
Introduction to Dense
Visual Camera Tracking

Richard Newcombe, University of Washington

CVPR 2014 Visual SLAM Tutorial

People and Recent Visual SLAM theses,
Imperial College, London with Andrew Davison

Steven Lovegrove:
“Parametric Dense
Visual SLAM”,
2011

Ankur Handa:
“High Frame Rate,
Dense Visual SLAM”,
2013

Hauke Strasdat:
“Local Accuracy and
Global Consistency for
Efficient Visual SLAM”,
2012

Richard Newcombe:
“Dense Visual SLAM”,
2013

Thanks to Ankur, Steve and Hauke for images and slides I’ve incorporated here.

Dense Tracking Introduction Outline

1. Generative Models and the Dense Tracking advantage

2. Basic Gauss-Newton Optimisation for direct whole
image alignment models

3. Example Dense tracking
a. SO3 tracking of a passive camera
b. SE3 tracking given RGB-D images
c. SE3 tracking using Depth images

Recall the projection function:

Pinhole Projection:

Thanks to Prof. Pollefeys for the original figure (3DIM ‘99).

We will contrast with explicit
feature extraction and matching
as used in sparse VO

How can we use more of
the image data?

Assumption: Observation function
that can render a dense image
prediction given a camera pose.

Solve for correspondence
and camera motion
simultaneously

Overview of Dense Visual Tracking

Dense VO Generative Model Intuition

➔ Given a dense, textured, surface model of a scene we can
predict what should be seen in that camera by
rendering

➔ If the model is good and the camera pose is correct, then
the image prediction is close to true image observed

Whole Image Cost

Example Basic Generative Models

Dense whole image alignment technique: warp

1. Define the geometric model W, with parameters x, that
transforms a pixel in one frame into another:

Example generative model

Reference Image Live Observation

Dense whole image alignment technique: error

2. Define a Frame to Frame image alignment error and
cost function that computes a similarity score between
the image values Ir(u) and Ir(W(x,u))

Error function computed at each pixel

Reference Image
Live Observation

Example Dense Frame to Frame Cost

Dense whole image alignment

3. We obtain the estimated alignment parameters x at the
minimum of the photometric cost function:

Whole Image Alignment: another simple example
Image template:

Whole Image Alignment: another simple example
Live image with geometric warp:

➔ Scene geometry, lighting structures and material reflectance properties, results in sample of the
light ray for a given camera pose

➔ Geometric and radiometric distortion due to the camera lens, e.g. lens distortion, vignetting.
➔ Motion blur due to long exposures or image noise for short exposures and low lighting
➔ Nonlinear response of sensor for different exposures breaks brightness constancy assumption
➔ Feature descriptors enable sparse tracking techniques to become somewhat robust to these

Generative models beyond geometric

Warp function is for geometric error, but we can also think about
modelling the rest of the image formation pipeline:

Example transformations: perils of feature matching

Reference
Image

Geometric, blur
and noise

Geometric,
motion blur

Geometric
transformation
and blur

I.e. what if there is image degradation?

Sparse pipelines need image features

Example FAST detections (Rosten and Drummond, ECCV 2006)

Reference
Image

Geometric, blur
and noise

Geometric,
motion blur

Geometric
transformation
and blur

Geometric
only

Sparse (1) extraction and (2) matching

Geometric, blur
and noise

Geometric,
motion blur

Geometric,
blur, noise,
occlusion

Descriptor extraction
and matching using
naively applied SIFT
(Lowe, ICCV 2004)

Cost function using dense pixel errors

Geometric
only

Geometric, blur,
noise

Geometric,
blur, noise,
occlusion

Parameter range: Δθ ± π/2, Δx±100 pixels

➔ Despite using a
simple single pixel
error term, there
exists a clear global
minimum

➔ However, there are
local minima!

Dense and Sparse visual tracking

Generally we can trade off between complexity of the descriptor size and
density of descriptor extraction to obtain a more robust error f:

➔ For whole image alignment, there is great redundancy for the few
parameters being estimated, which can increase tracking robustness

➔ But gradient descent on the whole image cost function requires
initialisation near to the global minimum (i.e. not for wide baseline)

➔ Many variations on how robustify against, or model photometric
transformations

Basic Optimisation for
Whole Image Alignment
Iterative Gauss-Newton Optimisation of the
Dense cost function

Lucas-Kanade (1981)

Direct alignment for 2D image translation with warp
function w(u) = u+t, and with a quadratic penalty function:

We want to estimate the unknown transform between

two image frames by minimising a whole image error:

Where is the chosen penalty, i.e. ψ(e)=e2, and Ω is the image
domain.

Direct Non-linear Optimisation

Direct Non-linear Optimisation

The image error, given the generative warp model is simply
the per pixel difference given parameters x:

We will use an Iterative Gauss-Newton Gradient descent on
E

w
 to estimate the parameters x.

Taylor series expansion of

Solve convex form at Stationary Point:

Gauss-Newton Approximation

Approximate the Hessian by truncating to the first order
components:

The result is an approximated 2nd order linearisation:

Examples to follow for SO3 RGB,
SE3 RGB, RGB-D and Depth only
camera tracking

Derivative of the penalty function:

Gradient of the cost function

i.e. 2e(u, x0) for ψ(e(u,x))=e(u,x)2

Derivative of the observation prediction function:

Solve for the linearised Cost function

Remember, a minimising argument is achieved as a
function extremum:

Taking the derivative of the linearised cost function:

+

Solving for the incremental update

Resulting in the normal equations:

The parameter vector is then updated:

See A13 for more details on trust region techniques for improved stability.

Basic Dense VO algorithm outline

Input: relative transform estimate, a template.and a live
frame.

output: updated relative transform estimate that warps the
template into the live frame.

1. Compute dense cost function error and derivatives
2. Minimise dense cost function error by iterative Gauss-

Newton minimisation.
3. Iterate until convergence criteria.

Incremental Camera
Tracking
For RGB and
RGB-D Cameras

Incremental Transformations

We can parameterise the relative camera motion between reference and
live frames:

A minimal parameterisation of a rigid body transform is given by:

Where the parameters define an element of the Lie Algebra as (see A13):

where

The derivative of the non-linear exponential map that takes [ω]
x
 to the SO3

rotation matrix can be obtained by truncating to the linear term of the matrix
exponential:

Incremental Transformations

The linearisation of the exponential map to first order for ω around 0 is
useful in practice, i.e. cos(θ)~1 and sin(θ)~0.

We will compose resulting incremental small SO3 (or SE3)
transformations together via the exponential map:

A rotating RGB Camera

The transformation of a pixel from one frame into another is independent
of the scene geometry if t = (0 0 0)T:

Given an incremental compositional update to the rotation between the
reference and live frames, the warp function is therefore:

Here K-1u
r
 defines a ray through pixel u

r
 and the camera center that is

rotated and projected into the live frame.

A rotating RGB Camera

Inserting w
SO3

 into the whole image error we now perform the
linearisation of Ew(x0 + Δ) with Δ = ω, hence we compute the per pixel
image error derivative as:

Whole Image Error: E

A rotating RGB Camera

Pre-computing the currently rotated ray

The resulting error gradient vector for pixel u is:

A rotating RGB Camera

Evaluating the total Jacobian together with the chosen penalty function,
we solve the resulting normal equations:

Finally, form the SO3 matrix by exponentiation, and compose onto the
initial transform:

Application: Real-time mosaicing,
(Lovegrove & Davison, ECCV 2010)

http://www.youtube.com/watch?v=9cY7ahgtZdI

General rigid body RGB-D tracking

When a depth map is also available in one frame, we can compute pixel
transfer of points in one frame given the relative SE3 transform T

lr
:

Given an incremental compositional update to the rotation between the
reference and live frames, the warp function is therefore:

General rigid body RGB-D tracking

Pre-computing the currently transformed per pixel vertex:

The resulting image error gradient vector for pixel u is:

Solve normal equations and compose:

Inserting w
SE3

 into the whole image error we now perform the linearisation
of Ew(x0 + Δ) with rigid body parameters Δ = x:

Example Dense Pixel Transfer

➔ ➔ Note: we can use rendering
engine (e.g. OpenGL) to
achieve the observation
prediction.

➔ Requires a triangle mesh
representation of the depth
map.

➔ Can correctly predict self
occlusion since it is a surface.

The linearisation assumption:

Coarse to fine optimisation

The linearisation assumption is easily broken in real
images, as the transformation magnitude increases, the
cost function becomes clearly non-convex.

e(x)
x

Coarse to fine optimisation: downsampling

Removing higher frequency components in the images
increases the parameter range for which the linearisation
holds.

Note: scale the calibration
matrix accordingly to ensure
correct derivatives

Single RGB dense visual odometry from a keyframe
(Newcombe et al, ICCV 2011)

http://www.youtube.com/watch?v=qZ_M7B-z9XA

General rigid body depth tracking (ICP)

General rigid body depth tracking (ICP)

General rigid body depth tracking (ICP)

Whole image depth image tracking (dense ICP)

Given 2 depth images, we define a generative model over the vertex maps:

Warp the surface in the reference image into the live image given the
relative SE3 transform:

We can use the per depth pixel point-plane error, instead of a euclidean
distance of the vertices:

Whole image depth image tracking (dense ICP)
Plugging the point-plane error into the whole image cost function, we
again perform linearisation of Ew(x0 + Δ) with rigid body parameters
Δ = x. Pre-computing the currently transformed per pixel vertex:

The resulting image error gradient vector for pixel u is:

Solve normal equations and compose:

Example Application: RGB-D + ICP Tracking
(Henry et al, 3DV 2013)

http://www.youtube.com/watch?v=hEUDRTTlCxM

Basic robustness to a generative models outliers

Example dense ICP errors before/after outliers are introduced:

With example known x*, we choose the penalty
function ψ to closely match -log of probability

distribution over pixel errors: P(e(u,x*))

http://www.youtube.com/watch?v=JqWgJv5gPAs

➔ However, dense tracking formulations are trivially parallelisable
➔ We can make use of all image data to mitigate issues with where to

extract and match features: can increase robustness
➔ As frame-rate increases, computational requirements reduce

Conclusions: Dense visual tracking

Remember, we can trade off between complexity of the descriptor size
and density of descriptor extraction:

Thanks! Questions?

