Stereo Visual Odometry

Chris Beall

CVPR 2014 Visual SLAM Tutorial

Tech M and Intelligent Machines

OUTLINE

- Motivation
- Algorithm Overview
- Feature Extraction and matching
- Incremental Pose Recovery
- Practical/robustness considerations
- What else do you get?
- Results

Motivation

- Why stereo Visual Odometry?
- Stereo avoids scale ambiguity inherent in monocular VO
- No need for tricky initialization procedure of landmark depth

Algorithm Overview

1. Rectification

2. Feature Extraction

3. Stereo Feature Matching

4. Temporal Feature Matching

5. Incremental Pose Recovery/RANSAC

Undistortion and Rectification

Georgia Institute for Robotics
Tech Vand Intelligent Machines

Feature Extraction

- Detect local features in each image
- SIFT gives good results (can also use SURF, Harris, etc.)

Lowe ICCV 1999

Georgia Institute for Robotios

Tech V and Intelligent Machines

Stereo Matching

- Match features between left/right images
- Since the images are rectified, we can restrict the search to a bounding box on the same scan-line

Right image

Temporal Matching

- Temporally match features between frame t and $t-1$

Relative Pose Estimation/RANSAC

- Want to recover the incremental camera pose using the tracked features and triangulated landmarks
- There will be some erroneous stereo and temporal feature associations \rightarrow Use RANSAC
- Select N out of M data items at random (the minimal set here is 3)
- Estimate parameter (incremental pose from t-1 to t)
- Find the number K of data items that fit the model (called inliers) within a given tolerance
- Repeat S times
- Compute refined model using full inlier set

Relative Pose Estimation

- Camera pose can be recovered given at least three known landmarks in a non-degenerate configuration
- In the case of stereo VO, landmarks can simply be triangulated
- Two ways to recover pose:
- Absolute orientation
- Reprojection error minimization

Absolute Orientation

- Estimate relative camera motion by computing relative transformation between 3D landmarks which were triangulated from stereo-matched features

Absolute Orientation

- First, in 2D:
- Given two sets of corresponding points $\left\{p_{i}^{l}\right\}$ and $\left\{p_{i}^{r}\right\}$ related by a rigid 2D transformation $T_{r}^{l}=\left(R_{r}^{l}, t_{r}^{l}\right)$:

$$
p^{l}=R_{r}^{l} p^{r}+t_{r}^{l}
$$

- First recover rotation (2 points), then translation (1 point)

B. K. P Horn JOSA 1987

Absolute Orientation

- Rotation:
- Given two point correspondences $\left(p_{1}^{l}, p_{1}^{r}\right)$ and $\left(p_{2}^{l}, p_{2}^{r}\right)$, the vector v between the two points will be rotated by the desired angle θ
- Specfically, the vectors are related by

$$
v^{l}=\left(p_{2}^{l}-p_{1}^{l}\right)=R_{r}^{l}\left(p_{2}^{r}-p_{1}^{r}\right)=R_{r}^{l} v^{r}
$$

- Finally, recover the angle

$$
\theta=\arccos \frac{v^{l} \cdot v^{r}}{\left\|v^{l}\right\|\left\|v^{r}\right\|}
$$

and translation $t_{r}^{l}=p^{l}-R_{r}^{l} p^{r}$

Absolute Orientation

- Now in 3D:
- Create coordinate frames from three corresponding points
- Take x-axis by connecting p_{1}^{l} to $p_{2}^{l}: \hat{x}_{l} \propto\left(p_{2}^{l}-p_{1}^{l}\right)$
- Construct y-axis in the plane formed by three points, perpendicular to x-axis: $\hat{y}_{l} \propto\left(p_{3}^{l}-p_{1}^{l}\right)-\left[\left(p_{3}^{l}-p_{1}^{l}\right) \cdot \hat{x}_{l}\right] \hat{x}_{l}$
- Complete frame with z-axis: $\hat{z}_{l} \propto\left(\hat{x}_{l} \times \hat{y}_{l}\right)$

Absolute Orientation

- Normalize the axes and we have the rotation of the frame with respect to the global reference frame,

$$
R_{l}^{g}=\left[\begin{array}{lll}
\hat{x}_{l} & \hat{y}_{l} & \hat{z}_{l}
\end{array}\right]
$$

- Repeat for the right frame, and obtain the relative rotation,

$$
R_{r}^{l}=R_{g}^{l} R_{r}^{g}=\left(R_{l}^{g}\right)^{T} R_{r}^{g}
$$

- As in the 2D case, the translation can then be recovered using a single point

Absolute Orientation

- The Absolute Orientation approach assumes a relatively noiseless case, and does not work well otherwise
- No simple way to average out noisy points by considering more data
- Use SVD-based method instead
- Use different approach based on projective geometry

Reprojection Error Minimization

- A better approach is to estimate relative pose by minimizing reprojection error of 3D landmarks into images at time t and t-1

Practical/Robustness Considerations

- The presented algorithm works very well in feature-rich, static environments, but...
- A few tricks for better results in challenging conditions:
- Feature binning to cope with bias due to uneven feature distributions
- Keyframing to cope with dynamic scenes, as well as reducing drift of a stationary camera
- Real-time performance

Feature Binning

- Incremental pose estimation yields poor results when features are concentrated in one area of the image
- Solution: Draw a grid and keep k strongest features in each cell

Challenges: Dynamic Scenes

- Dynamic, crowded scenes present a real challenge
- Cannot depend on RANSAC to always recover the correct inlier set
- Example 1: Large van "steals" inlier set in passing

Inliers Outliers

Challenges: Dynamic Scenes

- Example 2: Cross-traffic while waiting to turn left at light

Only accept incremental pose if:

- translation $>0.5 \mathrm{~m}$
- Dominant direction is forward

Without keyframing

保

Real-time performance

- Parallelization of feature extraction and stereo matching steps allows real-time performance even in CPU-only implementation

What else do you get?

- Stereo Visual Odometry yields more than just a camera trajectory!
- Tracked landmarks form a sparse 3D point cloud of the environment
- Can be used as the basis for localization

What else do you get?

- 3D Point cloud on KITTI Benchmark, Sequence 2

http://www.cvlibs.net/datasets/kitti/

Results on KITTI Benchmark

- Representative results on KITTI VO Benchmark
- Average translational/rotational errors are very small
- Accumulate over time, resulting in drift

GTSAM VO Example with Point Cloud

- StereoVOExample_large.m in GTSAM
- Takes VO output and improves result through bundle adjustment (more on that later!)

tinyurl.com/gtsam

