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Dense Tracking Introduction Outline 

1. Generative Models and the Dense Tracking advantage

 

2. Basic Gauss-Newton Optimisation for direct whole 
image alignment models

3. Example Dense tracking
a. SO3 tracking of a passive camera
b. SE3 tracking given RGB-D images
c. SE3 tracking using Depth images



Recall the projection function: 

Pinhole Projection:

Thanks to Prof. Pollefeys for the original figure (3DIM ‘99). 



We will contrast with explicit 
feature extraction and matching 
as used in sparse VO

How can we use more of 
the image data?



Assumption: Observation function 
that can render a dense image 
prediction given a camera pose.

Solve for correspondence
and camera motion 
simultaneously



Overview of Dense Visual Tracking



Dense VO Generative Model Intuition

➔ Given a dense, textured, surface model of a scene we can 
predict what should be seen in that camera by 
rendering

➔ If the model is good and the camera pose is correct, then 
the image prediction is close to true image observed

 



Whole Image Cost









Example Basic Generative Models



Dense whole image alignment technique: warp

1. Define the geometric model W, with parameters x, that 
transforms a pixel in one frame into another: 



Example generative model

Reference Image Live Observation



Dense whole image alignment technique: error

2. Define a Frame to Frame image alignment error and 
cost function that computes a similarity score between 
the image values Ir(u) and Ir(W(x,u)) 



Error function computed at each pixel

Reference Image
Live Observation



Example Dense Frame to Frame Cost



Dense whole image alignment

3. We obtain the estimated alignment parameters x at the 
minimum of the photometric cost function:



Whole Image Alignment: another simple example
Image template:



Whole Image Alignment: another simple example
Live image with geometric warp: 



➔ Scene geometry, lighting structures and material reflectance properties, results in sample of the 
light ray for a given camera pose

➔ Geometric and radiometric distortion due to the camera lens, e.g. lens distortion, vignetting.
➔ Motion blur due to long exposures or image noise for short exposures and low lighting
➔ Nonlinear response of sensor for different exposures breaks brightness constancy assumption
➔ Feature descriptors enable sparse tracking techniques to become somewhat robust to these

Generative models beyond geometric

Warp function is for geometric error, but we can also think about 
modelling the rest of the image formation pipeline:



Example transformations: perils of feature matching

Reference 
Image

Geometric, blur 
and noise

Geometric, 
motion blur

Geometric 
transformation 
and blur

I.e. what if there is image degradation? 



Sparse pipelines need image features

Example FAST detections (Rosten and Drummond, ECCV 2006)

Reference 
Image

Geometric, blur 
and noise

Geometric, 
motion blur

Geometric 
transformation 
and blur



Geometric 
only

Sparse (1) extraction and (2) matching

Geometric, blur 
and noise

Geometric, 
motion blur

Geometric, 
blur, noise, 
occlusion

Descriptor extraction 
and matching using
naively applied SIFT 
(Lowe, ICCV 2004)



Cost function using dense pixel errors

Geometric 
only

Geometric, blur, 
noise

Geometric, 
blur, noise, 
occlusion

Parameter range: Δθ ± π/2, Δx±100 pixels

➔ Despite using a 
simple single pixel 
error term, there 
exists a clear global 
minimum

➔ However, there are 
local minima!



Dense and Sparse visual tracking

Generally we can trade off between complexity of the descriptor size and 
density of descriptor extraction to obtain a more robust error f:

➔ For whole image alignment, there is great redundancy for the few 
parameters being estimated, which can increase tracking robustness

➔ But gradient descent on the whole image cost function requires 
initialisation near to the global minimum (i.e. not for wide baseline)

➔ Many variations on how robustify against, or model photometric 
transformations



Basic Optimisation for 
Whole Image Alignment
Iterative Gauss-Newton Optimisation of the 
Dense cost function



Lucas-Kanade (1981)

Direct alignment for 2D image translation with warp 
function w(u) = u+t, and with a quadratic penalty function:



We want to estimate the unknown transform between

two image frames by minimising a whole image error:

Where is the chosen penalty, i.e. ψ(e)=e2, and Ω is the image 
domain.

Direct Non-linear Optimisation



Direct Non-linear Optimisation

The image error, given the generative warp model is simply 
the per pixel difference given parameters x: 

We will use an Iterative Gauss-Newton Gradient descent on 
E

w
 to estimate the parameters x.



Taylor series expansion of 

Solve convex form at Stationary Point:



Gauss-Newton Approximation

Approximate the Hessian by truncating to the first order 
components:

The result is an approximated 2nd order linearisation:



Examples to follow for SO3 RGB,  
SE3 RGB, RGB-D and Depth only 
camera tracking

Derivative of the penalty function:

Gradient of the cost function

i.e. 2e(u, x0) for ψ(e(u,x))=e(u,x)2

Derivative of the observation prediction function:



Solve for the linearised Cost function

Remember, a minimising argument is achieved as a 
function extremum: 

Taking the derivative of the linearised cost function:

+



Solving for the incremental update

Resulting in the normal equations:

The parameter vector is then updated:

See A13 for more details on trust region techniques for improved stability.



Basic Dense VO algorithm outline

Input: relative transform estimate, a template.and a live 
frame.

output: updated relative transform estimate that warps the 
template into the live frame. 

1. Compute dense cost function error and derivatives
2. Minimise dense cost function error by iterative Gauss-

Newton minimisation.
3. Iterate until convergence criteria.



Incremental Camera 
Tracking
For RGB and 
RGB-D Cameras



Incremental Transformations

We can parameterise the relative camera motion between reference and 
live frames:

A minimal parameterisation of a rigid body transform is given by: 

Where the parameters define an element of the Lie Algebra as (see A13):

where



The derivative of the non-linear exponential map that takes [ω]
x
 to the SO3 

rotation matrix can be obtained by truncating to the linear term of the matrix 
exponential:  

Incremental Transformations

The linearisation of the exponential map to first order for ω around 0 is 
useful in practice, i.e. cos(θ)~1 and sin(θ)~0.

We will compose resulting incremental small SO3 (or SE3) 
transformations together via the exponential map:



A rotating RGB Camera

The transformation of a pixel from one frame into another is independent 
of the scene geometry if t = (0 0 0)T:

Given an incremental compositional update to the rotation between the 
reference and live frames, the warp function is therefore:

Here K-1u
r
 defines a ray through pixel u

r
 and the camera center that is 

rotated and projected into the live frame.



A rotating RGB Camera

Inserting w
SO3

 into the whole image error we now perform the 
linearisation of Ew(x0 + Δ) with Δ = ω, hence we compute the per pixel 
image error derivative as:

Whole Image Error: E



A rotating RGB Camera

Pre-computing the currently rotated ray

The resulting error gradient vector for pixel u is:



A rotating RGB Camera

Evaluating the total Jacobian together with the chosen penalty function, 
we solve the resulting normal equations: 

Finally, form the SO3 matrix by exponentiation, and compose onto the 
initial transform:



Application: Real-time mosaicing, 
(Lovegrove & Davison, ECCV 2010)

http://www.youtube.com/watch?v=9cY7ahgtZdI


General rigid body RGB-D tracking

When a depth map is also available in one frame, we can compute pixel 
transfer of points in one frame given the relative SE3 transform T

lr
: 

Given an incremental compositional update to the rotation between the 
reference and live frames, the warp function is therefore:



General rigid body RGB-D tracking

Pre-computing the currently transformed per pixel vertex:

The resulting image error gradient vector for pixel u is:

Solve normal equations and compose:

Inserting w
SE3

 into the whole image error we now perform the linearisation 
of Ew(x0 + Δ) with rigid body parameters Δ = x:



Example Dense Pixel Transfer

➔ ➔ Note: we can use rendering 
engine (e.g. OpenGL) to 
achieve the observation 
prediction.

➔ Requires a triangle mesh 
representation of the depth 
map.

➔ Can correctly predict self 
occlusion since it is a surface.



The linearisation assumption:



Coarse to fine optimisation

The linearisation assumption is easily broken in real 
images, as the transformation magnitude increases, the 
cost function becomes clearly non-convex.

e(x)
x



Coarse to fine optimisation: downsampling

Removing higher frequency components in the images 
increases the parameter range for which the linearisation 
holds.



Note: scale the calibration 
matrix accordingly to ensure 
correct derivatives



Single RGB dense visual odometry from a keyframe 
(Newcombe et al, ICCV 2011)

http://www.youtube.com/watch?v=qZ_M7B-z9XA


General rigid body depth tracking (ICP)



General rigid body depth tracking (ICP)



General rigid body depth tracking (ICP)



Whole image depth image tracking (dense ICP)

Given 2 depth images, we define a generative model over the vertex maps:

Warp the surface in the reference image into the live image given the 
relative SE3 transform:

We can use the per depth pixel point-plane error, instead of a euclidean 
distance of the vertices:



Whole image depth image tracking (dense ICP)
Plugging the point-plane error into the whole image cost function, we 
again perform linearisation of Ew(x0 + Δ) with rigid body parameters 
Δ = x. Pre-computing the currently transformed per pixel vertex:

The resulting image error gradient vector for pixel u is:

Solve normal equations and compose:



Example Application: RGB-D + ICP Tracking 
(Henry et al, 3DV 2013)

http://www.youtube.com/watch?v=hEUDRTTlCxM


Basic robustness to a generative models outliers

Example dense ICP errors before/after outliers are introduced:

With example known x*, we choose the penalty 
function ψ to closely match -log of probability 

distribution over pixel errors: P(e(u,x*))



http://www.youtube.com/watch?v=JqWgJv5gPAs


➔ However, dense tracking formulations are trivially parallelisable
➔ We can make use of all image data to mitigate issues with where to 

extract and match features: can increase robustness
➔ As frame-rate increases, computational requirements reduce

Conclusions: Dense visual tracking

Remember, we can trade off between complexity of the descriptor size 
and density of descriptor extraction:



Thanks! Questions?


