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Motivation 

•  Why stereo Visual Odometry? 
•  Stereo avoids scale ambiguity inherent in monocular VO 
•  No need for tricky initialization procedure of landmark depth 

 

 



Algorithm Overview 

1. Rectification  

2. Feature Extraction  

4. Temporal Feature Matching 

3. Stereo Feature Matching 

5. Incremental Pose Recovery/RANSAC 



Undistortion and Rectification 



Feature Extraction 
•  Detect local features in each image 

•  SIFT gives good results (can also use SURF, Harris, etc.) 

Lowe ICCV 1999 



Stereo Matching 

•  Match features between left/right images 

•  Since the images are rectified, we can restrict the search to a 
bounding box on the same scan-line 

Left image Right image 



Temporal Matching 

•  Temporally match features between frame t and t-1 



Relative Pose Estimation/RANSAC 

•  Want to recover the incremental camera pose using the tracked 
features and triangulated landmarks 

•  There will be some erroneous stereo and temporal feature 
associations ! Use RANSAC 
•  Select N out of M data items at random (the minimal set here is 3) 
•  Estimate parameter (incremental pose from t-1 to t) 
•  Find the number K of data items that fit the model (called inliers) 

within a given tolerance  
•  Repeat S times 
•  Compute refined model using full inlier set 



Relative Pose Estimation 

•  Camera pose can be recovered 
given at least three known 
landmarks in a non-degenerate 
configuration 

•  In the case of stereo VO, 
landmarks can simply be 
triangulated 

•  Two ways to recover pose: 
•  Absolute orientation 
•  Reprojection error minimization 

6 DOF 
camera 
pose 

Known 3D 
landmarks 



Absolute Orientation 

•  Estimate relative camera motion by computing relative 
transformation between 3D landmarks which were 
triangulated from stereo-matched features 

Pose r0 

Pose r1 
Tt 

Pose r0 

(R,t)          ?  Tt-1 

Tt-1 

Tt 



Absolute Orientation 

•  First, in 2D: 
•  Given two sets of corresponding points         and          related 

by a rigid 2D transformation                       : 

•  First recover rotation (2 points), then translation (1 point) 

ABSOLUTE ORIENTATION

FRANK DELLAERT
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1. Estimating rotations in 2D
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Figure 1.1. Two noisy point clouds, left (red) and right (green),
and the noiseless point cloud SY that was used to generate them,
which can be recovered by SVD decomposition (see Section 3).

An example of an absolute orientation problem in 2D is shown in Figure 1.1.
In 2D, estimating the rotation is very simple: we only need to look at two point
correspondences, say (pl1, p

r

1) and (pl2, p
r

2), and realize that the vector v between
them will be rotated by ✓, the unknown rotation. Indeed, we have
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The angle ✓ is easily recovered as

✓ = arccos
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l · vr
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Absolute Orientation 

•  Rotation: 
•  Given two point correspondences              and             , the 

vector v between the two points will be rotated by the desired 
angle  

•  Specfically, the vectors are related by 

•  Finally, recover the angle 
 
 
 
 
and translation 
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Absolute Orientation 

•  Now in 3D: 
•  Create coordinate frames from three corresponding points 

•  Take x-axis by connecting       to       :   

•  Construct y-axis in the plane formed by three points, 
perpendicular to x-axis: 

•  Complete frame with z-axis:   

ABSOLUTE ORIENTATION 2
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2. Estimating rotations in 3D
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ẑ

l

/ (x̂
l

⇥ ŷ

l

)

After we do this, the rotation from the left frame to the global frame is simply

R

g

l

= [ x̂

l

ŷ
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Absolute Orientation 

•  Normalize the axes and we have the rotation of the frame 
with respect to the global reference frame, 
 

•  Repeat for the right frame, and obtain the relative rotation, 
 

•  As in the 2D case, the translation can then be recovered 
using a single point 
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Absolute Orientation 

•  The Absolute Orientation approach assumes a relatively 
noiseless case, and does not work well otherwise 

•  No simple way to average out noisy points by considering 
more data 
•  Use SVD-based method instead 
•  Use different approach based on projective geometry 
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Reprojection Error Minimization 

•  A better approach is to estimate relative pose by minimizing 
reprojection error of 3D landmarks into images at time t and 
t-1 

Triangulate 

Tt 

Tt-1 
Reproject 

Reproject Pose r1 

Tt 

Tt-1 



Practical/Robustness Considerations 

•  The presented algorithm works very well in feature-rich, 
static environments, but… 

•  A few tricks for better results in challenging conditions: 
•  Feature binning to cope with bias due to uneven feature 

distributions 
•  Keyframing to cope with dynamic scenes, as well as reducing 

drift of a stationary camera 

•  Real-time performance 



Feature Binning 

•  Incremental pose estimation yields poor results when 
features are concentrated in one area of the image 

•  Solution: Draw a grid and keep k strongest features in each 
cell 



Challenges: Dynamic Scenes 

•  Dynamic, crowded scenes present a real challenge 

•  Cannot depend on RANSAC to always recover the correct 
inlier set 

•  Example 1: Large van “steals” inlier set in passing 

Inliers  Outliers 



Challenges: Dynamic Scenes 
 

•  Example 2: Cross-traffic while waiting to turn left at light 

Only accept 
incremental pose if: 
•   translation > 0.5m 
•  Dominant direction 

is forward 
 

Without keyframing With keyframing 

Incorrect 
sideways 
motion 



Real-time performance 

•  Parallelization of feature extraction and stereo matching 
steps allows real-time performance even in CPU-only 
implementation 

Mono 
Frame 
Queue 

Stereo 
Frame 
Queue 

Pose 
Recovery/
RANSAC 

…
 

Feature 
Extractor 

Feature 
Extractor 

Feature 
Extractor 

Stereo 
Frame 
Queue 

Stereo 
Matching 

Stereo 
Matching 



What else do you get? 

•  Stereo Visual Odometry yields more than just a camera 
trajectory! 

•  Tracked landmarks form a sparse 3D point cloud of the 
environment 
•  Can be used as the basis for localization 



What else do you get? 

•  3D Point cloud on KITTI Benchmark, Sequence 2 

http://www.cvlibs.net/datasets/kitti/ 



Results on KITTI Benchmark 

•  Representative results on KITTI VO Benchmark 
•  Average translational/rotational errors are very small 
•  Accumulate over time, resulting in drift 



GTSAM VO Example with Point Cloud 

•  StereoVOExample_large.m in GTSAM 
•  Takes VO output and improves result through bundle 

adjustment (more on that later!) 

tinyurl.com/gtsam 


