#### Context for vehicles and sensing

#### • Environments:

- Case 1:
  - work anywhere
    - likely: various gadgets improve safety and experience
    - implausible: full autonomy
- Case 1.5:
  - work some places
    - some are specialized to freeways, etc.
- Case 2:
  - work only in tightly controlled environment (eg smart city)
    - there are models of full autonomy (eg transporters at airports)

#### Case 1

- Various gadgets improve safety and experience
- case-by-case reasoning about representation and sensing
- Issues:
  - what's worth doing?
  - what can be done easily?
  - how much sensing?

#### Case 1 examples

- Reversing cameras
- Reversing sonar
- Forward sonar for collision avoidance
- Active collision management
- Pedestrian detection
- Various safety cameras
  - driver attention
  - record events for dispute resolution
  - driver sobriety
- Smarter links to maps

#### Case 1.5:

#### • Mostly, more specialized gadgets, mostly for highways

- lane following for highways
- predicting highway turnoffs
- speed control that's aware of cars in front
- neat tricks to reduce traffic jams
- Issues
  - what's worth doing?
  - what can be done easily?
  - how much sensing?

#### Case 2: Strongly controlled environments

#### • Full autonomy quite plausible

- depending on regulatory and environmental control
  - there are models of full autonomy (eg transporters at airports)
- This case is valuable, and may be important
  - public transport -> apartment in high density living areas
- Issues:
  - how much control do you need?
  - what density of traffic can be sustained?
  - how do you ensure safe behavior if weird stuff happens?

#### The questions that will plague us

- What representation do we need?
- How much data do we need to make it?
  - and where do we get it?
- How do we know if it works

#### Representation

#### • A1: No representation required

- link control inputs to sensing with multiple network layers
- train on simulation with reinforcement learning
- dubious position, but...
  - notice that, IN PRINCIPLE, this deals with full autonomy
- Q:
  - how do you know it will do the right thing in a given situation?
- A (dubious)
  - watch what it does on training data

#### Representation

#### • A2: 3D reconstruction

- build complete 3D model of world around you
  - LIDAR, SFM, etc.
  - label it with appropriate labels (next slides)
- use a planner, etc to make paths in that environment
- follow paths
- Q:
  - how do you know it will do the right thing in a given situation?
- A (dubious):
  - prove that environment is right and software is correct
- Q:
  - do you really need a 3D representation?
- A:
  - who knows?

#### Optic flow as a theory of perception



#### Fun fact about vision





TTC - Long



#### TTC - AAARGH!









#### Likely truth about 3D vs 2D

- Straightforward to convert from 2D to 3D repns and back
- This means anything you can do w/3D, you can do w/2D
- But: convenience is important
  - some planners want 3D
  - sensing 3D as 3D might be a good idea (LIDAR)
  - detection is generally faster in 2D, might be easier

#### Representation

#### • A3: Label images (or 3D reconstruction)

- with what?
  - label all possible objects with all names
  - label some classes, ignore others
- what taxonomy?
  - likely a derived taxonomy from actions
- Q:
  - how do you know it will do the right thing in a given situation?
- A (dubious):
  - prove that environment is right and software is correct
- Q:
  - what should be labelled and what should be ignored?
- A:
  - who knows? likely the things that most affect performance?

# Labelling



## Labelling



MS-CoCo

## Labelling



#### The questions that will plague us

- What representation do we need?
- How much data do we need to make it?
  - and where do we get it?
- How do we know if it works?

## XXXX Autonomy data



## Special features: rich appearance variation





#### Special features: rich appearance variation





## Special features: rich appearance variation







#### XXX data consequences



### XXXX data consequences







GPS is quite good, but not perfect

#### Another curious data problem









#### The questions that will plague us

- What representation do we need?
- How much data do we need to make it?
  - and where do we get it?
- How do we know if it works?



## Adversarial example

- Search for
  - small update to image
  - such that
    - output for true class is low
    - output for some other class is high

- Surprising fact:
  - such updates can be VERY small

Real-Time Perception/Prediction Behavior Forecas mputer vision technology

**APOLLOSGAPE** 

driver-vehicle Object Detection interfaces OH-board Behavior Forecasting liter der Simulator





#### **APOLLOSGAPE** Fast gradient sign search Search sign(gradient) • Iterate $\eta = \epsilon \operatorname{sign} \left( \nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, \boldsymbol{y}) \right).$ x is image • J is some cost • eg J=(true class)-(best false class) $\boldsymbol{X}_{adv} = \boldsymbol{X} - \epsilon \cdot \operatorname{sign}(\nabla_{\boldsymbol{X}} J(\boldsymbol{X}, y_{fool})).$ er vision technology Detection Goodfellow et al 15

#### APOLLOSCAPE

## Fast gradient sign



x "panda" 57.7% confidence 8.2% confidence

 $x + \epsilon sign(\nabla_x J(\theta, x, y))$ "gibbon" 99.3 % confidence

ast

interfaces CALEDOALO Ned Gen Simulation

# Deepfool

#### **APOLLOSCAPE**



$$\Delta(x; \hat{k}) := \min_{\boldsymbol{r}} \|\boldsymbol{r}\|_2$$
 subject to  $\hat{k}(x + \boldsymbol{r}) \neq \hat{k}(x)$ 

- linearize k
  - update
  - (possibly) repeat

Real-Time Perception/Prediction Behavior Forecas mputer vision technology

Moosavi-Desfooli et al 16

image

update

label



Moosavi-Desfooli et al 16



# Flow based methods

New image obtained by



Figure 6: Flow visualization on CIFAR-10. The example is misclassified as bird.

Xiao et al 2018

**APOLLOSGAPE** 



Xiao et al 2018

## Flow methods

# **Benign** Figure 6: Flow visualization on CIFAR-10. The example is misclassified as bird.

#### Xiao et al 2018

**APOLLOSGAPE** 

#### **APOLLOSCAPE**

## Flow methods



#### Xiao et al 2018



# Yolo attack

- Yolo uses a large image area to
  - predict boxes
  - predict classes
- This means that a detection is
  - affected by pixels OUTSIDE box





