Context for vehicles and sensing

® Environments:
® (ase I:
® work anywhere
® Jlikely: various gadgets improve safety and experience
® implausible: full autonomy
® (ase 1.5:
® work some places
® some are specialized to freeways, etc.
® (ase 2:
® work only in tightly controlled environment (eg smart city)
® there are models of full autonomy (eg transporters at airports)



Case 1

® Various gadgets improve safety and experience
® case-by-case reasoning about representation and sensing

® [ssues:
® what’s worth doing?
® what can be done easily?
® how much sensing?



Case 1 examples

Reversing cameras

Reversing sonar

Forward sonar for collision avoidance
Active collision management
Pedestrian detection

Various safety cameras

® driver attention
® record events for dispute resolution
® driver sobriety

Smarter links to maps



Case 1.5:

® Mostly, more specialized gadgets, mostly for highways
® Jlane following for highways
® predicting highway turnoffs
® speed control that’s aware of cars in front
® neat tricks to reduce traffic jams

® [ssues

® what’s worth doing?
e what can be done easily?
® how much sensing?



Case 2: Strongly controlled environments

® Full autonomy quite plausible
® depending on regulatory and environmental control
® there are models of full autonomy (eg transporters at airports)
® This case is valuable, and may be important
® public transport -> apartment in high density living areas

® [ssues:

® how much control do you need?
e what density of traffic can be sustained?
® how do you ensure safe behavior if weird stuff happens?



The questions that will plague us

® What representation do we need?

® How much data do we need to make it?
® and where do we get it?

® How do we know if it works



Representation

® Al: No representation required

® Jink control inputs to sensing with multiple network layers
® train on simulation with reinforcement learning
® dubious position, but...
® notice that, IN PRINCIPLE, this deals with full autonomy
e Q:
® how do you know it will do the right thing in a given situation?
® A (dubious)
® watch what it does on training data



Representation

® A2: 3D reconstruction
® build complete 3D model of world around you
e [IDAR, SFM, etc.
® Jlabel it with appropriate labels (next slides)
® use a planner, etc to make paths in that environment
follow paths
Q:
® how do you know it will do the right thing in a given situation?
® A (dubious):
® prove that environment 1s right and software 1s correct
e Q:
® do you really need a 3D representation?
o A:
® who knows?



Optic flow as a theory of perception
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Fun fact about vision

Focal point

focal length=f

“distance=D

Fun fact: time to contact = x/(dx/dt)




TTC-Long




TTC - AAARGH!
















Likely truth about 3D vs 2D

® Straightforward to convert from 2D to 3D repns and back
® This means anything you can do w/3D, you can do w/2D

® But: convenience 1s important

® some planners want 3D
® sensing 3D as 3D might be a good idea (LIDAR)
® (detection is generally faster in 2D, might be easier



Representation

® A3: Label images (or 3D reconstruction)
® with what?
® Jlabel all possible objects with all names
® Jabel some classes, ignore others
® what taxonomy?
® Jikely a derived taxonomy from actions
e Q:
® how do you know it will do the right thing in a given situation?
® A (dubious):
® prove that environment 1s right and software 1s correct
e Q:
® what should be labelled and what should be ignored?
o A:
® who knows? likely the things that most affect performance?
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Labelling




Labelling

MS-CoCo



Labelling




The questions that will plague us

® What representation do we need?

® How much data do we need to make it?
® and where do we get it?

® How do we know if it works?



XXXX Autonomy data




Special features: rich appearance variation




Special features: rich appearance variation




Special features: rich appearance variation




Standard semantic segmenter
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XXX data consequences




XXXX data consequences
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Another curious data problem




The questions that will plague us

® What representation do we need?

® How much data do we need to make it?
® and where do we get it?

® How do we know if it works?



Image classification

Image

Some neural stuff;

differentiable wrt
parameters, input

| Cat
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. Car
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Adversarial example

sl 1 e Surprising fact:
e small update to image
« such that  such updates can be
« output for true class is low VERY small

 output for some other class is high
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“Ostrich”
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Szegedy et al, 13
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Szegedy et al, 13
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APOILOSONPE

- Fast gradient sign search

 Search sign(gradient) e |terate

* X is image n = esign (Vg J(0,2,y)).
* Jis some cost
* eg J=(true class)-(best false class) Xoto =X — €-sign(Vx J(X, Ysou))-
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APOILOSONPE

Fast gradient sign

+ .007 x
g
. T+
z sign(Va (6, 2,9))  Gon(VoJ(0,2,y) =
“panda” “nematode™ “gibbon” y
57.7% confidence 8.2% confidence 99.3 % confidence
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e D ee pfO O I

update
* Find r by A(a; k) := min [|r|2 subject to k(z + 7) # k(z)
* linearize k .
label image
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Moosavi-Desfooli et al 16
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Deepfool

- Whale Turtle Difference image
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Compare fast gradient sign

Tur

Moosavi-Desfooli et al 16
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Flow based methods

* New image obtained by

on
eCa
logy

dversarial
Figure 6: Flow visualization on CIFAR-10. The example is misclassified as bird.

Xiao et al
2018
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Flow based methods

* New image obtained by Size of flow

moving pixels . . :
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APOILOSONPE

- Flow methods

tion
eCa
adversarial dlogy

Flgure 6: Flow visualization on CIFAR-10. The example is misclassified as bird.
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o

(a) mountain bike

(b) goldfish () Maltese dog (@ tabby cat

Xiao et al 2018
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Yolo attack

* Yolo uses a large image area to
* predict boxes
* predict classes
e This means that a detection is
* affected by pixels OUTSIDE box
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