Details in the text

EEEE
99999

W
~1 (n
{2
Qo
G
Ld

99
s 9

79
89

swvdvababase
Cobirarrdbd

Yoyt i o6
Y ap by af i oy

fxcg0386¢ 3|y _
Srr¥g3e8sslae4aa944yy

o]

La (n
QI N |
OWN|W
~o |9 (B] ¥
LI~V O
I8 oa N N 0o | O &

NN N
%
o [N NN 0
Qe NINNINDO
%) 4
R V1 so N N[N W >
o [BRP] CVENY (¢ JTY (NRPY
L1 AN N W iy | a g

-3

Figure 17.11: Visualizing the patterns that the final stage ReLUs respond to for
the simple CIFAR example. Each block of images shows the images that get the
largest output for each of 10 ReLUs (the ReLUs were chosen at random from
the 500 available). Notice that these ReLU outputs don’t correspond to class—
these outputs go through a fully connected layer before classification—but each
ReLU clearly responds to a pattern, and different ReLLUs respond more strongly to
different patterns

rcJgere—Nk

LNESNSrDAENS
wOH¥ECadn\ke
ANOHOPLAONY
cCaoNy~ 00 I ON
MoV @oael
DRI rHoRS
1t 9ocdNpPaN
YD AN AN
OO dNTes

Figure 17.13: Left: All 89 errors from the 10,000 test examples in MNIST and right
the predicted labels for these examples. True labels are mostly fairly clear, though

some of the misclassified digits take very odd shapes

32x32x3 Data blocks

32x32x32
_/] [' 16x16x32 16x16x32
16x16x32 16x16x32
U U U U 8x8x32 8x8x64 B8x8x64
4x4x64
1x1x10
/ / / 1x1x64 1xIx64 1x1x10
e g > g > g g
NN - 1|2 B 2l e
PENRE: i s | |g 1| % ARE
> LD EMEDMEPIED 2 PIED 2 EDPEDPZPED
G ™ g & = 0 & g 0 2 = A =1
& &) E 4 P ol
r2 b ® A =
Network layers
5 7 7 15 15 19 35 35 43 67 67 67 67
Receptive fields

Figure 17.15: Three different representations of the simple network used to classify
CIFAR-10 images for this example. Details in the text

Figure 17.19: Visualizing the patterns that the final stage ReLUs respond to for
the simple CIFAR example. Each block of images shows the images that get the
largest output for each of 10 ReLUs (the ReLUs were chosen at random from the 64
available in the top ReLU layer). Notice that these ReLU outputs don’t correspond
to class—these outputs go through a fully connected layer before classification—
but each ReLU clearly responds to a pattern, and different ReLLUs respond more
strongly to different patterns

0.3 T T T T T T T

Top-5 Error Rate
=
O

0.1
VGGNet GoogleNet

(Inception)
I

Not Not 8 19 22 152
network network Layers Layers Layers Layers Layers

005

2010 2011 2012 2013 2014 2014 2015
Year

Figure 18.1: The top-5 error rate for image classification using the ImageNet dataset
has collapsed from 28% to 3.6% from 2010 to 2015. There are two 2014 entries here,
which makes the fall in error rate look slower. This is because each of these methods
is significant, and discussed in the sections below. Notice how increasing network
depth seems to have produced reduced error rates. This figure uses ideas from an
earlier figure by Kaiming He. Each of the named networks is described briefly in a
section below

Data blocks

NES
B c D E F G H 1
—>
224x224x3
10T [Hall 11 [el] 1 [=] [=] [=]
g §A§§ gsgg cg Dg Eggpgcgﬂgl
= 3 = 2 2 @
NHEHEEHEEHEH HERE AR EEH ERHRE
oIE | B qu'S w (| 2= S E B slel 2] |E
g g,g AlE; 8 AEIREIRE
dL EELL ElEY EL B EL L L
Network layers

Figure 18.2: T'wo views of the architecture of AlexNet, the first convolutional neural
network architecture to beat earlier feature constructions at image classification.
There are five convolutional layers with ReLU, response normalization, and pooling
layers interspersed. Top shows the data blocks at various stages through the net-
work and bottom shows all the layers (capital letters key stages in the network to
blocks of data). Horizontal and diagonal arrows in the top box indicate how data
is split between GPUs, details in the main text. The response normalization layer
is described in the text. I have compacted the final fully connected layers to fit the
figure in

Network architecture

A B | C | D E
Number of layers with learnable weights
11 13 16 16 19
Input (224 x 224 x 3 image)
conv3-64 conv3-64 conv3-64 conv3-64 conv3-64
conv3-64 conv3-64 conv3-64 conv3-64
maxpool2 x 2s2
conv3-64 conv3-64 conv3-64 conv3-64 conv3-64
conv3-64 conv3-64 conv3-64 conv3-64
maxpool2 x 2s2
conv3-128 conv3-128 conv3-128 conv3-128 conv3-128
conv3-128 conv3-128 conv3-128 conv3-128
maxpool2 x 2s2
conv3-256 conv3-256 conv3-256 conv3-256 conv3-256
conv3-256 conv3-256 conv3-256 conv3-256 conv3-256
conv1-256 conv3-256 conv3-256
conv3-256
maxpool2 x 2s2
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512
convl-512 conv3-512 conv3-512
conv3-512
maxpool2 x 2s2
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512
convl-512 conv3-512 conv3-512
conv3-512
maxpool2 x 2s2
FC-4096
FC-4096
FC-1000

softmax

Batch normalization

Write x? for the input of this layer, and o® for its output. The output has the
same dimension as the input, and I shall write this dimension d. The layer has two
vectors of parameters, v and 3, each of dimension d. Write diag(v) for the matrix
whose diagonal is v, and with all other entries zero. Assume we know the mean
(m) and standard deviation (s) of each component of x?, where the expectation is
taken over all relevant data. The layer forms

x" = [diag(s+¢€)]”' (x" —m)
o' = [diag(y)]x" +B.

Notice that the output of the layer is a differentiable function of v and 3. Notice
also that this layer could implement the identity transform, if v = diag(s + €) and
B = m. We adjust the parameters in training to achieve the best performance.
It can be helpful to think about this layer as follows. The layer rescales its input
to have zero mean and unit standard deviation, then allows training to readjust
the mean and standard deviation as required. In essence, we expect that large
values encountered between layers are likely an accident of the difficulty training a
network, rather than required for good performance.

You can normalize in other ways...

® [nstance, group, etc.
® Sce blog post on web page

Inception

® Modules

® Normalization

e 1x1 Convolution
® You should think of this as a dimension reduction process

Inception

‘ Stack

3x3

3x3 3x3 Ix1

1x1 Ix1 Pool 1x1

K A A7_

Base

Feature construction block

Stack
T 4 A
3x3s2
*
3x3 3x3s2
£ %
1x1 1x1 Pool
A A A
Base

Grid size reduction block

Figure 18.4: On the left an inception module for computing features. On the right,
a module that reduces the size of the grid. The feature module features with: 5 x 5
support (far left stream); 3 x 3 support (left stream); 1 x 1 support after pooling
(right stream); and 1 x 1 support without pooling. These are then stacked into
a block. The grid size reduction module takes a block of features on a grid, and
reduces the size of the grid. The stream on the left constructs a reduced size grid of
features that have quite broad support (5 x 5 in the input stream); the one in the
center constructs a reduced size grid of features that have medium support (3 x 3
in the input stream); and the one on the right just pools. The outputs of these

streams are then stacked

Residual networks

Our usual process takes a data block XV, forms a function of that block
W(X 1), then applies a ReLU to the result. To date, the function involves applying
either a fully connected layer or a convolution, then adding bias terms. Writing
F(-) for a ReLU, we have

XD = Fow(x®)y).

Now assume the linear function does not change the size of the block. We replace
this process with

XD = Fow(x®)) + x0

Residual networks

see that this Jacobian will have the form
To) .t = (L + M),

where 7 is the identity matrix and M is a set of terms that depend on the map W.
Now remember that, when we construct the gradient at the k’th layer, we evaluate
by multiplying a set of Jacobians corresponding to the layers above. This product

in turn must look like

(VO(D)L) JQ(D);u(D) X JQ(D-l);u(D—i) XX Jok;ok
which 1s
(Vo L) (Z+ MpD)Z+Mp_1)...(T+ Miy1)Txks1.g0

which 1s
(Vo L) T+ Mp+Mp_1... + Mij1 +...)Txks1.gk,

which means that some components of the gradient at that layer do not get mangled
by being passed through a sequence of poorly estimated Jacobians.

If’s ands and buts

® Adversarial examples
* AAAARGH!

® Weird correlation properties between networks
® mostly all make the same errors, often in disturbing detail

® What do you do if you want to:
improve accuracy

change representation

talk sense about generalization
classify with very little data

