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Announcements

§ Midterm 1 next Monday 3/4 (Includes up to 2/20, Localization)

§ 3/13: Project intermediate reports due (Template posted)

§ MP3 will be release today/tomorrow 

§ Change of dates:
§ Midterm 2: 4/24

§ Poster/Demo: 5/1 (Prizes, Dinner!) 
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§ SLAM stands for simultaneous localization and 
mapping

§ The task of building a map while estimating 
the pose of the robot relative to this map

§ Why is SLAM hard?
Chicken and egg problem: 
a map is needed to localize the robot and 
a pose estimate is needed to build a map

The SLAM Problem
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Given:

§ The robot’s controls

§ Observations of 
nearby features

Estimate:

§ Map of features

§ Path of the robot

The SLAM Problem

A robot moving though an unknown, static environment
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SLAM Applications

Indoors

Space

Undersea

Underground



Online SLAM
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Full SLAM
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Representations

§ Grid maps or scans

[Lu & Milios, 97; Gutmann, 98: Thrun 98; Burgard, 99; Konolige & Gutmann, 00; Thrun, 00; Arras, 99; Haehnel, 01;…]

§ Landmark-based

[Leonard et al., 98; Castelanos et al., 99: Dissanayake et al., 2001; Montemerlo et al., 2002;…
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Why is SLAM a hard problem?

SLAM: robot path and map are both unknown

Robot path error correlates errors in the map
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Why is SLAM a hard problem?

§ In the real world, the mapping between observations 
and landmarks is unknown

§ Picking wrong data associations can have 
catastrophic consequences

§ Pose error correlates data associations

Robot pose
uncertainty
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SLAM: 
Simultaneous Localization and Mapping

§ Full SLAM:

§ Online SLAM:

Integrations typically done one at a time 

),|,( :1:1:1 ttt uzmxp

121:1:1:1:1:1 ...),|,(),|,( -ò ò ò= ttttttt dxdxdxuzmxpuzmxp !

Estimates most recent pose and map!

Estimates entire path and map!
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Data Association Problem

§ A data association is an assignment of observations to 
landmarks

§ In general there are more than 
(n observations, m landmarks) possible associations

§ Also called “assignment problem”
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§ Represent belief by random samples
§ Estimation of non-Gaussian, nonlinear processes

§ Sampling Importance Resampling (SIR) principle
§ Draw the new generation of particles
§ Assign an importance weight to each particle
§ Resampling 

§ Typical application scenarios are 
tracking, localization, …

Particle Filters
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§ A particle filter can be used to solve both problems

§ Localization: state space < x, y, q>

§ SLAM: state space < x, y, q, map>
§ for landmark maps = < l1, l2, …, lm>
§ for grid maps = < c11, c12, …, c1n, c21, …, cnm>

§ Problem: The number of particles needed to 
represent a posterior grows exponentially with 
the dimension of the state space!

Localization vs. SLAM



§ Naïve implementation of particle filters to SLAM 
will be crushed by the curse of dimensionality
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§ Is there a dependency between the dimensions of 
the state space?

§ If so, can we use the dependency to solve the 
problem more efficiently?

Dependencies 



17

§ Is there a dependency between the dimensions of 
the state space?

§ If so, can we use the dependency to solve the 
problem more efficiently?

§ In the SLAM context
§ The map depends on the poses of the robot.
§ We know how to build a map given the position 

of the sensor is known.

Dependencies



Conditional Independence

§ A and B are conditionally independent given C if 
P(A, B | C) = P(A|C) P(B|C)

§ Height and vocabulary are not independent
§ But they are conditionally independent given 

age
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Factored Posterior (Landmarks)

SLAM posterior
Robot path posterior

landmark positions

Factorization first introduced by Murphy in 1999

Does this help to solve the problem?

poses map observations & movements
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Factored Posterior (Landmarks)

Factorization first introduced by Murphy in 1999

poses map observations & movements
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Knowledge of the robot’s true path renders 
landmark positions conditionally independent

Mapping using Landmarks
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Factored Posterior

Robot path posterior
(localization problem) Conditionally 

independent 
landmark positions
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Rao-Blackwellization

§ This factorization is also called Rao-Blackwellization
§ Given that the second term can be computed 

efficiently, particle filtering becomes possible!
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FastSLAM
§ Rao-Blackwellized particle filtering based on 

landmarks     [Montemerlo et al., 2002]
§ Each landmark is represented by a 2x2 

Extended Kalman Filter (EKF)
§ Each particle therefore has to maintain M EKFs

Landmark 1 Landmark 2 Landmark M…x, y, q

Landmark 1 Landmark 2 Landmark M…x, y, qParticle
#1

Landmark 1 Landmark 2 Landmark M…x, y, qParticle
#2

Particle
N

…
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FastSLAM – Action Update

Particle #1

Particle #2

Particle #3
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Filter
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Filter
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FastSLAM – Sensor Update
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FastSLAM – Sensor Update

Particle #1

Particle #2

Particle #3

Weight = 0.8

Weight = 0.4

Weight = 0.1
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FastSLAM  - Video
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FastSLAM  Complexity

§ Update robot particles based on 
control ut-1

§ Incorporate observation zt into 
Kalman filters

§ Resample particle set

N = Number of particles
M = Number of map features

O(N)
Constant time per particle

O(N•log(M))
Log time per particle

O(N•log(M))

O(N•log(M))
Log time per particle

Log time per particle
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Data Association Problem

§ A robust SLAM must consider possible data associations 
§ Potential data associations depend also 

on the pose of the robot 

§ Which observation belongs to which landmark?
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Multi-Hypothesis Data Association

§ Data association is done on a 
per-particle basis

§ Robot pose error is factored 
out of data association 
decisions
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Per-Particle Data Association

Was the observation
generated by the red
or the blue landmark?

P(observation|red) = 0.3 P(observation|blue) = 0.7

§ Two options for per-particle data association
§ Pick the most probable match
§ Pick an random association weighted by 

the observation likelihoods

§ If the probability is too low, generate a new 
landmark
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Results – Victoria Park

§ 4 km traverse
§ < 5 m RMS 

position error
§ 100 particles

Dataset courtesy of University of Sydney

Blue = GPS
Yellow = FastSLAM
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Results – Victoria Park

Dataset courtesy of University of Sydney

https://www.youtube.com/watch?v=BIOJSNHYSbc
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Results – Data Association
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Results – Accuracy
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FastSLAM with Scan-Matching
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FastSLAM with Scan-Matching
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FastSLAM with Scan-Matching
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§ Can we solve the SLAM problem if no pre-defined 
landmarks are available?

§ Can we use the ideas of FastSLAM to build grid 
maps?

§ As with landmarks, the map depends on the poses 
of the robot during data acquisition

§ If the poses are known, grid-based mapping is easy 
(“mapping with known poses”)

Grid-based SLAM
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FastSLAM with Scan-Matching

Loop Closure
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Typical Evolution of neff
visiting new 
areas closing the 

first loop

second loop closure

visiting 
known areas
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Intel Lab

§ 15 particles
§ four times faster 

than real-time
P4, 2.8GHz

§ 5cm resolution 
during scan 
matching

§ 1cm resolution in 
final map
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Intel Lab

§ 15 particles
§ Compared to 

FastSLAM with 
Scan-Matching, 
the particles are 
propagated 
closer to the true 
distribution 
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Outdoor Campus Map

§ 30 particles
§ 250x250m2

§ 1.75 km 
(odometry)

§ 20cm resolution 
during scan 
matching

§ 30cm resolution 
in final map

§ 30 particles
§ 250x250m2

§ 1.088 miles 
(odometry)

§ 20cm resolution 
during scan 
matching

§ 30cm resolution 
in final map
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MIT Killian Court

§ The “infinite-corridor-dataset” at MIT



47

MIT Killian Court
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More Details on FastSLAM

§ M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM: A factored solution 
to simultaneous localization and mapping, AAAI02

§ D. Haehnel, W. Burgard, D. Fox, and S. Thrun. An efficient FastSLAM algorithm for 
generating maps of large-scale cyclic environments from raw laser range 
measurements, IROS03

§ M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit. FastSLAM 2.0: An Improved particle 
filtering algorithm for simultaneous localization and mapping that provably 
converges. IJCAI-2003

§ G. Grisetti, C. Stachniss, and W. Burgard. Improving grid-based slam with rao-
blackwellized particle filters by adaptive proposals and selective resampling, ICRA05

§ A. Eliazar and R. Parr. DP-SLAM: Fast, robust simultanous localization and mapping 
without predetermined landmarks, IJCAI03


