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Outline

● The Camera as a sensor

● Camera motion estimation:
the essential matrix

● Dealing with noise: 
RANSAC

● Getting to the point

● Keeping the point

Opportunity EDL Trajectory
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Camera Motion Estimation

● Why using a camera?
– Vast information
– Extremely low Size, Weight, and Power (SWaP) footprint
– Cheap and easy to use
– Passive sensor
– Processing power is OK today

● Camera motion estimation 
– Understand the camera as a sensor
– What information in the image is particularly useful
– Estimate camera 6(5)DoF using 2 images: 

Visual Odometry (VO)

After all, it's what nature uses, too!
Cellphone processor unit 
1.7GHz quadcore ARM <10g

Cellphone type camera, up to 
16Mp (480MB/s @ 30Hz)

“monocular vision”

“stereo vision”
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A Camera is a Bearing Sensor

● Projective sensor which measures the bearing of a 
point with respect to the optical axis
– Depth can be inferred by re-observing a point from 

different angles
– The movement (i.e. the angle between the 

observations) is the point's parallax

● A point at infinity is a feature which exhibits no 
parallax during camera motion
– The distance of a star cannot be inferred by moving a 

few kilometers
– BUT: it is a perfect bearing reference for attitude 

estimation: NASA's star tracker sensors better than 

1 arc second or 0.00027deg
star tracker
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Perspective Camera – Projection on the Image Plane

assume calibrated camera
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Epipolar Constraint

Suppose a camera undergoes motion

C,C’,x,x’ and X are coplanar
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Epipolar Constraint

Suppose a camera undergoes motion

What if only C,C’,x are known?
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Epipolar Constraint

Suppose a camera undergoes motion

All points on π project on l and l’
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Epipolar Constraint

Suppose a camera undergoes motion

Family of planes π and lines l and l’ 
Intersection in e and e’
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Epipolar Constraint

● Formulating the epipolar constraint:

3D point transformation:

Using projected points in the image plane:

Divide by      , multiply by        :

Multiply by       : 

Essential Matrix:

C
1

C2

X1
X2

T X

RTE ×=

λ1
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Motion Estimation: 
Solving the Essential Matrix

x2
T Ex=0

separate known from unknown

x2 x1 e11+ x2 y2 e12+x 2e13+ y1 x2 e21+ y1 y2 e22+ y1 e23+x 2 e31+ y2 e32+e 33=0

[ x1 x2 , x1 y2 , x1, y1 x2 , y1 y2 , y1 , x2 , y2 ,1 ] [e11 , e12 ,e13 ,e 21 , e22 ,e 23 , e31 , e32 , e33]
T
=0

(data) (unknowns)
(linear)

Ae=0

[
x11 x21 x11 y21 x11 y11 x 21 y11 y21 y11 x21 y 21 1

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

x1n x2n x1n y2n x1n y1n x 2n y1n y2n y1n x2n y2n 1 ]e=0
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Motion Estimation: 
Solving the Essential Matrix

e1
T E=0 Ee2=0 detE=0 rank E=2

E=U [
σ 1

σ 2

σ3
]V T=U 1σ1V 1

T+U 2σ 2V 2
T+U 3 σ3V 3

T

SVD from linearly computed E matrix (rank 3)

E'=U [
σ1

σ 2

0 ]V T=U 1 σ1V 1
T +U 2 σ2V 2

T

Compute closest rank-2 approximation min∥E-E'∥E

E is essential matrix if and only if
two singularvalues are equal (and third=0)

T0)VUdiag(1,1,E =

C1

C2

X
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Motion Estimation: 
linear 8-point algorithm

~10000 ~10000 ~10000 ~10000~100 ~100 1~100 ~100

!
Orders of magnitude difference
Between column of data matrix
→  not normalized least-squares yields poor results

[
x11 x21 x11 y21 x11 y11 x 21 y11 y21 y11 x21 y 21 1

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

x1n x2n x1n y2n x1n y1n x 2n y1n y2n y1n x2n y2n 1 ]e=0
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Recovering the Pose

● Recover R, T from E
– Only one solution where points is in front of both cameras
– Apply motion consistency

RTE ×=
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From 8 points to 5 points

● Linear 8-point algorithm 
– Problem is only of dimension 5 (3 for rotation, 2 for translation up to scale)
– Linear formulation is fast and simple to solve

● Non-linear 5-point algorithm (Nistér PAMI 204)
– Finding roots of cubic polynomials
– Mathematically hairy but fast implementations exist 

Ae=0
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Motion estimation with less than 5 points

● General case is a 5-dimensional problem
● Constraining the general case reduces the dimensionality:

– Homography: Planar constraint, 4 points
● Multi plane homography VO: Y. Cheng (ICRA 2010) 
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Motion estimation with less than 5 points

● General case is a 5-dimensional problem
● Constraining the general case reduces the dimensionality:

– Using IMU for rotation:  2-dim constraint for translation up to scale 
– Using robot model and kinematics: 1 point [Scaramuzza et al. IJCV 2011]

– Special case: known 3D coordinates of the points: stereo vision

[Scaramuzza et al. IJCV 2011]

[Weiss et al. ICRA 2012]
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The RANSAC (RAndom SAmple Consensus) 
Algorithm for model fitting and outlier rejection

Assume: 
● The model parameters can be estimated from N data items 

(e.g. essential matrix from 5-8 points)
● There are M data items in total. 

The algorithm: 
1. Select N data items at random 
2. Estimate parameters (linear or nonlinear least square, or other)
3. Find how many data items (of M) fit the model with parameter vector within 

a user given tolerance, T. Call this k. 
if K is the largest (best fit) so far, accept it. 

4. Repeat 1. to 4. S times
 

Questions:
● What is the tolerance?
● How many trials, S, ensure success?
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The RANSAC (RAndom SAmple Consensus) 
Algorithm for model fitting

To ensure that RANSAC has high chance to find correct inliers, a sufficient 
number of trials  must be executed. Let p be the  probability of inliers of any 
given correspondence and P is a success probability after S trials. We have
 

where p quickly decreases if many 
points are needed to fit the model!

And

SkpP )1()1( −=−

)1log(

)1log(
kp

P
S

−
−=

[Scaramuzza et al. IJCV 2011]

Model fitting needs to be fast: this is 
executed at every camera frame!
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Scale propagation

● Scale of translation estimation between image pairs can vary arbitrarily

– Use common points to unify (propagate) the scale factor
– Accumulated errors lead to scale drift

Ae=0=λ Ae=Λ Ae
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Getting to the point: image features

● Need at least 5 point correspondences in each image to determine general 
transformation
– Extract salient points: feature detector
– Detect the same salient points independently in both images
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Getting to the point: image features

● Need at least 5 point correspondences in each image to determine general 
transformation
– Extract salient points: feature detector
– Detect the same salient points independently in both images
– Get sufficient information to recognize one point in the other image again
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Getting to the point: Feature detectors

● Some examples:
– FAST
– AGAST
– SIFT (DoG)
– SURF (discretized DoG)

● General Idea:
– Extract high contrast areas in the image

● This often is at object borders: Parallax issue

– Avoid edges

● Computaional complexity
– Be as fast as possible:

For every image 100s of features
– Trade-off between high quality features 

(good repeatability) and computational complexity

homogeneous

edge

corner
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Getting to the point: be FAST

● Mostly used in real-time robotics applications
– FAST/AGAST: on average checks 2.5 pixels per feature!

● Machine Learning was applied to
– Generate a decision tree, that quickly discards pixels that are not a corner
– Decision tree is build based on evaluating all 16 pixels and a training set
– From the decision tree, C, Python or
– Matlab code is generated (~6000 lines of code)
– Available at: http://mi.eng.cam.ac.uk/~er258/work/fast.html
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Keeping the Points: Tracking

● Idea: describe the region around a feature to find it again in the other image
● Examples of feature descriptors:

– Image patch
– SIFT
– SURF
– BRISK
– DAISY
– …...

● Should find the same feature again even 
if image is rotated, affine transformed, 
and scaled

● Any descriptor aims at a loss-less 
compression of the surrounding image 
patch including some invariances

● Apply normalization to mitigate
illumination changes (e.g. ZM-SAD, ZM-SSD)

BRISK descriptor 
sampling pattern

This is still in the kernel for motion 
estimation: happens 100s of times per frame
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Keeping the point

● Issue with *-invariant descriptors:
– Reduction in information

● Binary descriptors:
– Further reduction of information
– Very fast to compute
– Issues with large datasets: Classification space is limited
– Only abrupt class changes possible
– Difficult to use for loop closures on large data sets

?



June 28, 2014 CVPR Tutorial on VSLAM -- S. Weiss 27

Jet Propulsion Laboratory
California Institute of Technology

Keeping the Points: Speeding it up

● Feature tracking usually are the bottleneck in VO pipelines
– Need to be done 100s of times per frame

● Constrain search region
– Apply motion model (may include other sensors: IMU, GPS)
– Use pyramidal approach: 

rough matching in low res image, refine in high res image
– Combination of both (Klein & Murray, ISMAR 2007)

640x480 (Klein & Murray )

80x60  (Klein & Murray )

Search cone based 
on motion model
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Keeping the Points: Speeding it up

● In VO: translation and rotation is usually small
– This can be different for loop closing

● Sophisticated descriptors might be an overkill
● Plain image patches can be used as descriptors

– Retains most information
– 3x3 patches (8 pixels) can be computed efficiently by vector operations
– Not even patch warping may be need
– Search region must be kept very small!

● Robust outlier rejection often is preferred over robust and sophisticated 
feature matching

Optical flow computed with image patch matching and 
IMU motion model (Weiss et al. IROS13):
● 50Hz on 1 core of a cell phone 1.7GHz quadcore 

processor board
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Putting All Together:
Mars Exploration Rover (2003)

● Not all robots drive/fly forever: some just need very good VO for some 
moments:
Velocity estimation to land the Mars Exploration Rover

Efficient Implementation
Only template and window need to be rectified and flattened

– Computed on a coarse grid
– Homography assumption
– Application Region: Only computed in overlap region of images
– Sun direction parameter is used to mask out region around zero phase
– Parachute shadow
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Putting All Together:
Mars Exploration Rover (2003)
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Q & A


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Q & A

