
Stereo Visual Odometry

Chris Beall
CVPR 2014 Visual SLAM Tutorial

OUTLINE

•  Motivation
•  Algorithm Overview
•  Feature Extraction and matching
•  Incremental Pose Recovery

•  Practical/robustness considerations
•  What else do you get?
•  Results

Motivation

•  Why stereo Visual Odometry?
•  Stereo avoids scale ambiguity inherent in monocular VO
•  No need for tricky initialization procedure of landmark depth

Algorithm Overview

1. Rectification

2. Feature Extraction

4. Temporal Feature Matching

3. Stereo Feature Matching

5. Incremental Pose Recovery/RANSAC

Undistortion and Rectification

Feature Extraction
•  Detect local features in each image

•  SIFT gives good results (can also use SURF, Harris, etc.)

Lowe ICCV 1999

Stereo Matching

•  Match features between left/right images

•  Since the images are rectified, we can restrict the search to a
bounding box on the same scan-line

Left image Right image

Temporal Matching

•  Temporally match features between frame t and t-1

Relative Pose Estimation/RANSAC

•  Want to recover the incremental camera pose using the tracked
features and triangulated landmarks

•  There will be some erroneous stereo and temporal feature
associations ! Use RANSAC
•  Select N out of M data items at random (the minimal set here is 3)
•  Estimate parameter (incremental pose from t-1 to t)
•  Find the number K of data items that fit the model (called inliers)

within a given tolerance
•  Repeat S times
•  Compute refined model using full inlier set

Relative Pose Estimation

•  Camera pose can be recovered
given at least three known
landmarks in a non-degenerate
configuration

•  In the case of stereo VO,
landmarks can simply be
triangulated

•  Two ways to recover pose:
•  Absolute orientation
•  Reprojection error minimization

6 DOF
camera
pose

Known 3D
landmarks

Absolute Orientation

•  Estimate relative camera motion by computing relative
transformation between 3D landmarks which were
triangulated from stereo-matched features

Pose r0

Pose r1
Tt

Pose r0

(R,t) ? Tt-1

Tt-1

Tt

Absolute Orientation

•  First, in 2D:
•  Given two sets of corresponding points and related

by a rigid 2D transformation :

•  First recover rotation (2 points), then translation (1 point)

ABSOLUTE ORIENTATION

FRANK DELLAERT

Suppose we have two sets of corresponding points
�
p

l

i

and {pr

i

} in a left and
right coordinate frame, respectively, related by a rigid (2D or 3D) transformation:

p

l = R

l

r

p

r + t

l

r

The process of finding the rigid transformation T

l

r

= (Rl

r

, t

l

r

) between them is called
absolute orientation. Most algorithms proceed by first finding the rotation R

l

r

and then the translation t

l

r

, as the latter can be recovered from a single point
correspondence once R

l

r

is known,

t

l

r

= p

l �R

l

r

p

r

1. Estimating rotations in 2D

10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

−20 −10 0 10 20

−20

−15

−10

−5

0

5

10

15

20

Figure 1.1. Two noisy point clouds, left (red) and right (green),
and the noiseless point cloud SY that was used to generate them,
which can be recovered by SVD decomposition (see Section 3).

An example of an absolute orientation problem in 2D is shown in Figure 1.1.
In 2D, estimating the rotation is very simple: we only need to look at two point
correspondences, say (pl1, p

r

1) and (pl2, p
r

2), and realize that the vector v between
them will be rotated by ✓, the unknown rotation. Indeed, we have

v

l =
�
p

l

2 � p

l

1

�
= R

l

r

(pr2 � p

r

1) = R

l

r

v

r

The angle ✓ is easily recovered as

✓ = arccos
v

l · vr

kvlk kvrk
1

ABSOLUTE ORIENTATION

FRANK DELLAERT

Suppose we have two sets of corresponding points
�
p

l

i

and {pr

i

} in a left and
right coordinate frame, respectively, related by a rigid (2D or 3D) transformation:

p

l = R

l

r

p

r + t

l

r

The process of finding the rigid transformation T

l

r

= (Rl

r

, t

l

r

) between them is called
absolute orientation. Most algorithms proceed by first finding the rotation R

l

r

and then the translation t

l

r

, as the latter can be recovered from a single point
correspondence once R

l

r

is known,

t

l

r

= p

l �R

l

r

p

r

1. Estimating rotations in 2D

10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

−20 −10 0 10 20

−20

−15

−10

−5

0

5

10

15

20

Figure 1.1. Two noisy point clouds, left (red) and right (green),
and the noiseless point cloud SY that was used to generate them,
which can be recovered by SVD decomposition (see Section 3).

An example of an absolute orientation problem in 2D is shown in Figure 1.1.
In 2D, estimating the rotation is very simple: we only need to look at two point
correspondences, say (pl1, p

r

1) and (pl2, p
r

2), and realize that the vector v between
them will be rotated by ✓, the unknown rotation. Indeed, we have

v

l =
�
p

l

2 � p

l

1

�
= R

l

r

(pr2 � p

r

1) = R

l

r

v

r

The angle ✓ is easily recovered as

✓ = arccos
v

l · vr

kvlk kvrk
1

ABSOLUTE ORIENTATION

FRANK DELLAERT

Suppose we have two sets of corresponding points
�
p

l

i

and {pr

i

} in a left and
right coordinate frame, respectively, related by a rigid (2D or 3D) transformation:

p

l = R

l

r

p

r + t

l

r

The process of finding the rigid transformation T

l

r

= (Rl

r

, t

l

r

) between them is called
absolute orientation. Most algorithms proceed by first finding the rotation R

l

r

and then the translation t

l

r

, as the latter can be recovered from a single point
correspondence once R

l

r

is known,

t

l

r

= p

l �R

l

r

p

r

1. Estimating rotations in 2D

10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

−20 −10 0 10 20

−20

−15

−10

−5

0

5

10

15

20

Figure 1.1. Two noisy point clouds, left (red) and right (green),
and the noiseless point cloud SY that was used to generate them,
which can be recovered by SVD decomposition (see Section 3).

An example of an absolute orientation problem in 2D is shown in Figure 1.1.
In 2D, estimating the rotation is very simple: we only need to look at two point
correspondences, say (pl1, p

r

1) and (pl2, p
r

2), and realize that the vector v between
them will be rotated by ✓, the unknown rotation. Indeed, we have

v

l =
�
p

l

2 � p

l

1

�
= R

l

r

(pr2 � p

r

1) = R

l

r

v

r

The angle ✓ is easily recovered as

✓ = arccos
v

l · vr

kvlk kvrk
1

ABSOLUTE ORIENTATION

FRANK DELLAERT

Suppose we have two sets of corresponding points
�
p

l

i

and {pr

i

} in a left and
right coordinate frame, respectively, related by a rigid (2D or 3D) transformation:

p

l = R

l

r

p

r + t

l

r

The process of finding the rigid transformation T

l

r

= (Rl

r

, t

l

r

) between them is called
absolute orientation. Most algorithms proceed by first finding the rotation R

l

r

and then the translation t

l

r

, as the latter can be recovered from a single point
correspondence once R

l

r

is known,

t

l

r

= p

l �R

l

r

p

r

1. Estimating rotations in 2D

10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

−20 −10 0 10 20

−20

−15

−10

−5

0

5

10

15

20

Figure 1.1. Two noisy point clouds, left (red) and right (green),
and the noiseless point cloud SY that was used to generate them,
which can be recovered by SVD decomposition (see Section 3).

An example of an absolute orientation problem in 2D is shown in Figure 1.1.
In 2D, estimating the rotation is very simple: we only need to look at two point
correspondences, say (pl1, p

r

1) and (pl2, p
r

2), and realize that the vector v between
them will be rotated by ✓, the unknown rotation. Indeed, we have

v

l =
�
p

l

2 � p

l

1

�
= R

l

r

(pr2 � p

r

1) = R

l

r

v

r

The angle ✓ is easily recovered as

✓ = arccos
v

l · vr

kvlk kvrk
1

ABSOLUTE ORIENTATION

FRANK DELLAERT

Suppose we have two sets of corresponding points
�
p

l

i

and {pr

i

} in a left and
right coordinate frame, respectively, related by a rigid (2D or 3D) transformation:

p

l = R

l

r

p

r + t

l

r

The process of finding the rigid transformation T

l

r

= (Rl

r

, t

l

r

) between them is called
absolute orientation. Most algorithms proceed by first finding the rotation R

l

r

and then the translation t

l

r

, as the latter can be recovered from a single point
correspondence once R

l

r

is known,

t

l

r

= p

l �R

l

r

p

r

1. Estimating rotations in 2D

10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

−20 −10 0 10 20

−20

−15

−10

−5

0

5

10

15

20

Figure 1.1. Two noisy point clouds, left (red) and right (green),
and the noiseless point cloud SY that was used to generate them,
which can be recovered by SVD decomposition (see Section 3).

An example of an absolute orientation problem in 2D is shown in Figure 1.1.
In 2D, estimating the rotation is very simple: we only need to look at two point
correspondences, say (pl1, p

r

1) and (pl2, p
r

2), and realize that the vector v between
them will be rotated by ✓, the unknown rotation. Indeed, we have

v

l =
�
p

l

2 � p

l

1

�
= R

l

r

(pr2 � p

r

1) = R

l

r

v

r

The angle ✓ is easily recovered as

✓ = arccos
v

l · vr

kvlk kvrk
1

B. K. P Horn JOSA 1987

Absolute Orientation

•  Rotation:
•  Given two point correspondences and , the

vector v between the two points will be rotated by the desired
angle

•  Specfically, the vectors are related by

•  Finally, recover the angle

and translation

ABSOLUTE ORIENTATION

FRANK DELLAERT

Suppose we have two sets of corresponding points
�
p

l

i

and {pr

i

} in a left and
right coordinate frame, respectively, related by a rigid (2D or 3D) transformation:

p

l = R

l

r

p

r + t

l

r

The process of finding the rigid transformation T

l

r

= (Rl

r

, t

l

r

) between them is called
absolute orientation. Most algorithms proceed by first finding the rotation R

l

r

and then the translation t

l

r

, as the latter can be recovered from a single point
correspondence once R

l

r

is known,

t

l

r

= p

l �R

l

r

p

r

1. Estimating rotations in 2D

10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

−20 −10 0 10 20

−20

−15

−10

−5

0

5

10

15

20

Figure 1.1. Two noisy point clouds, left (red) and right (green),
and the noiseless point cloud SY that was used to generate them,
which can be recovered by SVD decomposition (see Section 3).

An example of an absolute orientation problem in 2D is shown in Figure 1.1.
In 2D, estimating the rotation is very simple: we only need to look at two point
correspondences, say (pl1, p

r

1) and (pl2, p
r

2), and realize that the vector v between
them will be rotated by ✓, the unknown rotation. Indeed, we have

v

l =
�
p

l

2 � p

l

1

�
= R

l

r

(pr2 � p

r

1) = R

l

r

v

r

The angle ✓ is easily recovered as

✓ = arccos
v

l · vr

kvlk kvrk
1

ABSOLUTE ORIENTATION

FRANK DELLAERT

Suppose we have two sets of corresponding points
�
p

l

i

and {pr

i

} in a left and
right coordinate frame, respectively, related by a rigid (2D or 3D) transformation:

p

l = R

l

r

p

r + t

l

r

The process of finding the rigid transformation T

l

r

= (Rl

r

, t

l

r

) between them is called
absolute orientation. Most algorithms proceed by first finding the rotation R

l

r

and then the translation t

l

r

, as the latter can be recovered from a single point
correspondence once R

l

r

is known,

t

l

r

= p

l �R

l

r

p

r

1. Estimating rotations in 2D

10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

−20 −10 0 10 20

−20

−15

−10

−5

0

5

10

15

20

Figure 1.1. Two noisy point clouds, left (red) and right (green),
and the noiseless point cloud SY that was used to generate them,
which can be recovered by SVD decomposition (see Section 3).

An example of an absolute orientation problem in 2D is shown in Figure 1.1.
In 2D, estimating the rotation is very simple: we only need to look at two point
correspondences, say (pl1, p

r

1) and (pl2, p
r

2), and realize that the vector v between
them will be rotated by ✓, the unknown rotation. Indeed, we have

v

l =
�
p

l

2 � p

l

1

�
= R

l

r

(pr2 � p

r

1) = R

l

r

v

r

The angle ✓ is easily recovered as

✓ = arccos
v

l · vr

kvlk kvrk
1

ABSOLUTE ORIENTATION

FRANK DELLAERT

Suppose we have two sets of corresponding points
�
p

l

i

and {pr

i

} in a left and
right coordinate frame, respectively, related by a rigid (2D or 3D) transformation:

p

l = R

l

r

p

r + t

l

r

The process of finding the rigid transformation T

l

r

= (Rl

r

, t

l

r

) between them is called
absolute orientation. Most algorithms proceed by first finding the rotation R

l

r

and then the translation t

l

r

, as the latter can be recovered from a single point
correspondence once R

l

r

is known,

t

l

r

= p

l �R

l

r

p

r

1. Estimating rotations in 2D

10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

−20 −10 0 10 20

−20

−15

−10

−5

0

5

10

15

20

Figure 1.1. Two noisy point clouds, left (red) and right (green),
and the noiseless point cloud SY that was used to generate them,
which can be recovered by SVD decomposition (see Section 3).

An example of an absolute orientation problem in 2D is shown in Figure 1.1.
In 2D, estimating the rotation is very simple: we only need to look at two point
correspondences, say (pl1, p

r

1) and (pl2, p
r

2), and realize that the vector v between
them will be rotated by ✓, the unknown rotation. Indeed, we have

v

l =
�
p

l

2 � p

l

1

�
= R

l

r

(pr2 � p

r

1) = R

l

r

v

r

The angle ✓ is easily recovered as

✓ = arccos
v

l · vr

kvlk kvrk
1

ABSOLUTE ORIENTATION

FRANK DELLAERT

Suppose we have two sets of corresponding points
�
p

l

i

and {pr

i

} in a left and
right coordinate frame, respectively, related by a rigid (2D or 3D) transformation:

p

l = R

l

r

p

r + t

l

r

The process of finding the rigid transformation T

l

r

= (Rl

r

, t

l

r

) between them is called
absolute orientation. Most algorithms proceed by first finding the rotation R

l

r

and then the translation t

l

r

, as the latter can be recovered from a single point
correspondence once R

l

r

is known,

t

l

r

= p

l �R

l

r

p

r

1. Estimating rotations in 2D

10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

−20 −10 0 10 20

−20

−15

−10

−5

0

5

10

15

20

Figure 1.1. Two noisy point clouds, left (red) and right (green),
and the noiseless point cloud SY that was used to generate them,
which can be recovered by SVD decomposition (see Section 3).

An example of an absolute orientation problem in 2D is shown in Figure 1.1.
In 2D, estimating the rotation is very simple: we only need to look at two point
correspondences, say (pl1, p

r

1) and (pl2, p
r

2), and realize that the vector v between
them will be rotated by ✓, the unknown rotation. Indeed, we have

v

l =
�
p

l

2 � p

l

1

�
= R

l

r

(pr2 � p

r

1) = R

l

r

v

r

The angle ✓ is easily recovered as

✓ = arccos
v

l · vr

kvlk kvrk
1

ABSOLUTE ORIENTATION

FRANK DELLAERT

Suppose we have two sets of corresponding points
�
p

l

i

and {pr

i

} in a left and
right coordinate frame, respectively, related by a rigid (2D or 3D) transformation:

p

l = R

l

r

p

r + t

l

r

The process of finding the rigid transformation T

l

r

= (Rl

r

, t

l

r

) between them is called
absolute orientation. Most algorithms proceed by first finding the rotation R

l

r

and then the translation t

l

r

, as the latter can be recovered from a single point
correspondence once R

l

r

is known,

t

l

r

= p

l �R

l

r

p

r

1. Estimating rotations in 2D

10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

−20 −10 0 10 20

−20

−15

−10

−5

0

5

10

15

20

Figure 1.1. Two noisy point clouds, left (red) and right (green),
and the noiseless point cloud SY that was used to generate them,
which can be recovered by SVD decomposition (see Section 3).

An example of an absolute orientation problem in 2D is shown in Figure 1.1.
In 2D, estimating the rotation is very simple: we only need to look at two point
correspondences, say (pl1, p

r

1) and (pl2, p
r

2), and realize that the vector v between
them will be rotated by ✓, the unknown rotation. Indeed, we have

v

l =
�
p

l

2 � p

l

1

�
= R

l

r

(pr2 � p

r

1) = R

l

r

v

r

The angle ✓ is easily recovered as

✓ = arccos
v

l · vr

kvlk kvrk
1

ABSOLUTE ORIENTATION

FRANK DELLAERT

Suppose we have two sets of corresponding points
�
p

l

i

and {pr

i

} in a left and
right coordinate frame, respectively, related by a rigid (2D or 3D) transformation:

p

l = R

l

r

p

r + t

l

r

The process of finding the rigid transformation T

l

r

= (Rl

r

, t

l

r

) between them is called
absolute orientation. Most algorithms proceed by first finding the rotation R

l

r

and then the translation t

l

r

, as the latter can be recovered from a single point
correspondence once R

l

r

is known,

t

l

r

= p

l �R

l

r

p

r

1. Estimating rotations in 2D

10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

−20 −10 0 10 20

−20

−15

−10

−5

0

5

10

15

20

Figure 1.1. Two noisy point clouds, left (red) and right (green),
and the noiseless point cloud SY that was used to generate them,
which can be recovered by SVD decomposition (see Section 3).

An example of an absolute orientation problem in 2D is shown in Figure 1.1.
In 2D, estimating the rotation is very simple: we only need to look at two point
correspondences, say (pl1, p

r

1) and (pl2, p
r

2), and realize that the vector v between
them will be rotated by ✓, the unknown rotation. Indeed, we have

v

l =
�
p

l

2 � p

l

1

�
= R

l

r

(pr2 � p

r

1) = R

l

r

v

r

The angle ✓ is easily recovered as

✓ = arccos
v

l · vr

kvlk kvrk
1

ABSOLUTE ORIENTATION

FRANK DELLAERT

Suppose we have two sets of corresponding points
�
p

l

i

and {pr

i

} in a left and
right coordinate frame, respectively, related by a rigid (2D or 3D) transformation:

p

l = R

l

r

p

r + t

l

r

The process of finding the rigid transformation T

l

r

= (Rl

r

, t

l

r

) between them is called
absolute orientation. Most algorithms proceed by first finding the rotation R

l

r

and then the translation t

l

r

, as the latter can be recovered from a single point
correspondence once R

l

r

is known,

t

l

r

= p

l �R

l

r

p

r

1. Estimating rotations in 2D

10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

−20 −10 0 10 20

−20

−15

−10

−5

0

5

10

15

20

Figure 1.1. Two noisy point clouds, left (red) and right (green),
and the noiseless point cloud SY that was used to generate them,
which can be recovered by SVD decomposition (see Section 3).

An example of an absolute orientation problem in 2D is shown in Figure 1.1.
In 2D, estimating the rotation is very simple: we only need to look at two point
correspondences, say (pl1, p

r

1) and (pl2, p
r

2), and realize that the vector v between
them will be rotated by ✓, the unknown rotation. Indeed, we have

v

l =
�
p

l

2 � p

l

1

�
= R

l

r

(pr2 � p

r

1) = R

l

r

v

r

The angle ✓ is easily recovered as

✓ = arccos
v

l · vr

kvlk kvrk
1

Absolute Orientation

•  Now in 3D:
•  Create coordinate frames from three corresponding points

•  Take x-axis by connecting to :

•  Construct y-axis in the plane formed by three points,
perpendicular to x-axis:

•  Complete frame with z-axis:

ABSOLUTE ORIENTATION 2

The rotation matrix R

l

r

can be recovered linearly without trigonometric functions
using the fact that

R

l

r

=


cos✓ �sin✓

sin✓ cos✓

�
=


c �s

s c

�

which yields the following linear system in c and s:


v

l

x

v

l

y

�
=


c �s

s c

� 
v

r

x

v

r

y

�
=


cv

r

x

� sv

r

y

sv

r

x

+ cv

r

y

�
=


v

r

x

�v

r

y

v

r

y

v

r

x

� 
c

s

�

A solution that is symmetric in left and right is the following,

c = k

�
v

l

x

v

r

x

+ v

l

y

v

r

y

�
and s = k

�
v

l

x

v

r

y

� v

l

y

v

r

x

�

with k chosen to make c

2 + s

2 = 1.

2. Estimating rotations in 3D

1.8
2

2.2
2.4

2.6
2.8

2
2.2

2.4
2.6

2.8

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

−1.8
−1.6

−1.4
−1.2

−1

−1.2
−1

−0.8
−0.6

−0.2

0

0.2

0.4

0.6

0.8

Figure 2.1. Left and right triads constructed on three points, see text.

In 3D, we cannot recover the 3 DOF rotation with a single vector, but we can
after we find two corresponding “triads”, i.e., right-handed coordinate frames. Fol-
lowing Horn (1987), instead of two point correspondences we now need three, which
we denote by (pl1, p

r

1) and (pl2, p
r

2) and (pl3, p
r

3). We can then create a coordinate
frame (say in left) by pointing the x-axis from p

l

1 to p

l

2,

x̂

l

/
�
p

l

2 � p

l

1

�

where the proportional sign indicates we normalize x̂

l

to have unit norm. We
construct the y-axis perpendicular to it in the p

l

1 � p

l

2 � p

l

3 plane,

ŷ

l

/ (pl3 � p

l

1)�
⇥
(pl3 � p

l

1) · x̂l

⇤
x̂

l

and comple the triad by having a z-axis perpendicular to the first two:

ẑ

l

/ (x̂
l

⇥ ŷ

l

)

After we do this, the rotation from the left frame to the global frame is simply

R

g

l

= [x̂

l

ŷ

l

ẑ

l

]

and after we repeat the construction for the three points in the right frame, we
recover the unknown rotation by simply composing the two rotations:

R

l

r

= R

l

g

R

g

r

= (Rg

l

)
T

R

g

r

ABSOLUTE ORIENTATION 2

The rotation matrix R

l

r

can be recovered linearly without trigonometric functions
using the fact that

R

l

r

=


cos✓ �sin✓

sin✓ cos✓

�
=


c �s

s c

�

which yields the following linear system in c and s:


v

l

x

v

l

y

�
=


c �s

s c

� 
v

r

x

v

r

y

�
=


cv

r

x

� sv

r

y

sv

r

x

+ cv

r

y

�
=


v

r

x

�v

r

y

v

r

y

v

r

x

� 
c

s

�

A solution that is symmetric in left and right is the following,

c = k

�
v

l

x

v

r

x

+ v

l

y

v

r

y

�
and s = k

�
v

l

x

v

r

y

� v

l

y

v

r

x

�

with k chosen to make c

2 + s

2 = 1.

2. Estimating rotations in 3D

1.8
2

2.2
2.4

2.6
2.8

2
2.2

2.4
2.6

2.8

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

−1.8
−1.6

−1.4
−1.2

−1

−1.2
−1

−0.8
−0.6

−0.2

0

0.2

0.4

0.6

0.8

Figure 2.1. Left and right triads constructed on three points, see text.

In 3D, we cannot recover the 3 DOF rotation with a single vector, but we can
after we find two corresponding “triads”, i.e., right-handed coordinate frames. Fol-
lowing Horn (1987), instead of two point correspondences we now need three, which
we denote by (pl1, p

r

1) and (pl2, p
r

2) and (pl3, p
r

3). We can then create a coordinate
frame (say in left) by pointing the x-axis from p

l

1 to p

l

2,

x̂

l

/
�
p

l

2 � p

l

1

�

where the proportional sign indicates we normalize x̂

l

to have unit norm. We
construct the y-axis perpendicular to it in the p

l

1 � p

l

2 � p

l

3 plane,

ŷ

l

/ (pl3 � p

l

1)�
⇥
(pl3 � p

l

1) · x̂l

⇤
x̂

l

and comple the triad by having a z-axis perpendicular to the first two:

ẑ

l

/ (x̂
l

⇥ ŷ

l

)

After we do this, the rotation from the left frame to the global frame is simply

R

g

l

= [x̂

l

ŷ

l

ẑ

l

]

and after we repeat the construction for the three points in the right frame, we
recover the unknown rotation by simply composing the two rotations:

R

l

r

= R

l

g

R

g

r

= (Rg

l

)
T

R

g

r

ABSOLUTE ORIENTATION 2

The rotation matrix R

l

r

can be recovered linearly without trigonometric functions
using the fact that

R

l

r

=


cos✓ �sin✓

sin✓ cos✓

�
=


c �s

s c

�

which yields the following linear system in c and s:


v

l

x

v

l

y

�
=


c �s

s c

� 
v

r

x

v

r

y

�
=


cv

r

x

� sv

r

y

sv

r

x

+ cv

r

y

�
=


v

r

x

�v

r

y

v

r

y

v

r

x

� 
c

s

�

A solution that is symmetric in left and right is the following,

c = k

�
v

l

x

v

r

x

+ v

l

y

v

r

y

�
and s = k

�
v

l

x

v

r

y

� v

l

y

v

r

x

�

with k chosen to make c

2 + s

2 = 1.

2. Estimating rotations in 3D

1.8
2

2.2
2.4

2.6
2.8

2
2.2

2.4
2.6

2.8

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

−1.8
−1.6

−1.4
−1.2

−1

−1.2
−1

−0.8
−0.6

−0.2

0

0.2

0.4

0.6

0.8

Figure 2.1. Left and right triads constructed on three points, see text.

In 3D, we cannot recover the 3 DOF rotation with a single vector, but we can
after we find two corresponding “triads”, i.e., right-handed coordinate frames. Fol-
lowing Horn (1987), instead of two point correspondences we now need three, which
we denote by (pl1, p

r

1) and (pl2, p
r

2) and (pl3, p
r

3). We can then create a coordinate
frame (say in left) by pointing the x-axis from p

l

1 to p

l

2,

x̂

l

/
�
p

l

2 � p

l

1

�

where the proportional sign indicates we normalize x̂

l

to have unit norm. We
construct the y-axis perpendicular to it in the p

l

1 � p

l

2 � p

l

3 plane,

ŷ

l

/ (pl3 � p

l

1)�
⇥
(pl3 � p

l

1) · x̂l

⇤
x̂

l

and comple the triad by having a z-axis perpendicular to the first two:

ẑ

l

/ (x̂
l

⇥ ŷ

l

)

After we do this, the rotation from the left frame to the global frame is simply

R

g

l

= [x̂

l

ŷ

l

ẑ

l

]

and after we repeat the construction for the three points in the right frame, we
recover the unknown rotation by simply composing the two rotations:

R

l

r

= R

l

g

R

g

r

= (Rg

l

)
T

R

g

r

ABSOLUTE ORIENTATION 2

The rotation matrix R

l

r

can be recovered linearly without trigonometric functions
using the fact that

R

l

r

=


cos✓ �sin✓

sin✓ cos✓

�
=


c �s

s c

�

which yields the following linear system in c and s:


v

l

x

v

l

y

�
=


c �s

s c

� 
v

r

x

v

r

y

�
=


cv

r

x

� sv

r

y

sv

r

x

+ cv

r

y

�
=


v

r

x

�v

r

y

v

r

y

v

r

x

� 
c

s

�

A solution that is symmetric in left and right is the following,

c = k

�
v

l

x

v

r

x

+ v

l

y

v

r

y

�
and s = k

�
v

l

x

v

r

y

� v

l

y

v

r

x

�

with k chosen to make c

2 + s

2 = 1.

2. Estimating rotations in 3D

1.8
2

2.2
2.4

2.6
2.8

2
2.2

2.4
2.6

2.8

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

−1.8
−1.6

−1.4
−1.2

−1

−1.2
−1

−0.8
−0.6

−0.2

0

0.2

0.4

0.6

0.8

Figure 2.1. Left and right triads constructed on three points, see text.

In 3D, we cannot recover the 3 DOF rotation with a single vector, but we can
after we find two corresponding “triads”, i.e., right-handed coordinate frames. Fol-
lowing Horn (1987), instead of two point correspondences we now need three, which
we denote by (pl1, p

r

1) and (pl2, p
r

2) and (pl3, p
r

3). We can then create a coordinate
frame (say in left) by pointing the x-axis from p

l

1 to p

l

2,

x̂

l

/
�
p

l

2 � p

l

1

�

where the proportional sign indicates we normalize x̂

l

to have unit norm. We
construct the y-axis perpendicular to it in the p

l

1 � p

l

2 � p

l

3 plane,

ŷ

l

/ (pl3 � p

l

1)�
⇥
(pl3 � p

l

1) · x̂l

⇤
x̂

l

and comple the triad by having a z-axis perpendicular to the first two:

ẑ

l

/ (x̂
l

⇥ ŷ

l

)

After we do this, the rotation from the left frame to the global frame is simply

R

g

l

= [x̂

l

ŷ

l

ẑ

l

]

and after we repeat the construction for the three points in the right frame, we
recover the unknown rotation by simply composing the two rotations:

R

l

r

= R

l

g

R

g

r

= (Rg

l

)
T

R

g

r

ABSOLUTE ORIENTATION 2

The rotation matrix R

l

r

can be recovered linearly without trigonometric functions
using the fact that

R

l

r

=


cos✓ �sin✓

sin✓ cos✓

�
=


c �s

s c

�

which yields the following linear system in c and s:


v

l

x

v

l

y

�
=


c �s

s c

� 
v

r

x

v

r

y

�
=


cv

r

x

� sv

r

y

sv

r

x

+ cv

r

y

�
=


v

r

x

�v

r

y

v

r

y

v

r

x

� 
c

s

�

A solution that is symmetric in left and right is the following,

c = k

�
v

l

x

v

r

x

+ v

l

y

v

r

y

�
and s = k

�
v

l

x

v

r

y

� v

l

y

v

r

x

�

with k chosen to make c

2 + s

2 = 1.

2. Estimating rotations in 3D

1.8
2

2.2
2.4

2.6
2.8

2
2.2

2.4
2.6

2.8

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

−1.8
−1.6

−1.4
−1.2

−1

−1.2
−1

−0.8
−0.6

−0.2

0

0.2

0.4

0.6

0.8

Figure 2.1. Left and right triads constructed on three points, see text.

In 3D, we cannot recover the 3 DOF rotation with a single vector, but we can
after we find two corresponding “triads”, i.e., right-handed coordinate frames. Fol-
lowing Horn (1987), instead of two point correspondences we now need three, which
we denote by (pl1, p

r

1) and (pl2, p
r

2) and (pl3, p
r

3). We can then create a coordinate
frame (say in left) by pointing the x-axis from p

l

1 to p

l

2,

x̂

l

/
�
p

l

2 � p

l

1

�

where the proportional sign indicates we normalize x̂

l

to have unit norm. We
construct the y-axis perpendicular to it in the p

l

1 � p

l

2 � p

l

3 plane,

ŷ

l

/ (pl3 � p

l

1)�
⇥
(pl3 � p

l

1) · x̂l

⇤
x̂

l

and comple the triad by having a z-axis perpendicular to the first two:

ẑ

l

/ (x̂
l

⇥ ŷ

l

)

After we do this, the rotation from the left frame to the global frame is simply

R

g

l

= [x̂

l

ŷ

l

ẑ

l

]

and after we repeat the construction for the three points in the right frame, we
recover the unknown rotation by simply composing the two rotations:

R

l

r

= R

l

g

R

g

r

= (Rg

l

)
T

R

g

r

ABSOLUTE ORIENTATION 2

The rotation matrix R

l

r

can be recovered linearly without trigonometric functions
using the fact that

R

l

r

=


cos✓ �sin✓

sin✓ cos✓

�
=


c �s

s c

�

which yields the following linear system in c and s:


v

l

x

v

l

y

�
=


c �s

s c

� 
v

r

x

v

r

y

�
=


cv

r

x

� sv

r

y

sv

r

x

+ cv

r

y

�
=


v

r

x

�v

r

y

v

r

y

v

r

x

� 
c

s

�

A solution that is symmetric in left and right is the following,

c = k

�
v

l

x

v

r

x

+ v

l

y

v

r

y

�
and s = k

�
v

l

x

v

r

y

� v

l

y

v

r

x

�

with k chosen to make c

2 + s

2 = 1.

2. Estimating rotations in 3D

1.8
2

2.2
2.4

2.6
2.8

2
2.2

2.4
2.6

2.8

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

−1.8
−1.6

−1.4
−1.2

−1

−1.2
−1

−0.8
−0.6

−0.2

0

0.2

0.4

0.6

0.8

Figure 2.1. Left and right triads constructed on three points, see text.

In 3D, we cannot recover the 3 DOF rotation with a single vector, but we can
after we find two corresponding “triads”, i.e., right-handed coordinate frames. Fol-
lowing Horn (1987), instead of two point correspondences we now need three, which
we denote by (pl1, p

r

1) and (pl2, p
r

2) and (pl3, p
r

3). We can then create a coordinate
frame (say in left) by pointing the x-axis from p

l

1 to p

l

2,

x̂

l

/
�
p

l

2 � p

l

1

�

where the proportional sign indicates we normalize x̂

l

to have unit norm. We
construct the y-axis perpendicular to it in the p

l

1 � p

l

2 � p

l

3 plane,

ŷ

l

/ (pl3 � p

l

1)�
⇥
(pl3 � p

l

1) · x̂l

⇤
x̂

l

and comple the triad by having a z-axis perpendicular to the first two:

ẑ

l

/ (x̂
l

⇥ ŷ

l

)

After we do this, the rotation from the left frame to the global frame is simply

R

g

l

= [x̂

l

ŷ

l

ẑ

l

]

and after we repeat the construction for the three points in the right frame, we
recover the unknown rotation by simply composing the two rotations:

R

l

r

= R

l

g

R

g

r

= (Rg

l

)
T

R

g

r

Absolute Orientation

•  Normalize the axes and we have the rotation of the frame
with respect to the global reference frame,

•  Repeat for the right frame, and obtain the relative rotation,

•  As in the 2D case, the translation can then be recovered
using a single point

ABSOLUTE ORIENTATION 2

The rotation matrix R

l

r

can be recovered linearly without trigonometric functions
using the fact that

R

l

r

=


cos✓ �sin✓

sin✓ cos✓

�
=


c �s

s c

�

which yields the following linear system in c and s:


v

l

x

v

l

y

�
=


c �s

s c

� 
v

r

x

v

r

y

�
=


cv

r

x

� sv

r

y

sv

r

x

+ cv

r

y

�
=


v

r

x

�v

r

y

v

r

y

v

r

x

� 
c

s

�

A solution that is symmetric in left and right is the following,

c = k

�
v

l

x

v

r

x

+ v

l

y

v

r

y

�
and s = k

�
v

l

x

v

r

y

� v

l

y

v

r

x

�

with k chosen to make c

2 + s

2 = 1.

2. Estimating rotations in 3D

1.8
2

2.2
2.4

2.6
2.8

2
2.2

2.4
2.6

2.8

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

−1.8
−1.6

−1.4
−1.2

−1

−1.2
−1

−0.8
−0.6

−0.2

0

0.2

0.4

0.6

0.8

Figure 2.1. Left and right triads constructed on three points, see text.

In 3D, we cannot recover the 3 DOF rotation with a single vector, but we can
after we find two corresponding “triads”, i.e., right-handed coordinate frames. Fol-
lowing Horn (1987), instead of two point correspondences we now need three, which
we denote by (pl1, p

r

1) and (pl2, p
r

2) and (pl3, p
r

3). We can then create a coordinate
frame (say in left) by pointing the x-axis from p

l

1 to p

l

2,

x̂

l

/
�
p

l

2 � p

l

1

�

where the proportional sign indicates we normalize x̂

l

to have unit norm. We
construct the y-axis perpendicular to it in the p

l

1 � p

l

2 � p

l

3 plane,

ŷ

l

/ (pl3 � p

l

1)�
⇥
(pl3 � p

l

1) · x̂l

⇤
x̂

l

and comple the triad by having a z-axis perpendicular to the first two:

ẑ

l

/ (x̂
l

⇥ ŷ

l

)

After we do this, the rotation from the left frame to the global frame is simply

R

g

l

= [x̂

l

ŷ

l

ẑ

l

]

and after we repeat the construction for the three points in the right frame, we
recover the unknown rotation by simply composing the two rotations:

R

l

r

= R

l

g

R

g

r

= (Rg

l

)
T

R

g

r

ABSOLUTE ORIENTATION 2

The rotation matrix R

l

r

can be recovered linearly without trigonometric functions
using the fact that

R

l

r

=


cos✓ �sin✓

sin✓ cos✓

�
=


c �s

s c

�

which yields the following linear system in c and s:


v

l

x

v

l

y

�
=


c �s

s c

� 
v

r

x

v

r

y

�
=


cv

r

x

� sv

r

y

sv

r

x

+ cv

r

y

�
=


v

r

x

�v

r

y

v

r

y

v

r

x

� 
c

s

�

A solution that is symmetric in left and right is the following,

c = k

�
v

l

x

v

r

x

+ v

l

y

v

r

y

�
and s = k

�
v

l

x

v

r

y

� v

l

y

v

r

x

�

with k chosen to make c

2 + s

2 = 1.

2. Estimating rotations in 3D

1.8
2

2.2
2.4

2.6
2.8

2
2.2

2.4
2.6

2.8

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

−1.8
−1.6

−1.4
−1.2

−1

−1.2
−1

−0.8
−0.6

−0.2

0

0.2

0.4

0.6

0.8

Figure 2.1. Left and right triads constructed on three points, see text.

In 3D, we cannot recover the 3 DOF rotation with a single vector, but we can
after we find two corresponding “triads”, i.e., right-handed coordinate frames. Fol-
lowing Horn (1987), instead of two point correspondences we now need three, which
we denote by (pl1, p

r

1) and (pl2, p
r

2) and (pl3, p
r

3). We can then create a coordinate
frame (say in left) by pointing the x-axis from p

l

1 to p

l

2,

x̂

l

/
�
p

l

2 � p

l

1

�

where the proportional sign indicates we normalize x̂

l

to have unit norm. We
construct the y-axis perpendicular to it in the p

l

1 � p

l

2 � p

l

3 plane,

ŷ

l

/ (pl3 � p

l

1)�
⇥
(pl3 � p

l

1) · x̂l

⇤
x̂

l

and comple the triad by having a z-axis perpendicular to the first two:

ẑ

l

/ (x̂
l

⇥ ŷ

l

)

After we do this, the rotation from the left frame to the global frame is simply

R

g

l

= [x̂

l

ŷ

l

ẑ

l

]

and after we repeat the construction for the three points in the right frame, we
recover the unknown rotation by simply composing the two rotations:

R

l

r

= R

l

g

R

g

r

= (Rg

l

)
T

R

g

r

ABSOLUTE ORIENTATION 2

The rotation matrix R

l

r

can be recovered linearly without trigonometric functions
using the fact that

R

l

r

=


cos✓ �sin✓

sin✓ cos✓

�
=


c �s

s c

�

which yields the following linear system in c and s:


v

l

x

v

l

y

�
=


c �s

s c

� 
v

r

x

v

r

y

�
=


cv

r

x

� sv

r

y

sv

r

x

+ cv

r

y

�
=


v

r

x

�v

r

y

v

r

y

v

r

x

� 
c

s

�

A solution that is symmetric in left and right is the following,

c = k

�
v

l

x

v

r

x

+ v

l

y

v

r

y

�
and s = k

�
v

l

x

v

r

y

� v

l

y

v

r

x

�

with k chosen to make c

2 + s

2 = 1.

2. Estimating rotations in 3D

1.8
2

2.2
2.4

2.6
2.8

2
2.2

2.4
2.6

2.8

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

−1.8
−1.6

−1.4
−1.2

−1

−1.2
−1

−0.8
−0.6

−0.2

0

0.2

0.4

0.6

0.8

Figure 2.1. Left and right triads constructed on three points, see text.

In 3D, we cannot recover the 3 DOF rotation with a single vector, but we can
after we find two corresponding “triads”, i.e., right-handed coordinate frames. Fol-
lowing Horn (1987), instead of two point correspondences we now need three, which
we denote by (pl1, p

r

1) and (pl2, p
r

2) and (pl3, p
r

3). We can then create a coordinate
frame (say in left) by pointing the x-axis from p

l

1 to p

l

2,

x̂

l

/
�
p

l

2 � p

l

1

�

where the proportional sign indicates we normalize x̂

l

to have unit norm. We
construct the y-axis perpendicular to it in the p

l

1 � p

l

2 � p

l

3 plane,

ŷ

l

/ (pl3 � p

l

1)�
⇥
(pl3 � p

l

1) · x̂l

⇤
x̂

l

and comple the triad by having a z-axis perpendicular to the first two:

ẑ

l

/ (x̂
l

⇥ ŷ

l

)

After we do this, the rotation from the left frame to the global frame is simply

R

g

l

= [x̂

l

ŷ

l

ẑ

l

]

and after we repeat the construction for the three points in the right frame, we
recover the unknown rotation by simply composing the two rotations:

R

l

r

= R

l

g

R

g

r

= (Rg

l

)
T

R

g

r

Absolute Orientation

•  The Absolute Orientation approach assumes a relatively
noiseless case, and does not work well otherwise

•  No simple way to average out noisy points by considering
more data
•  Use SVD-based method instead
•  Use different approach based on projective geometry

ABSOLUTE ORIENTATION 2

The rotation matrix R

l

r

can be recovered linearly without trigonometric functions
using the fact that

R

l

r

=


cos✓ �sin✓

sin✓ cos✓

�
=


c �s

s c

�

which yields the following linear system in c and s:


v

l

x

v

l

y

�
=


c �s

s c

� 
v

r

x

v

r

y

�
=


cv

r

x

� sv

r

y

sv

r

x

+ cv

r

y

�
=


v

r

x

�v

r

y

v

r

y

v

r

x

� 
c

s

�

A solution that is symmetric in left and right is the following,

c = k

�
v

l

x

v

r

x

+ v

l

y

v

r

y

�
and s = k

�
v

l

x

v

r

y

� v

l

y

v

r

x

�

with k chosen to make c

2 + s

2 = 1.

2. Estimating rotations in 3D

1.8
2

2.2
2.4

2.6
2.8

2
2.2

2.4
2.6

2.8

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

−1.8
−1.6

−1.4
−1.2

−1

−1.2
−1

−0.8
−0.6

−0.2

0

0.2

0.4

0.6

0.8

Figure 2.1. Left and right triads constructed on three points, see text.

In 3D, we cannot recover the 3 DOF rotation with a single vector, but we can
after we find two corresponding “triads”, i.e., right-handed coordinate frames. Fol-
lowing Horn (1987), instead of two point correspondences we now need three, which
we denote by (pl1, p

r

1) and (pl2, p
r

2) and (pl3, p
r

3). We can then create a coordinate
frame (say in left) by pointing the x-axis from p

l

1 to p

l

2,

x̂

l

/
�
p

l

2 � p

l

1

�

where the proportional sign indicates we normalize x̂

l

to have unit norm. We
construct the y-axis perpendicular to it in the p

l

1 � p

l

2 � p

l

3 plane,

ŷ

l

/ (pl3 � p

l

1)�
⇥
(pl3 � p

l

1) · x̂l

⇤
x̂

l

and comple the triad by having a z-axis perpendicular to the first two:

ẑ

l

/ (x̂
l

⇥ ŷ

l

)

After we do this, the rotation from the left frame to the global frame is simply

R

g

l

= [x̂

l

ŷ

l

ẑ

l

]

and after we repeat the construction for the three points in the right frame, we
recover the unknown rotation by simply composing the two rotations:

R

l

r

= R

l

g

R

g

r

= (Rg

l

)
T

R

g

r

Reprojection Error Minimization

•  A better approach is to estimate relative pose by minimizing
reprojection error of 3D landmarks into images at time t and
t-1

Triangulate

Tt

Tt-1
Reproject

Reproject Pose r1

Tt

Tt-1

Practical/Robustness Considerations

•  The presented algorithm works very well in feature-rich,
static environments, but…

•  A few tricks for better results in challenging conditions:
•  Feature binning to cope with bias due to uneven feature

distributions
•  Keyframing to cope with dynamic scenes, as well as reducing

drift of a stationary camera

•  Real-time performance

Feature Binning

•  Incremental pose estimation yields poor results when
features are concentrated in one area of the image

•  Solution: Draw a grid and keep k strongest features in each
cell

Challenges: Dynamic Scenes

•  Dynamic, crowded scenes present a real challenge

•  Cannot depend on RANSAC to always recover the correct
inlier set

•  Example 1: Large van “steals” inlier set in passing

Inliers Outliers

Challenges: Dynamic Scenes

•  Example 2: Cross-traffic while waiting to turn left at light

Only accept
incremental pose if:
•  translation > 0.5m
•  Dominant direction

is forward

Without keyframing With keyframing

Incorrect
sideways
motion

Real-time performance

•  Parallelization of feature extraction and stereo matching
steps allows real-time performance even in CPU-only
implementation

Mono
Frame
Queue

Stereo
Frame
Queue

Pose
Recovery/
RANSAC

…

Feature
Extractor

Feature
Extractor

Feature
Extractor

Stereo
Frame
Queue

Stereo
Matching

Stereo
Matching

What else do you get?

•  Stereo Visual Odometry yields more than just a camera
trajectory!

•  Tracked landmarks form a sparse 3D point cloud of the
environment
•  Can be used as the basis for localization

What else do you get?

•  3D Point cloud on KITTI Benchmark, Sequence 2

http://www.cvlibs.net/datasets/kitti/

Results on KITTI Benchmark

•  Representative results on KITTI VO Benchmark
•  Average translational/rotational errors are very small
•  Accumulate over time, resulting in drift

GTSAM VO Example with Point Cloud

•  StereoVOExample_large.m in GTSAM
•  Takes VO output and improves result through bundle

adjustment (more on that later!)

tinyurl.com/gtsam

