
FastSLAM 2.0: An Improved Particle Filtering Algorithm for Simultaneous
Localization and Mapping that Provably Converges

Michael Montemerlo and Sebastian Thrun
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Daphne Koller and Ben Wegbreit
Computer Science Department

Stanford University
Stanford, CA 94305-9010

Abstract

Proceedings of IJCAI 2003

In [15], Montemerlo et al. proposed an algorithm called
FastSLAM as an efficient and robust solution to the simul-
taneous localization and mapping problem. This paper
describes a modified version of FastSLAM which over-
comes important deficiencies of the original algorithm.
We prove convergence of this new algorithm for linear
SLAM problems and provide real-world experimental re-
sults that illustrate an order of magnitude improvement in
accuracy over the original FastSLAM algorithm.

1 Introduction
Simultaneous localization and mapping (SLAM) is a highly
active research area in robotics and AI. The SLAM problem
arises when a moving vehicle (e.g. a mobile robot, submarine,
or drone) simultaneously estimates a map of its environment
and its pose relative to that map. In the absence of global po-
sition information, the vehicle’s pose estimate will become in-
creasingly inaccurate, as will its map. Since maps may con-
tain thousands of entities, acquiring large, accurate maps is
a challenging statistical estimation problem, especially when
performed in real-time.

Most present-day research on SLAM originates from a sem-
inal paper by Smith and Cheeseman [21], which proposed the
use of the extended Kalman filter (EKF) for solving SLAM.
This paper is based on the insights that errors in the map and
pose errors are naturally correlated, and that the covariance ma-
trix maintained by the EKF expresses such correlations. New-
mann [18] recently proved that the EKF converges for linear
SLAM problems, where the motion model and observation
model are linear functions with Gaussian noise (see below).

Unfortunately, EKF covariance matrices are quadratic in the
size of the map, and updating them requires time quadratic in
the number of landmarks N . This quadratic complexity has
long been recognized to be a major obstacle in scaling SLAM
algorithms to maps with more than a few hundred features. It
also limits the applicability of SLAM algorithms to problems
with ambiguous landmarks, which induces a data association
problem [2; 22]. Today’s most robust algorithms for SLAM
with unknown data association maintain multiple hypotheses
(tracks), which increase their computational complexity.

Consequently, there has been a flurry on research on more
efficient SLAM techniques (see e.g., [11]). One group of
researchers has developed techniques that recursively divide
maps into submaps, thereby confining most computation to
small regions. Some of these approaches still maintain global
correlations among those submaps, hence are quadratic but

with a much reduced constant factor [1; 7; 23; 26]. Others re-
strict the update exclusively to local maps [12], hence operate
in constant time (assuming known data association).

A second group of researchers has developed techniques
that represent maps through potential functions between ad-
jacent landmarks, similar to Markov random fields. The re-
sulting representations require memory linear in the number of
landmarks [19; 24]. Under appropriate approximations, such
techniques have been shown to provide constant time updat-
ing (again for known data association). Unfortunately, no con-
vergence proof exists for any of these extensions of the EKF,
even for the generic case of linear SLAM. Furthermore, if land-
marks are ambiguous, all of these approaches have to perform
search to find appropriate data association hypotheses, adding
a logarithmic factor to their update complexity.

The FastSLAM algorithm, proposed in [15] as an efficient
approach to SLAM based on particle filtering [6], does not fall
into either of the categories above. FastSLAM takes advan-
tage of an important characteristic of the SLAM problem (with
known data association): landmark estimates are conditionally
independent given the robot’s path [17]. FastSLAM uses a par-
ticle filter to sample over robot paths. Each particle possesses
N low-dimensional EKFs, one for each of the N landmarks.
This representation requires O(NM) memory, where M is the
number of particles in the particle filter. Updating this filter
requires O(M log N) time, with or without knowledge of the
data associations. However, the number of particles M needed
for convergence is unknown and has been suspected to be ex-
ponential in the size of the map, in the worst-case.

This paper proposes an improved version of the FastSLAM
algorithm. The modification is conceptually simple: When
proposing a new robot pose—an essential step in FastSLAM’s
particle filter—our proposal distribution relies not only on the
motion estimate (as is the case in FastSLAM), but also on the
most recent sensor measurement. Such an approach is less
wasteful with its samples than the original FastSLAM algo-
rithm, especially in situations where the noise in motion is high
relative to the measurement noise.

To obtain a suitable proposal distribution, our algorithm lin-
earizes the motion and the measurement model in the same
manner as the EKF. As a result, the proposal distribution can be
calculated in closed form. This extension parallels prior work
by Doucet and colleagues, who proposed a similar modifica-
tion for general particle filters [6] and MCMC techniques for
neural networks [4]. It is similar to the arc reversal technique
proposed for particle filters applied to Bayes networks [10],
and it is similar to recent work by van der Merwe [25], who
uses an unscented filtering step [9] for generating proposal dis-
tributions that accommodate the measurement.



While this modification is conceptually simple, it has impor-
tant ramifications. A key contribution of this paper is a conver-
gence proof for linear SLAM problems using a single particle.
The resulting algorithm requires constant updating time. To
our knowledge, the best previous SLAM algorithm for which
convergence was shown requires quadratic update time. Fur-
thermore, we observe experimentally that our new FastSLAM
algorithm, even with a single particle, yields significantly more
accurate results on a challenging real-world benchmark [7]
than the previous version of the algorithm. These findings are
of significance, as many mobile robot systems are plagued by
control noise, but possess relatively accurate sensors. More-
over, they contradict a common belief that maintaining the en-
tire covariance matrix is required for convergence [5].

2 Simultaneous Localization and Mapping
Simultaneous localization and mapping (SLAM) addresses the
problem of simultaneously recovering a map and a vehicle
pose from sensor data. The map contains N features (land-
marks) and shall be denoted Θ = θ1, . . . , θN . The path of the
vehicle will be denoted st = s1, . . . , st, where t is a time index
and st is the pose of the vehicle at time t.

Most state-of-the-art SLAM algorithms calculate (or ap-
proximate) variants of the following posterior distribution:

p(Θ, s
t | z

t
, u

t
, n
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where zt = z1, . . . , zt is a sequence of measurements (e.g.,
range and bearing to nearby landmarks), and ut = u1, . . . , ut

is a sequence of robot controls (e.g., velocities for robot
wheels). (As usual, we assume without loss of generality that
only a single landmark is observed at each time t.) The vari-
ables nt = n1, . . . , nt are data association variables — each
nt specifies the identity of the landmark observed at time t.
Initially, we assume nt is known; we relax this assumption be-
low.

To calculate the posterior (1), the vehicle is given a proba-
bilistic motion model, in the form of the conditional probability
distribution p(st | ut, st−1). This distribution describes how a
control ut, asserted in the time interval [t − 1; t), affects the
resulting pose. Additionally, the vehicle is given a probabilis-
tic measurement model, denoted p(zt | st,Θ, nt), describing
how measurements evolve from state. In accordance to the
rich SLAM literature, we will model both models by nonlinear
functions with independent Gaussian noise:

p(zt | st, Θ, nt) = g(st, θnt) + εt (2)

p(st | ut, st−1) = h(ut, st−1) + δt (3)

Here g and h are nonlinear functions, and εt and δt are Gaus-
sian noise variables with covariance Rt and Pt, respectively.

3 FastSLAM
FastSLAM [15] is based on the important observation [17] that
the posterior can be factored
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This factorization is exact and universal in SLAM problems.
It states that if one (hypothetically) knew the path of the vehi-
cle, the landmark positions could be estimated independently
of each other (hence the product over n). In practice, of course,

one does not know the vehicle’s path. Nevertheless, the inde-
pendence makes it possible to factor the posterior into a term
that estimates the probability of each path, and N terms that
estimate the position of the landmarks, conditioned on each
(hypothetical) path.

FastSLAM samples the path using a particle filter. Each
particle has attached its own map, consisting of N extended
Kalman filters. Formally, the m-th particle S

[m]
t contains a

path st,[m] along with Gaussian N landmark estimates, de-
scribed by the mean µ

[m]
n,t and covariance Σ

[m]
n,t :

S
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1,t , Σ
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landmark θ1

, . . . , µ
[m]
N,t, Σ

[m]
N,t
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landmark θN

(5)

We briefly reviews the key equations of the regular Fast-
SLAM algorithm, and refer the reader to [15]. Each update
in FastSLAM begins with sampling new poses based on the
most recent motion command ut:

s
[m]
t ∼ p(st | s

[m]
t−1, ut). (6)

Note that this proposal distribution only uses the motion com-
mand ut, but ignores the measurement zt.

Next, FastSLAM updates the estimate of the observed land-
mark(s), according to the following posterior. This posterior
takes the measurement zt into consideration:

p(θnt | s
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Here η is a constant. This posterior is the normalized product
of two Gaussians as indicated. However, if g is non-linear, the
product will not be Gaussian in general. To make the result
Gaussian, FastSLAM employs the standard EKF “trick” [13]:
g is approximated by a linear function (see below). Under this
approximation, (7) is equivalent to the measurement update
equation familiar from the EKF literature [13].

In a final step, FastSLAM corrects for the fact that the pose
sample s

[m]
t has been generated without consideration of the

most recent measurement. It does so by resampling the parti-
cles [20]. The probability for the m-th particle to be sampled
(with replacement) is given by the following variable w

[m]
t ,

commonly referred to as importance factor:

w
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dθnt

As shown in [15], the resampling operation can be imple-
mented in O(M log N) time using trees, where M is the num-
ber of samples and N the number of landmarks in the map.
However, the number of particles M needed for convergence
remains an open question.

FastSLAM has been extended to SLAM with unknown data
associations [14]. If the data association is unknown, each par-
ticle m in FastSLAM makes its own local data association de-
cision n̂

[m]
t , by maximizing the measurement likelihood. The

formula for finding the most likely data association maximizes
the resulting importance weight:

n̂
[m]
t = argmax

nt

w
[m]
t (nt) (8)



Here w
[m]
t (nt) makes the dependence of the factor w

[m]
t on the

variable nt explicit. A key characteristic of FastSLAM is that
each particle makes its own local data association. In contrast,
EKF techniques must commit to a single data association hy-
pothesis for the entire filter. Results in [14] show empirically
that this difference renders FastSLAM significantly more ro-
bust to noise than EKF-style algorithms.

4 FastSLAM 2.0
Our new FastSLAM algorithm is based on an obvious ineffi-
ciency arising from the proposal distribution of regular Fast-
SLAM. In regular FastSLAM, the pose s

[m]
t is sampled in ac-

cordance to the prediction arising from the motion command
ut, as specified in (6). It does not consider the measurement
zt acquired at time t; instead, the measurement is incorporated
through resampling. This approach is particularly troublesome
if the noise in the vehicle motion is large relative to the mea-
surement noise. In such situations, sampled poses will mostly
fall into areas of low measurement likelihood, and will subse-
quently be terminated in the resampling phase with high proba-
bility. Unfortunately, many real-world robot systems are char-
acterized by relatively high motion noise. As illustrated in the
experimental results section of this paper, the waste incurred
by this inefficient sampling scheme can be significant.

4.1 Sampling The Pose
FastSLAM 2.0 implements a single new idea: Poses are sam-
pled under consideration of both the motion ut and the mea-
surement zt. This is formally denoted by the following sam-
pling distribution, which now takes the measurement zt into
consideration:

s
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t ∼ p(st | s
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, u

t
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t
, n
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In comparison to (6), incorporating the measurement
only makes sense if we incorporate our current estimate
of the observed landmark—obtained from the variables
st−1,[m], ut−1, zt−1, nt−1 (which are included of the condi-
tioning variables above). So in essence, the difference to Fast-
SLAM is that the measurement zt is incorporated. However,
this change has important ramifications.

The proposal distribution (9) can be reformulated as follows:
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That is, the proposal distribution is the product of two fac-
tors: the familiar next state distribution p(st | s

[m]
t−1, ut), and

the probability of the measurement zt. Calculating the latter
involves an integration over possible landmark locations θnt

.
Unfortunately, sampling directly from this distribution is im-

possible in the general case; it does not even possess a closed
form. Luckily, a closed form solution can be attained if g is
approximated by a linear function (h may remain non-linear!):

g(θnt , st) ≈ ẑ
[m]
t + Gθ · (θnt−µ

[m]
nt,t−1) + Gs · (st−ŝ

[m]
t )

where ẑ
[m]
t = g(θ̂

[m]
nt , ŝ

[m]
t ) denotes the predicted measure-

ment, ŝ
[m]
t = h(s

[m]
t−1, ut) the predicted robot pose, and θ̂

[m]
n =

µ
[m]
n,t−1 the predicted landmark location. The matrices Gθ and

Gs are the Jacobians (first derivatives) of g with respect to θ
and s, respectively:

Gθ = ∇θnt
g(θnt , st)

∣
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Under this EKF-style approximation, the proposal distribution
(9) is Gaussian with the following parameters:
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where the matrix Q
[m]
t is defined as follows:

Q
[m]
t = Rt + GθΣ

[m]
nt,t−1G

T
θ (15)

4.2 Updating The Observed Landmark Estimate
The updating step remains the same as in FastSLAM (see (7)).
As stated in the previous section, g is linearized to retain Gaus-
sianity of the posterior. This leads to the following update
equations, whose derivation is equivalent to that of the stan-
dard EKF measurement update [13]:

K
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t = Σ
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θ Q

[m]−1
t (16)

µ
[m]
nt,t = µ

[m]
nt,t−1 + K

[m]
t (zt − ẑ

[m]
t ) (17)

Σ
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t Gθ)Σ

[m]
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4.3 The Importance Weights
Resampling is necessary even in our new version of Fast-
SLAM, since the particles generated do not yet match the de-
sired posterior. The culprit is the normalizer η[m] in (10),
which may be different for different particles m. This normal-
izer is the inverse of the probability of the measurement under
the m-th particle: η[m] = p(zt | st−1,[m], ut, zt−1, nt)−1. To
account for this mismatch, our algorithm resamples in propor-
tion to the following importance factor:

w
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[m]
t−1

,Pt)

dst

This expression can once again be approximated as a Gaus-
sian by linearizing g. The mean of this Gaussian is ẑt, and its
covariance is

GsPtG
T
s + GθΣ

[m]
nt,t−1G

T
θ + Rt (19)

4.4 Unknown Data Associations
The approach for handling data association is similar to the one
in regular FastSLAM: Again, we select the data association nt

that maximizes the probability of the measurement zt for the
m-th particle:

n̂
[m]
t = argmax

nt

p(zt | nt, n̂
t−1,[m]

, s
t,[m]

, z
t−1

, u
t) (20)



(a) Raw vehicle odometry (b) FastSLAM 2.0, M=1 particle (c) Same w. dynamic feature management

Figure 1: FastSLAM 2.0 applied to the Victoria Park benchmark data set using only M=1 particle. The accuracy of the recovered path and
the resulting map is indistinguishable from that the best EKF-style methods and the original FastSLAM algorithm with M=100 particles.

At first glance, one may be tempted to substitute w
[m]
t for

the probability on the right-hand side, as in regular Fast-
SLAM. However, w

[m]
t does not consider the sampled pose

s
[m]
t , whereas the expression here does. This leads to a slightly

different probability, which is calculated as follows.
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Linearization of g leads to a Gaussian over zt with mean
g(µ

[m]
nt,t−1, s

[m]
t ) and covariance Q

[m]
t . Both are functions of

the data association variable nt.

4.5 Feature Management
Finally, in cases with unknown data associations, features
have to created dynamically. As is common for SLAM algo-
rithms [5], our approach creates new features when the mea-
surement probability in (20) is below a threshold. However,
real-world data with frequent outliers will generate spurious
landmarks using this rule. Following [5], our approach re-
moves such spurious landmarks by keeping track of their pos-
terior probability of existence. Our mechanism analyzes mea-
surement to the presence and absence of features. Observing a
landmark provides positive evidence for its existence, whereas
not observing it when µ

[m]
n falls within the robot’s perceptual

range provides negative evidence. The posterior probability
of landmark existence is accumulated by the following Bayes
filter, whose log-odds form is familiar from the literature on
occupancy grid maps [16]:

τ
[m]
n =

∑

t

ln
p(i

[m]
n | s

[m]
t , zt, n̂

[m]
t )

1 − p(i
[m]
n | s

[m]
t , zt, n̂

[m]
t )

(22)

Here τ
[m]
n are the log-odds of the physical existence of land-

mark θ
[m]
n in map m, and p(i

[m]
n | s

[m]
t , zt, n̂

[m]
t ) is the prob-

abilistic evidence provided by a measurement. Under appro-
priate definition of the latter, this rule provides for a simple
evidence counting rule. If the log odds drops below a prede-
fined threshold, the corresponding landmark is removed from
the map. This mechanism enables particles to free themselves
of spurious features.

5 Convergence
A key result in this paper is the fact that our new version of
FastSLAM converges for M=1 particle, for a restricted class
of linear Gaussian problems (the same for which KFs con-
verge [5; 18]). Specifically, our result applies to SLAM prob-
lems characterized by the following linear form:

g(st, θnt) = θnt − st (23)

h(ut, st−1) = ut + st−1 (24)

Linear SLAM can be thought of as a robot operating in a Carte-
sian space equipped with a noise-free compass, and sensors
that measure distances to features along the coordinate axes.
The following theorem, whose proof can be found in the ap-
pendix, states the convergence of our new FastSLAM variant:

Theorem. For linear SLAM, FastSLAM with M=1 parti-
cles converges in expectation to the correct map if all features
are observed infinitely often, and if the location of one feature
is known in advance.

This theorem parallels a similar result previously published
for the Kalman filter [5; 18]. However, this result applies to
the Kalman filter, whose update requires time quadratic in the
number of landmarks N . With M=1, the resampling step
becomes obsolete and each update takes constant time. To
our knowledge, our result is the first convergence result for
a constant-time SLAM algorithm. It even holds if all features
are arranged in a large loop, a situation often thought of as the
worst case for SLAM problems [8].

6 Experimental Results
Systematic experiments showed that FastSLAM 2.0 provides
excellent results with surprisingly few particles, including
M=1. Most of our experiments were carried out using a
benchmark data set collected with an outdoor vehicle in Victo-
ria Park, Sydney [7]. The vehicle path is 3.5km long, and the
map is 320 meters wide. The vehicle is equipped with differ-
ential GPS that is used for evaluation only. Fig. 1a shows the
map of the terrain, along with the path obtained by raw odome-
try (which is very poor, the average RMS error is 93.6 meters).
This data set is presently the most popular benchmark in the
SLAM research community [3].

Figs. 1b&c show the result of applying FastSLAM with
M=1 particle to the data set, without (Fig. 1b) and with
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Figure 2: RMS map error for regular FastSLAM (dashed line) versus
FastSLAM 2.0 (solid line) on (a) the Victoria Park data (b) simulated
data. FastSLAM 2.0’s results even with a single particle are excellent.

(Fig. 1c) the feature management approach described in Sec-
tion 4.5. In both cases, the estimated vehicle path is shown in
yellow, and the GPS information is shown in blue. Results of
the same accuracy were previously achieved only with O(N 2)
EKF-style methods [7] and with FastSLAM using M=50 par-
ticles. The feature management rule reduces the number of
landmarks in the map from 768 (Fig. 1b) to 343 (Fig. 1c).

Fig. 2 plots the RMS error of the vehicle position esti-
mate as function of the number of particles for the Victoria
data set (panel a) and for synthetic simulation data (panel b)
taken from [15]. While our new algorithm does approximately
equally well for any number of particles, regular FastSLAM
performs poorly for very small particle sets. We suspect that
the poor performance of regular FastSLAM is due to the fact
that the vehicle possesses relatively inaccurate odometry (see
Fig. 1a), yet uses a low-noise range finder for landmark detec-
tion (a common configuration in outdoor robotics), leading to
the generation of many particles of low likelihood.

The small number of examples needed to obtain state-of-
the-art estimation translates to unprecedented efficiency of the
new filter. The following table shows the results required to
process the Victoria Park data set on a 1GHz Pentium PC:

EKF 7,807 sec
regular FastSLAM, M=50 particles 403 sec
FastSLAM 2.0, M=1 particle 140 sec

In comparison, the data acquisition required 1,550 seconds.
Thus, while EKFs cannot be run in real-time, our new algo-
rithm requires less than 10% of the vehicle’s trajectory time.

7 Discussion
This paper describes a modified FastSLAM algorithm that
is uniformly superior to the FastSLAM algorithms proposed
in [15]. The new FastSLAM algorithm utilizes a different pro-

posal distribution which incorporates the most recent measure-
ment in the pose prediction process. In doing so, it makes more
efficient use of the particles, particularly in situations in which
the motion noise is high in relation to the measurement noise.

A main contribution of this paper is a convergence proof for
FastSLAM with a single particle. This proof is an improve-
ment over previous formal results, which applied to algorithms
much less efficient than the current one. In fact, this result is a
first convergence result for a constant time SLAM algorithm.

The theoretical finding is complemented by experimental re-
sults using a standard benchmark data set. The new algorithm
is found to outperform the previous FastSLAM algorithm and
the EKF approach to SLAM by a large margin. In fact, a single
particle suffices to generate an accurate map of a challenging
benchmark data set. Despite this surprising result, the use of
multiple particles is clearly warranted in situations with am-
biguous data association. We believe that our results illustrate
that SLAM can be solved robustly by algorithms that are sig-
nificantly more efficient than EKF-based algorithms.
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Appendix
The linear form (23) and (24) implies ŝ

[m]
t = s

[m]
t−1 + ut, ẑ

[m]
t =

µ
[m]
nt,t−1 − s

[m]
t−1 −ut, Gθ = I , Gs = −I , and Q

[m]
t = Rt +Σ

[m]
nt,t−1.

From that we obtain for the mean and covariance (13) and (14) of the
proposal distribution:

Σ[m]
st

=
[

(Rt + Σ
[m]
nt,t−1)

−1 + P
−1
t

]−1

(25)

µ
[m]
st

= −Σ[m]
st

(Rt + Σ
[m]
nt,t−1)

−1(zt − µ
[m]
nt,t−1 + s

[m]
t−1 + ut)

+s
[m]
t−1 + ut (26)

The update of the landmark mean (Eq. (16) and (17)) resolves to:

µ
[m]
nt,t = µ

[m]
nt,t−1 + Σ

[m]
nt,t−1

(Rt + Σ
[m]
nt,t−1)

−1(zt − µ
[m]
nt,t−1 + s

[m]
t−1 + ut)(27)

We define the error in the robot pose and landmark locations as:

α
[m]
t = s

[m]
t − st and β

[m]
n,t = µ

[m]
n,t − θn (28)

We first characterize the effect of map errors β on the pose error α:
Lemma 1. If the error β

[m]
nt,t of the observed landmark zt at time t

is smaller in magnitude than the robot pose error α
[m]
t , α

[m]
t shrinks

in expectation as a result of this measurement. Conversely, if β
[m]
nt,t is

larger than the pose error α
[m]
t , the latter may increase, but in expec-

tation will not exceed β
[m]
nt,t.

Proof. The expected error of the robot pose at time t is given by

E[α
[m]
t ] = E[s

[m]
t − st] = E[s

[m]
t ] − E[st] (29)

The first term is obtained via the sampling distribution (26), and the
second term is obtained from the linear motion model (24), giving:

E[α
[m]
t ] = −Σ[m]

st
(Rt + Σ

[m]
nt,t−1)

−1(E[zt] −

µ
[m]
nt,t−1 + s

[m]
t−1 + ut) + α

[m]
t−1 (30)

For linear SLAM, the expectation E[zt] = θnt −E[st] = θnt −ut −
st−1. With that, the expression in the brackets becomes

E[zt] − µ
[m]
nt,t−1 + s

[m]
t−1 + ut

= θnt − ut − st−1 − µ
[m]
nt,t−1 + s

[m]
t−1 + ut

= α
[m]
t−1 − β

[m]
nt,t−1 (31)

Substituting this back into (30) and subsequently substituting Σ
[m]
st

according to (25) gives us:

E[α
[m]
t ] (32)

= α
[m]
t−1 + Σ[m]

st
(Rt + Σ

[m]
nt,t−1)

−1(β
[m]
nt,t−1 − α

[m]
t−1)

= α
[m]
t−1 +

[

I + (Rt + Σ
[m]
nt,t−1)P

−1
t

]−1

(β
[m]
nt,t−1 − α

[m]
t−1)

The lemma follows from the fact that Rt, Σ
[m]
nt,t−1, and P−1

t are pos-

itive semidefinite, hence the inverse of I + (Rt + Σ
[m]
nt,t−1)P

−1
t is a

contraction matrix. E[α
[m]
t ] is larger in magnitude if and only if α

[m]
t−1

depends on the sign of β
[m]
nt,t−1 > α

[m]
t−1; however, E[α

[m]
t ] cannot

exceed β
[m]
nt,t−1 in this case. qed.

Of particular interest is the result of observing the anchoring land-
mark, by which we mean the landmark whose location is known.
Without loss of generality, we assume that this landmark is θ1.

Lemma 2. If the robot observes the anchoring landmark θ1, its
pose error will shrink in expectation.

Proof. The anchoring landmark has zero error: β
[m]
1,t = 0, and its

covariance is also zero: Σ
[m]
1,t = 0. Plugging this into (32), we get:

E[α
[m]
t ] = α

[m]
t−1 +

[
I + (Rt + 0)P−1

t

]−1
(0 − α

[m]
t−1)

= α
[m]
t−1 −

[
I + RtP

−1
t

]−1
α

[m]
t−1 (33)

qed.
Finally, a lemma similar to Lemma 1 can be stated on the effect of

pose errors α on map errors β. Its proof is analogous that of Lemma
1, with reverse roles of α and β.

Lemma 3. If the pose error α
[m]
t−1 is smaller than the error β

[m]
nt,t

of the observed landmark zt in magnitude, observing zt shrinks the
landmark error β

[m]
nt,t in expectation. Conversely, if α

[m]
t−1 is larger than

the landmark error β
[m]
nt,t, the latter may increase, but in expectation

will not exceed α
[m]
t−1.

Proof of Theorem. Let β̂
[m]
t denote landmark error that is largest

in magnitude among all landmark errors at time t.

β̂
[m]
t = argmax

β
[m]
n,t

|β
[m]
n,t | (34)

Lemma 3 suggests that this error may increase in expectation, but only
if the absolute robot pose error α

[m]
t−1 exceeds this error in magnitude.

However, in expectation this will only be the case for a limited num-
ber of iterations. In particular, Lemma 1 guarantees that α

[m]
t−1 may

only shrink in expectation. Furthermore, Lemma 2 states that every
time the anchoring landmark is observed, this error will shrink by a
finite amount, regardless of the magnitude ofβ̂[m]

t . Hence, α
[m]
t−1 will

ultimately become smaller in magnitude (and in expectation) than the
largest landmark error. Once this has happened, Lemma 3 states that
the latter will shrink in expectation every time the landmark is ob-
served whose error is largest. It is now easy to see that both β̂

[m]
t and

α
[m]
t−1 converge to zero: Observing the anchoring landmark induces a

finite reduction as stated in (33). To increase α
[m]
t−1 to its old value

in expectation, the total landmark error must shrink in expectation
(Lemma 3). This leads to an eternal shrinkage of the total landmark
error down to zero. Since this error is an upper bound for the expected
pose error (see Lemma 1), we also have convergence in expectation
for the robot pose error. qed.


